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Abstract

We theoretically demonstrate non-trivial topological effects for a probe field in a Raman medium

undergoing molecular modulation processes. The medium is driven by two non-collinear pump

beams. We show that the angle between the pumps is related to an effective gauge potential

and an effective magnetic field for the probe field in the synthetic space consisting of a synthetic

frequency dimension and a spatial dimension. As a result of such effective magnetic field, the

probe field can exhibit topologically-protected one-way edge state in the synthetic space, as well

as Landau levels which manifests as suppression of both diffraction and sideband generation. Our

work identifies a previously unexplored route towards creating topological photonics effects, and

highlights an important connection between topological photonics and nonlinear optics.
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The process of molecular modulation (Fig. 1(a)) has attracted significant interests in

the last two decades [1–9]. In this process, molecules are driven by two pump fields, which

generate coherence between a few low-lying vibrational/rotational levels through a Raman

transition. A probe field couples with the molecular coherence, which results in the gen-

eration of Raman sidebands. This process is highly efficient and has found applications in

attosecond pulse generation [10], coherent broadband light generation [11, 12], and optical

orbital angular momentum transfer [13, 14].

Most previous experiments on molecular modulation assumes a collinear propagation be-

tween the pump and the probe (Fig. 1(b)). In this Letter, we consider a pump configuration

as shown in Fig. 1(c), where two pump beams are assumed to be non-collinear, with both

their directions near the z-axis, subtending an angle α ≪ 1 rad. We show that when a

probe beam propagating along the z-axis is introduced into this medium, such a molecular

coherence results in a synthetic gauge field that couples to the probe field. As a result the

probe field exhibits non-trivial topological photonic effect including a topologically protected

one-way edge state along the frequency axis, as well as Landau levels which manifests as

suppression of both diffraction and sideband generation.

The explorations of synthetic gauge potential [15–22] and topological effects [23–33] for

light have generated significant recent interests since these effects open a new dimension in

the control of the flow of light. Most previous works on synthetic gauge field and topological

photonics rely upon complex material geometries. In contrast, in this work we show that

topological photonic effects naturally arise in a standard nonlinear optics geometry. Our

work therefore points to a potentially fruitful direction at the interface between nonlinear

optics and topological photonics. The predicted effects also represent a new mechanism for

controlling Raman sidebands in system exhibiting molecular coherence.

We start our analysis by considering a molecular Raman-active medium. The molecules

have a ground state (labelled as “a” in Fig. 1(a)), a low-lying excited (labelled as “b”),

and intermediate states (labelled as “i”) at higher energies. The medium is driven by two

pump laser pulses, centered at frequencies ωA and ωB, respectively. The pumps are non-

resonant with respect to any molecular transitions but are two-photon near-resonant with

the a-b transition with a small detuning ∆ω ≡ (ωb − ωa) − (ωA − ωB). The pumps create

a coherence ρab between levels a and b, which can generate sidebands for the pump fields

themselves [4]. However, we emphasize here that we are not interested in this sideband
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FIG. 1: (a) Energy levels of a molecule used in the molecular modulation process. Levels a and b are

ground states and i are the excited states. Pump fields EA and EB are far from resonance between

the ground states and the excited states, but are near resonance with the two-photon transition

a-b. Sidebands En are generated via the interaction of molecular coherence ρab as generated from

the pump, with the probe field E0. (b) and (c) Pump fields and the probe field are injected into the

Raman-active medium (inside a cell in the green square with a length L) along near the z-direction.

Two pump fields (blue regions) propagate collinearly at an angle α = 0 in (b) or non-collinearly at

α = 0.5◦ in (c). The probe field (red arrow) has a focal area at z = 0 which is much smaller than

the beam waist of the pump fields. The simulation region has a width D and is labelled in orange.

generation. Instead we send a weak probe field E0 into the medium. To distinguish the

different sidebands from the probe and from the pumps, one can send the probe either as a

short pulse that arrives at a time delay after the short pump pulses have passed through the

medium, or at a very different frequency from the pump fields while the pumps stay in the

medium. In both cases, the key physics for our purpose here is the interaction of the pump

fields with the coherence generated by the pumps. Therefore, we adopt the analytic model

as was used in [2, 4, 34], where both the pumps and the probe are treated as continuous-wave

at a single frequency, and we provide an estimate on the effects of the pulses towards the

end of the paper.

The propagation equation of a laser beam at a frequency ω is derived from the Maxwell’s
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equations as [4, 34]:
∂

∂z
Eω − i

c

2ω

∂2

∂x2
Eω = icµ0~ωPω. (1)

Here, we assume the beam has a propagation direction near the z-axis and use the paraxial

wave approximation. µ0 is the vacuum permeability, and Eω and Pω are the slowly varying

envelopes for the spectral components of the electric field and the polarization, respectively,

at the frequency ω.

For the pumps EA(B), we use the solution of Pω in Refs. [2, 4, 34] and write Eq. (1) as

∂

∂z
EA(B) − i

c

2ωA(B)

∂2

∂x2
EA(B) = icµ0~ωA(B)N

[

aωA(B)
ρaa + dωA(B)

ρbb

]

EA(B), (2)

where N is the number density of the molecule. In Eq. (2),

aω =
1

2~2

∑

i

[

|µai|
2

(ωi − ωa)− ω
+

|µai|
2

(ωi − ωa) + ω

]

, (3)

dω =
1

2~2

∑

i

[

|µbi|
2

(ωi − ωb)− ω
+

|µbi|
2

(ωi − ωb) + ω

]

, (4)

where µa(b)i is the dipole moment between levels a(b) and intermediate state i. In Eq. (2)

we only keep the first-order perturbation to the pumps because we are interested in the

sideband generation from the probe. Because the pumps are non-resonant with respect to

any molecular transition, we have aωA(B)
∼= dωA(B)

∼= a0. By using ρaa + ρbb = 1, Eqs. (2)

becomes

i
∂

∂z
EA(B) = −κA(B)

∂2

∂x2
EA(B) − βA(B)EA(B), (5)

where κA(B) = c/2ωA(B), and

βA(B) = cµ0~ωA(B)Na0. (6)

Therefore, the pump fields in general can be described as a Gaussian or Hermite-Gaussian

beam with the wave vector kA(B) + βA(B).

The pumps create coherence ρab between levels a and b, which oscillates at the frequency

ωm = ωA − ωB (see Fig. 1(a)) with an amplitude of [2, 4, 34]:

ρab =
1

2

bωA
EAE

∗

B
√

|bωA
EAE∗

B|
2 +∆ω2

, (7)

where

bω =
1

2~2

∑

i

[

µaiµ
∗

bi

(ωi − ωa)− ω
+

µaiµ
∗

bi

(ωi − ωb) + ω

]

. (8)
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To study the propagation of the probe, based on the experimental scenarios as described

above, we assume that the coherence does not decay as the weak probe field propagates

through the medium. The probe has the carrier frequency ω0. When the probe interacts

with the coherence in the medium, sidebands at frequencies ωn = ω0 + nωm are generated,

where n is an integer. From Eq. (1). the propagation equation for the electric field in the

n-th sideband En is [2, 4, 34]

∂

∂z
En− i

c

2ωn

∂2

∂x2
En = icµ0~ωnN

{

[aωn
ρaa + dωn

ρbb]En + b∗ωn
ρabEn−1 + bωn+1ρ

∗

abEn+1

}

, (9)

where aω and dω are defined in Eqs. (3) and (4), and bω is defined in Eq. (8). Since all the

sidebands are sufficiently far from any resonance, again we have

aωn

∼= dωn

∼= a0; bωn

∼= b0 . (10)

Therefore, Eq. (9) simplifies to

i
∂

∂z
En = βnEn − κn

∂2

∂x2
En − gn (2ρabEn−1 + 2ρ∗abEn+1) , (11)

where κn = c/2ωn, βn = cµ0~ωnNa0, and gn = cµ0~ωnNb0/2.

From Eq. (7), with the pump configuration as described in Fig. 1(c), we have

ρab(x, z) =
1

2

|bωA
EA(x)E

∗

B(x)|
√

|bωA
EA(x)E∗

B(x)|
2 +∆ω2

eiθ(x)e−i(βA−βB)z, (12)

where

θ(x) = qx, (13)

with q ≈ α(kA + kB)/2. On the other hand, from Eq. (6), one can show that βn − βn−1 =

βm = βA − βB. Therefore, we perform the transformation En = Ẽn exp(iβnz) and ρab =

ρ̃ab exp(iβmz) to obtain

i
∂

∂z
Ẽn = −κ

∂2

∂x2
Ẽn − g(x)

(

eiqxẼn−1 + e−iqxẼn+1

)

. (14)

In arriving at Eq. (14), we note that in the limit of ω0 ≫ ωm, κn
∼= κ and 2gn|ρab| ∼= g [35].

To understand the physics in Eq. (14), we apply a gauge transformation Ẽn = εne
inqx,

define a continuous function ε(ω, x) such that ε(ωn, x) = εn, and approximate the term in

the parentheses by a continuous derivative. Eq. (14) becomes

i
∂

∂z
ε(ω, x) ≈ κ

(

−i
∂

∂x
+

ω − ω0

ωm
q

)2

ε(ω, x) + gω2
m

(

−i
∂

∂ω

)2

ε(ω, x)− 2gε(ω, x). (15)
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Eq. (15) has the form of a Schrödinger equation in 2 + 1 dimensions, except with the

usual time axis replaced by the z-axis, and with the remaining two dimensions describing a

synthetic space with one spatial dimension along the x direction and one synthetic frequency

dimension [36, 37]. In this synthetic space, Eq. (15) describes an effective gauge potential

Aω = (ω−ω0)q/ωm along the x-axis, which gives a uniform effective magnetic field orthogonal

to the 2D space:

B =
∂A

∂ω
=

q

ωm
= α

(kA + kB)

2ωm
. (16)

FIG. 2: (a) The projected bandstructure within the first Brillouin zone kx ∈ [−q/2, q/2] in a

infinite system described by Eq. (14). We choose κ = g(π/2q)2. (b) The projected bandstructure

with q = 0 but with κ unchanged plotted in the same first Brillouin zone. (c) The projected

bandstructure in a 2D strip that is infinite along the x-axis but with a finite number of sidebands

(sideband number n = −10, . . . , 10) along the frequency dimension. In the lowest bandgap, there

exists two one-way edge modes (labelled in red). (d) Field amplitudes of the two edge modes

labelled by purple and blue dots in (c).

To examine the topological effect created by such an effective magnetic field, we calculate
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the bandstructure of an infinite 2D system described by Eq. (14) with a uniform g(x) = g

along the x-direction. Eq. (14) has a spatial periodicity of 2π/q along the x-axis as well

as a symmetry with respect to the translational operation n to n + 1 along the frequency

axis. Therefore, it can be described in terms of a bandstructure E(kx, kω), which relates the

wavevector shift for the probe E along the z-direction, to the quantum numbers kx and kω

corresponding to the translational symmetries as described above. We take κ = g(π/2q)2

and plot the projected bandstructure within the first Brillouin zone kx ∈ [−q/2, q/2] in Fig.

2(a). Due to the effective magnetic field, for each kx the bands are almost completely flat

along the kω axis. Therefore, the projected bands appear as lines in the E − kx plane. The

bulk bands here correspond to the Landau level of a particle under a constant magnetic

field. In the continuum limit (such as described by Eq. (15)) the bands would be completely

flat along both the kx and the kω axis. Here the non-zero slope along the kx axis arises from

the discrete translational symmetry. There are gaps between the bands. In contrast, with

q = 0, which corresponds to the use of two collinear pump beams, we observe neither the

Landau level formation nor the opening of the band gaps in the projected bandstructure

(Fig. 2(b)).

The bands in Fig. 2(a) are topologically non-trivial as characterized by non-zero Chern

numbers [38]. Therefore, in a strip geometry there should be topologically protected one-way

edge states within the gap. As a demonstration, we consider a strip that is infinite along

the x-axis but with finite numbers of n (n = −10, . . . , 10) along the frequency axis. We plot

its bandstructure E(kx) in Fig. 2(c). In the lowest bandgap, there exists two one-way edge

modes. The field amplitudes corresponding to the two modes at E = 0 (labelled by purple

and blue dots in Fig. 2(c)) are shown in Fig. 2(d). One can see that the fields are located

on the two edges and decay exponentially into the bulk. The bandstructure analysis here

indeed shows the non-trivial topology when the pumps are non-collinear.

While topological effects have been observed in a wide variety of photonic systems, the

process of molecular modulation provides unique aspect of probing topological effects. To

illustrate these effects, in what follows we will solve Eq. (14) numerically for several different

pump and probe configurations. The parameters used in our simulations are based on the

recent experiments in either the gas medium [3, 4, 6] or the Raman-active crystal [11, 12].

The molecular density is chosen to be N ∼ 1018-1019 cm−3. The frequencies of the pump

and probe lasers are at the order of 1 µm. Given these conditions, we have g ∼ 102-103 m−1,
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κ ∼ 10−7 m. At z = 0, the probe field has a spatial profile of

f(x) = e−(x/∆x)2 , (17)

with a focal width ∆x = 38.8 µm. We will study the propagation of this probe field along

the z-axis.

FIG. 3: (a) The wave vector mismatching for the probe along z-direction, β(ωn), with an additional

two-level atom added into the medium at a resonant frequency ω99 − 0.025ωm. ∆ = 103 m−1. (b)

The normalized intensity as a function of position and sidebands for the input probe field. The input

field has a frequency of 100.8ωm. (c) and (d) The output field intensity at z = L, corresponding to

the non-collinear pump geometry in Fig. 1(c) and the collinear pump geometry in Fig. 1(b). Blue

arrow in (c) indicates the propagation direction of the edge state.

In Fig. 3 we present the simulation results for the system with a non-collinear pump

geometry with α = 0.5◦, which gives q = 5× 104 m−1. We choose κ ∼ 10−7 m, and g = 102

m−1. These parameters are the same as used for generating the bandstructure in Fig. 2(c).

The beam waists of the pump fields are chosen to be w0 = 1 mm which corresponds to

the Rayleigh length zR ∼ 3 m. The length of the medium is L = 5 cm. We perform the

simulation in a D × L region as represented by the orange rectangle in Fig. 1(c), with
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D = 0.433 mm, because the probe field doesn’t diffract out of this region in the entire

simulation. Since D < w0 and L ≪ zR, we assume that the amplitudes of the pump fields

is uniform in the simulation region so the coherence is also uniform along x-direction in Eq.

(14). In order to create an edge along the frequency axis, we add two-level atoms into the

system that provides additional frequency dispersion. We choose two-level atoms to have

a resonant frequency ω99 − 0.025ωm, a density of 2.5 × 1015 cm−3, and a dephasing rate

1/T2 = 1010/2π s−1. Here ω99 is the frequency of the 99th sideband, and the n-th sideband

frequency satisfies ωn = (n + 0.8)ωm. The wavevector β as a function of frequency near

the resonant frequency of the two-level atoms is shown in Fig. 3(a). Such two-level atoms

strongly influence the wavevectors at the 99th sideband without influencing the wavevector of

100th sideband. With such a choice we expect that the 100th sideband cannot downconvert,

which creates a boundary along the frequency axis. In the simulation, we input at z = 0 a

beam at ω100, and we consider 16 sidebands from ω97 to ω112 (Fig. 3(b)). After propagation,

the beam shifted towards the +x-direction, and shows very little frequency conversion, in

consistency with the existence of an one-way edge state localized at the lowest frequency

boundary (Fig. 3(c)). As a comparison, we study the evolution of the probe with a collinear

pump geometry, i.e. α = 0, while keeping all the other parameters to be the same as in Fig.

3(c) (see Fig. 1(b)). In the case where the input probe frequency is 100.8ωm (Fig. 3(b)), we

observe significant diffraction and frequency conversion (Fig. 3(d)). This is consistent with

the theoretical description as presented earlier: in the collinear pump geometry there is no

effective magnetic field and hence there is no one-way edge state.

For electrons in two dimensions, an important consequence of a perpendicular magnetic

field is the existence of Landau level — a bulk band with its energy completely independent

of the in-plane wavevectors. For photons, Landau level has been observed in [19], which

relies upon a sophisticated dielectric geometry. In contrast, here we show that one can

directly generate the Landau level for photons by choosing the right parameters in systems

undergoing molecular modulation (Fig. 4). As an illustration, here we choose a larger

g = 103 m−1, and keep all other system parameters as in Fig. 3, except without the

additional of the two-level atoms. In general, the underlying bandstructure of the system,

in the absence of the effective magnetic field, is a tight-binding band along the frequency

axis. The use of a larger g ensures that such tight-binding band can be approximated

by a parabolic band over a large range of E , which facilitates the creation of the Landau

9



FIG. 4: (a) The projected bandstructure showing the formation of Landau levels. κ = 0.1g(π/2q)2 .

(b) The normalized intensity as a function of position and sidebands for the input probe field.

The input field has a frequency of 100.8ωm. (c) and (d) The output field intensity at z = L,

corresponding to the non-collinear pump geometry in Fig. 1(c) and the collinear pump geometry

in Fig. 1(b).

level in the presence of the effective magnetic field. Fig. 4(a) shows the projected bulk

band structure calculation for the system shown in Fig. 1(c), where the non-collinear pump

creates an effective magnetic field. We indeed observe that the lowest five bands are almost

completely flat in the kx and kω plane, signifying the creation of the Landau level. As a

demonstration of the effect of the Landau level, we input the same probe beam as in Fig.

3, but with a frequency centered at 100.8ωm, as shown in Fig. 4(b). We see that the probe

field does not diffract in the spatial dimension and also shows no frequency conversion (Fig.

4(c)). This is a direct evidence of Landau levels – the flattened bands prevent diffraction as

well as frequency conversion. Our system here therefore provides a novel mechanism to guide

light with light. Unlike conventional waveguides, in which light is guided in a well-defined

core region, here guiding occurs for every spatial and spectral position inside the “bulk”.

We compare our results with the evolution of the probe with a collinear pump geometry,

10



i.e. α = 0 (Fig. 1(b)). In this case, we choose the same input probe beam as shown in Fig.

4(b). Again, significant diffraction and frequency conversion occurs, as seen in Fig. 4(d).

From a theoretical point of view, to observe the effect of the gauge potential, it is im-

portant to keep the diffraction term (i.e. the term containing ∂2/∂x2) in Eq. (1) when

describing the probe. Our theoretical treatment therefore is in contrast with the standard

treatment of molecular modulation process where the diffraction term is typically ignored.

In the simulations above, we treat the probe field in Eq. (14) as a monochromatic field.

Our results are also valid if the pumps and the probe are pulses, as long as the temporal

duration of the pulses are long such that the slowly-varying-envelope approximation is valid.

Using a long pump pulse, the coherence can be prepared via the “adiabatic following” scheme

[39], in which a large coherence can be achieved by setting a negative ∆ω and by adiabatically

increasing the strength of the pump fields until |ρab| = 1/2 is reached. We give an example of

the typical time scale of pulses in a possible experiment. For the pump one can use a ∼ 500

fs pulse, which has a the spectral width of δωFWHM/ωpump ∼ 10−3. For such a pump one can

assume that q is a constant in Eq. (13). A typical molecular modulation process requires a

dephasing time of the coherence long enough so it works in the transient regime before the

coherence has time to decay [40]. Therefore, to study the interaction of a probe pulse with

the coherence, one can send in the probe pulse at a time delay. For example, one can use a

∼ 500 fs probe pulse at a time delay ∼ 1 ps with respect to the pump. Alternatively, one

can also use the long pump pulses ∼ 1 ns and send the probe into the medium while the

pumps are on. In this case, one can choose the frequencies of the pump and the probe to be

sufficiently different and observe the predicted topological effects in the sidebands associated

with the probe.

In our simulation, we consider the diffraction effects along only one spatial dimension (the

x-dimension). One can choose the spatial profile of the beam such that the diffraction effect

along the y-direction to be sufficiently weak. On the other hand, by including diffraction

effects along both the x and y-dimensions, one may also explore three-dimensional gauge

field physics [41, 42].

In summary, we study the process of the coherent Raman sideband generation by the

molecular modulation with a non-collinear pump geometry. We show that such a geometry

provides a synthetic gauge potential for a probe beam sent into the same system. The

gauge potential can introduce non-trivial topological effects for the probe beam. Our work

11



identifies a previously unexplored route towards creating topological photonics effects, and

highlights an important connection between topological photonics and nonlinear optics.
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