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Abstract

In this paper we construct supersymmetric flipped SU(5) GUTs from E8

singularities in F-theory. We start from an SO(10) singularity unfolded from an

E8 singularity by using an SU(4) spectral cover. To obtain realistic models, we

consider (3, 1) and (2, 2) factorizations of the SU(4) cover. After turning on the

massless U(1)X gauge flux, we obtain the SU(5) × U(1)X gauge group. Based

on the well-studied geometric backgrounds in the literature, we demonstrate

several models and discuss their phenomenology.

1cmchen@hep.itp.tuwien.ac.at
2ycchung@physics.tamu.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231872841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1005.5728v3


1 Introduction

String theory is a ten-dimensional theory of quantum gravity and so far is the most

promising candidate for a fundamental unified theory. To build connections to the

physics at a low energy scale, string theorists have been using the techniques of com-

pactification to construct models in four-dimensional spacetime. F-theory [1–3](see [4]

for review) is a twelve-dimensional geometric extension of string theory where one can

engineer gauge theories from a geometric approach [5, 6]. We are interested in how

gauge theories realized by F-theory can accommodate Grand Unified Theory (GUT)

models. Recently, extensive studies of GUT local models and their corresponding

phenomenology in F-theory have been undertaken in [7–32]. In addition, supersym-

metry breaking has been discussed in [33–37], and the application to cosmology has

been studied in [38]. Semi-local and global model building in F-theory were partic-

ularly discussed in [39–66]. Systematic studies of how models of higher rank GUT

groups, such as SO(10), are embedded into the compact geometry in F-theory have

not been fully investigated. To this end, we are interested in the SO(10) subgroup

SU(5)× U(1)X which is realized as the flipped SU(5) GUT [67–69]. Although local

flipped SU(5) models have been discussed in F-theory, we study the model as a semi-

local construction. In this paper we shall build flipped SU(5) models by unfolding

an E8 singularity via the SO(10) gauge group.

To construct flipped SU(5) models in the four-dimensional spacetime, we com-

pactify F-theory on an elliptically fibered Calabi-Yau fourfold X4 with a base threefold

B3. We adopt a bottom-up approach to construct models in the decoupling limit to

avoid full F-theory on a complicated elliptically fibered Calabi-Yau fourfold. More

precisely, we consider a contractible complex surface S inside B3 such that we can

reduce full F-theory on X4 to an effective eight-dimensional supersymmetric gauge

theory on R3,1 × S. In this paper the surface S is assumed to be a del Pezzo sur-

face [70, 71]. Since we will construct flipped SU(5) models from an SO(10) gauge

group, we have to engineer the singularities of types D5, D6, E6, and E7 in the

Calabi-Yau fourfold X4. Because these singularities can be embedded into a single

singularity E8, we start our discussion from the E8 singularity and unfold it into a

D5 singularity.

Generally, one may turn on certain fluxes to obtain the chiral spectrum. In

F-theory, there is a four-form G-flux, which consists of three-form fluxes and gauge
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fluxes. In type IIB theory, these three-form fluxes produce a back-reaction in the

background geometry. It has been shown in [30,72] that the three-form fluxes induce

non-commutative geometric structures and also modify the texture of the Yukawa

couplings. F-theory in Fuzzy space also has been studied in [63]. In this paper we

shall turn off these three-form fluxes and focus only on the gauge fluxes. The gauge

U(1)X flux is able to break the gauge group SO(10) down to SU(5)× U(1)X . It was

shown in [9, 48] that the spectral cover construction naturally encodes the unfolding

information of an E8 singularity as well as the gauge fluxes. In this paper we shall

focus on the SU(4) spectral cover encoding the SO(10) singularity from unfolding

E8. The four-dimensional low-energy spectrum of the flipped SU(5) model is then

determined by the cover fluxes and the U(1)X flux.

The SU(4) spectral cover has many interesting properties. From the subgroup

decomposition of E8, one can find that there is no explicit presentation of 10. In

addition, the cover associated to the 10 representation forms a double-curve and along

this curve there are co-dimension two singularities. After resolving the singularities

along the curve, one finds that the net chirality of the 10 curve vanishes [39]. Since the

background geometry generically determines the G flux, there are not many degrees of

freedom left to adjust the chirality on the 16 curve to create three-generation models.

These ideas motivate us to consider factorizing the spectral cover [46,47,52,54,55] to

introduce additional parameters for model building. We consider two possibilities of

splitting the SU(4) spectral cover: (3,1) and (2,2) factorizations. The curve of the

fundamental representation is then divided into two 16 curves, while generically the

10 curve is detached into three. However, due to the monodromy structure there are

only two 10 curves in the (3,1) case.

In semi-local SO(10) GUTs, there exists only the 16 16 10 Yukawa coupling

from the enhancement to an E7 singularity. The GUT Higgs fields coming from the

adjoints or other representations such as 45, 54, or 120 are absent in the F-theory

construction. Therefore, the most convincing way to break the SO(10) gauge group

is turning on the U(1)X flux on the GUT surface S. This U(1)X gauge field can be

massless [7, 10, 73], so we can interpret the gauge group as the flipped SU(5) model

after turning on such a flux. With non-trivial restrictions to the curves, this U(1)X

flux generically modifies the net chirality of matter localized on these curves. We may

identify the flipped SU(5) superheavy Higgs fields with one of the 10+10 vector-like

pairs in the spectrum for further gauge breaking to MSSM.
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The organization of the rest of the paper is as follows: in section 2, we briefly

review the local geometry of an elliptically fibered Calabi-Yau fourfold with ADE

singularities and the SU(4) spectral cover. In section 3, we study (3, 1) and (2, 2)

factorizations of the SU(4) cover. In section 4, we construct cover fluxes and compute

the chirality of matter localized on each curve for the (3, 1) and (2, 2) cover factor-

izations. In section 5, we briefly review the D3 tadpole cancellation in F-theory. We

also give explicit formulae of geometric and cover flux contributions in the tadpole

cancellation. In section 6, we demonstrate several examples of flipped SU(5) models

and discuss their phenomenology. We summarize and conclude in section 7.

2 Preliminaries

2.1 Elliptically fibered Calabi-Yau Fourfolds and ADE Singu-

larities

Let us consider an elliptically fibered Calabi-Yau fourfold π : X4 → B3 with a section

σB3 : B3 → X4. Due to the presence of the section σB3 , X4 can be described by the

Weierstrass form:

y2 = x3 + fx+ g, (2.1)

where f and g are sections of suitable line bundles over B3. More precisely, to maintain

Calabi-Yau condition c1(X4) = 0, it is required that1 f ∈ Γ(K−4
B3

) and g ∈ Γ(K−6
B3

),

where KB3 is the canonical bundle of B3. Let ∆ ≡ 4f 3 + 27g2 be the discriminant of

the elliptic fibration Eq. (2.1) and S be one component of the locus {∆ = 0} where

elliptic fibers degenerate. In the vicinity of S, one can regard X4 as an ALE fibration

over the surface S. To construct SO(10) and flipped SU(5) GUT models, one can

start with engineering a D5 singularity corresponding to the gauge group SO(10) in

the following way. Let z be a section of the normal bundle NS/B3
of S in B3 and the

zero section then represents the surface S. Since f and g are sections of some line

bundles over B3, one can locally expand f and g in terms of z as follows:

f = 3
4∑

k=0

fk(u, v)z
k, g = 2

6∑

l=0

gl(u, v)z
l, (2.2)

1The symbol Γ(L) stands for a set of global sections of the bundle L.
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where (u, v) are coordinates of S and the prefactors 2 and 3 are just for convenience.

Then the Weierstrass form Eq. (2.1),

y2 = x3 + 3
4∑

k=0

fk(u, v)z
kx+ 2

6∑

l=0

gl(u, v)z
l, (2.3)

describes an ALE fibration over S, where fk ∈ Γ(K−4
B3

⊗OB3(−kS)) and gl ∈ Γ(K−6
B3

⊗

OB3(−lS)).2 According to the Kodaira classification of singular elliptic fibers, one can

classify the singularity of an elliptic fibration by the vanishing order of f , g, and ∆,

denoted by ord(f), ord(g), and ord(∆), respectively. We summarize the relevant

ADE classification and corresponding gauge groups in Table 1. A detailed list can

be found in [9]. According to Table 1, a D5 singularity corresponds to the case of

Singularity ord(f) ord(g) ord(∆) Gauge Group

An 0 0 n+ 1 SU(n + 1)

Dn+4 > 2 3 n+ 6 SO(2n+ 8)

Dn+4 2 > 3 n+ 6 SO(2n+ 8)

E6 > 3 4 8 E6

E7 3 > 5 9 E7

E8 > 4 5 10 E8

Table 1: ADE singularities and corresponding gauge groups.

(ord(f), ord(g), ord(∆)) = (> 2, 3, 7) or (2,> 3, 7). Recall that S is the locus {z = 0}.

To obtain a D5 singularity, the vanishing orders of f and g at z = 0 are required to

be two and three, respectively3. Let us consider the sections f and g to be

f = 3(f2z
2 + f3z

3), g = 2(g3z
3 + g4z

4 + g5z
5). (2.4)

Then the corresponding discriminant is given by

∆ = cz6[(f 3
2 + g23) + (3f 2

2f3 + 2g3g4)z + (3f2f
2
3 + g24 + 2g3g5)z

2

+ (f 3
3 + 2g4g5)z

3 +O(z4)], (2.5)

2By adjunction formula, KS = KB3
⊗NS/B3

|S , we have fk ∈ Γ(K−4
S ⊗N4−k

S/B3

) and gl ∈ Γ(K−6
S ⊗

N6−l
S/B3

), where KS is the canonical bundle of S.
3One can show that in this case the only consistent triplet vanishing orders for a D5 singularity

is (ord(f), ord(g), ord(∆)) = (2, 3, 7). The higher order terms are irrelevant to the singularity.

However, they may change the monodromy group [62].
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where c = 4 · 27. To obtain ord(∆) = 7, let us set f2 = −h2 and g3 = h3, where

h ∈ Γ(K−2
B3

⊗OB3(−S)). Then the discriminant is reduced to

∆ = cz7[(3h4f3 + 2h3g4) + (−3h2f 2
3 + g24 + 2h3g5)z + (f 3

3 + 2g4g5)z
2 +O(z3)]. (2.6)

The singularity of ALE fibration is now characterized by the sections {h, f3, g4, g5}.

When h = 0, one can find that (ord(f), ord(g), ord(∆)) = (3, 4, 8) at the locus {z =

0}∩{h = 0}. It follows from the Kodaira classification that the singularity is enhanced

to E6. When 3hf3 + 2g4 = 0, the triplet vanishing orders becomes (2, 3, 8), which

implies that the singularity at the locus {z = 0} ∩ {3hf3 + 2g4 = 0} is D6 and that

the corresponding enhanced gauge group is SO(12). In a similar manner, one can

find the codimension two singularities corresponding to E7 and SO(14) in S. We

summarize the results in Table 2.

Gauge Group (ord(f), ord(g), ord(∆)) Locus

SO(10) (2, 3, 7) {z = 0}

E6 (3, 4, 8) {z = 0} ∩ {h = 0}

SO(12) (2, 3, 8) {z = 0} ∩ {3hf3 + 2g4 = 0}

E7 (3, 5, 9) {z = 0} ∩ {h = 0} ∩ {g4 = 0}

SO(14) (2, 3, 9) {z = 0} ∩ {3hf3 + 2g4 = 0} ∩ {3f 2
3 − 8hg5 = 0}

Table 2: Gauge enhancements and corresponding loci.

For later use, it is convenient to introduce the Tate form of the fibration:

y2 = x3 + b4x
2z + b3yz

2 + b2xz
3 + b0z

5, (2.7)

where bm ∈ Γ(Km−6
S ⊗NS/B3). Actually, Eq. (2.7) is nothing more than the unfolding

of an E8 singularity to a singularity of SO(10). Notice that by comparing Eq. (2.7)

with Eqs. (2.3) and (2.4), one can obtain the relations between {f2, f3, g3, g4, g5} and

{b0,b2,b3,b4} as follows: 



f2 = −1
9
b
2
4

f3 =
1
3
b2

g3 =
1
27
b
3
4

g4 =
1
8
b
2
3 −

1
6
b2b4

g5 =
1
2
b0.

(2.8)
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With the relations in Eq. (2.8), the discriminant Eq. (2.6) becomes

∆ = c̃z7{16b2
3b

3
4 + [27b4

3 − 72b2b
2
3b4 − 16b2

4(b
2
2 − 4b0b4)]z

+ [16b2(4b
2
2 − 18b0b4) + 216b0b

2
3]z

2 +O(z3)}, (2.9)

where c̃ = 1
16

. It follows from Eq. (2.8) that the codimension one loci {z = 0}∩{h = 0}

and {z = 0}∩ {3hf3+2g4} in S can be equivalently expressed as {z = 0}∩ {b4 = 0}

and {z = 0} ∩ {b3 = 0}, respectively. Due to the gauge enhancements, matter 16

and 10 are localized at the loci of E6 and SO(12) singularities, respectively. One

can also find that the loci of codimension two singularities E7 and SO(14) in S are

{z = 0} ∩ {b3 = 0} ∩ {b4 = 0} and {z = 0} ∩ {b3 = 0} ∩ {b2
2 − 4b0b4 = 0},

respectively. At these loci, the corresponding gauge groups are enhanced to E7 and

SO(14), respectively4. In particular, the Yukawa coupling 16 16 10 can be realized

at the points with E7 singularities. We summarize the results in Table 3.

Gauge Group Locus Object

SO(10) {z = 0} GUT Seven-branes

E6 {z = 0} ∩ {b4 = 0} Matter 16

SO(12) {z = 0} ∩ {b3 = 0} Matter 10

E7 {z = 0} ∩ {b3 = 0} ∩ {b4 = 0} Yukawa Coupling 16 16 10

SO(14) {z = 0} ∩ {b3 = 0} ∩ {b2
2 − 4b0b4 = 0} Extra Coupling

Table 3: Gauge enhancements in SO(10) GUT geometry.

2.2 SU(4) Spectral Cover

To engineer the SO(10) gauge group from an E8 singularity, let us consider the

following decomposition

E8 → SO(10)× SU(4)⊥
248 → (1, 15) + (45, 1) + (10, 6) + (16, 4) + (16, 4̄). (2.10)

4One can also use Tate’s algorithm to determine the singularity type of the Tate form Eq. (2.7) [6].
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and the Tate form of the fibration,

y2 = x3 + b4x
2z + b3yz

2 + b2xz
3 + b0z

5. (2.11)

For simplicity, let us define c1 ≡ c1(S) and t ≡ −c1(NS/B3
), then the homological

classes of the sections x, y, z, and bm can be expressed as

[x] = 3(c1 − t), [y] = 2(c1 − t), [z] = −t, [bm] = (6−m)c1 − t ≡ η −mc1. (2.12)

Recall that locally X4 can be described by an ALE fibration over S. Pick a point

p ∈ S and the fiber is an ALE space denoted by ALEp. One can construct an

ALE space by resolving an orbifold C
2/ΓADE, where ΓADE is a discrete subgroup of

SU(2) [74], for more information, see [75–79]. It was shown that the intersection

matrix of the exceptional 2-cycles corresponds to the Cartan matrix of ADE types.

In this paper we will focus on engineering the SO(10) gauge group by unfolding an

E8 singularity. To this end, let us consider αi ∈ H2(ALEp,Z), i = 1, 2, ..., 8 to be

the roots5 of E8. The extended E8 Dynkin diagram with roots and Dynkin indices

are shown in Fig 1. Notice that α−θ is the highest root and satisfies the condition

✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐

✐

1 2 3 4 5 6 4 2

3

α−θ α1 α2 α3 α4 α5 α6 α7

α8

Figure 1: The extended E8 Dynkin diagram and indices

α−θ + 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 = 0. To obtain SO(10), we

keep the volume of the cycles {α4, α5, ..., α8} vanishing and then SU(4)⊥ is generated

by {α1, α2, α3}. An enhancement to E6 happens when α3 or any of its image under

the Weyl permutation shrinks to zero size. Let {λ1, ..., λ4} be the periods of these

2-cycles. As described in [10, 48], the information of theses λi can be encoded in the

5By abuse of notation, the corresponding exceptional 2-cycles are also denoted by αi
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coefficients bm in Eq. (2.11) via the following relations:





∑

i

λi =
b1
b0

= 0

∑

i<j

λiλj =
b2
b0

∑

i<j<k

λiλjλk =
b3
b0

∏

l

λl =
b4
b0
,

(2.13)

where bm ≡ bm|z=0. Equivalently, {λ1, ..., λ4} can be regarded as the roots of the

equation

b0
∏

k

(s+ λk) = b0s
4 + b2s

2 + b3s + b4 = 0. (2.14)

When p ∈ S varies along S, Eq. (2.14) defines a fourfold cover over S, called the

fundamental SU(4) spectral cover. This cover is a section of the canonical bundle

KS → S. When λi vanish,
∏

i λi = b4 = 0 in which the gauge group is enhanced

to E6 and matter 16 is localized. According to the decomposition (2.10), matter 10

corresponds to the anti-symmetric representation 6 of SU(4)⊥, associated to a sixfold

cover C
(6)
∧2V over S. This associated cover C

(6)
∧2V can be constructed as follows:

b20
∏

i<j

(s+ λi + λj) = b20s
6 + 2b0b2s

4 + (b22 − 4b0b4)s
2 − b23 = 0. (2.15)

Since matter 10 corresponds to λi + λj = 0, i 6= j, it follows from Eq. (2.15) that

b3 = 0, which means that matter 10 is localized at the locus {b3 = 0} as shown in

Table 3. It is not difficult to see that the spectral covers indeed encode the information

of singularities and gauge group enhancements. However, the spectral cover is even

more powerful. With it, we can construct a Higgs bundle to calculate the chirality of

matter 16 and 10 by switching on a line bundle on the cover.

Let us define X to be the total space of the canonical bundle KS over S. Note

that X is a local Calabi-Yau threefold. However, X is non-compact. To obtain a

compact space, one can compactify X to the total space X̄ of the projective bundle

over S, i.e.

X̄ = P(OS ⊕KS), (2.16)

with a map π : X̄ → S, where OS is the trivial bundle over S. Notice that X̄ is

compact but no longer a Calabi-Yau threefold. Let O(1) be a hyperplane section
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of P1 fiber and denote its first Chern class by σ∞. We define the homogeneous

coordinates of the fiber by [U : V ]. Note that {U = 0} and {V = 0} are sections of

O(1)⊗KS and O(1), while the class of {U = 0} and {V = 0} are σ ≡ σ∞ − π∗c1(S)

and σ∞, respectively. The intersection of {U = 0} and {V = 0} is empty. Thus, one

can obtain σ · σ = −σ · π∗c1. The affine coordinate s is defined by s = U/V . In X̄,

the SU(4) cover Eq. (2.14) is homogenized as

C
(4)
V : b0U

4 + b2U
2V 2 + b3UV 3 + b4V

4 = 0 (2.17)

with induced map p4 : C
(4)
V → S. It is not difficult to see that the homological class

[C
(4)
V ] of the cover C

(4)
V is given by [C

(4)
V ] = 4σ + π∗η. One can calculate the locus of

the matter 16 curve by intersection of [C
(4)
V ] with σ

[C
(4)
V ] ∩ σ = (4σ + π∗η) · σ = σ · π∗(η − 4c1), (2.18)

which implies that [Σ16] = η − 4c1 in S. Alternatively, one could deduce this from

the fact that the locus of Σ16 in S is {b4 = 0}. It follows from Eq. (2.15) that the

homological class of the cover C
(6)

∧2V is given by

[C
(6)
∧2V ] = 6σ + 2π∗η (2.19)

Notice that C
(6)

∧2V is generically singular. To solve this problem, one can consider

intersection τCV ∩ CV and define [41, 80]

[D] = [C
(4)
V ] ∩ [C

(4)
V ]− [C

(4)
V ] ∩ σ − [C

(4)
V ] ∩ 3σ∞ (2.20)

where τ is a Z2 involution V → −V acting on the spectral cover6. The 10 curve can

then be evaluated by

[D]|σ = 4(η − 3c1), (2.21)

which implies that [Σ10] = 2η − 6c1 in S.

To obtain chiral spectrum, we turn on a spectral line bundle L on the cover C
(4)
V .

The corresponding Higgs bundle is given by V = p4∗L. For an SU(n) bundle, it is

required that c1(V ) = 0. It follows that

c1(p4∗L) = p4∗c1(L)−
1

2
p4∗r, (2.22)

6Note that there are double points on Σ10. One can resolve these double points by blowing-up

and then obtain resolved Σ̃10 with a mapping π̃D : D → Σ̃10 of degree 4 and [Σ̃10] = η − 3c1 [39].

9



where r is the ramification divisor given by r = p4∗c1 − c1(C
(4)
V ). It is convenient to

define the cover flux γ by

c1(L) = λγ +
1

2
r, (2.23)

where λ is a parameter used to compensate the non-integral class 1
2
r. The traceless

condition c1(p4∗L) = 0 is then equivalent to the condition p4∗γ = 0. One can show

that

γ = (4− p∗4p4∗)(C
(4)
V · σ) (2.24)

satisfies the traceless condition. Since the first Chern class of a line bundle must be

integral, it follows that λ and γ have to obey the following quantization condition

λγ +
1

2
[p∗4c1 − c1(C

(4)
V )] ∈ H4(X̄,Z). (2.25)

With the given cover flux γ, the net chirality of matter 16 is calculated by [39, 48]

N16 = (C
(4)
V · σ) · λγ = −λη · (η − 4c1) (2.26)

On the other hand, the matter 10 corresponds to the anti-symmetric representation

6 in SU(4)⊥, associated to the spectral cover C
(6)

∧2V . It turns out that for the SU(4)

cover, the net chirality of matter 10 is given by [39]

N10 = D · γ = 0. (2.27)

It follows from Eqs. (2.26) and (2.27) that one obtain an SO(10) model with −λη ·

(η − 4c1) copies of matter on the 16 curve and nothing on the 10 curve. The flux

γ does not have many degrees of freedom to tune and the candidate of 10 Higgs is

absent. Therefore, in search of realistic models, we shall consider factorization of the

SU(4) cover C
(4)
V to enrich the configuration, along the line of the SU(5) cover studied

in [46,47,52,54]. In the next section, we shall focus on the construction of (3, 1) and

(2, 2) factorizations of the cover C
(4)
V .

3 SU(4) Cover Factorization

3.1 (3, 1) Factorization

We consider the (3, 1) factorization, C
(4)
V → C(a) × C(b) corresponding to the factor-

ization of Eq. (2.17) as follows:

C(a) × C(b) : (a0U
3 + a1U

2V + a2UV 2 + a3V
3)(d0U + d1V ) = 0. (3.1)
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By comparing with Eq. (2.17), one can obtain the following relations:

b0 = a0d0, b1 = a1d0 + a0d1, b2 = a2d0 + a1d1, b3 = a3d0 + a2d1, b4 = a3d1. (3.2)

Let ξ1 be the homological class [d1] of d1 and write

[d0] = c1 + ξ1, [ak] = η − (k + 1)c1 − ξ1, k = 0, 1, 2, 3. (3.3)

It is easy to see that the homological classes of C(a) and C(b) in X̄ are

[C(a)] = 3σ + π∗(η − c1 − ξ1), [C(b)] = σ + π∗(c1 + ξ1). (3.4)

With the classes given in Eq. (3.4), the homological classes of factorized matter curves

Σ
16(a) and Σ

16(b) in S are given by

[Σ
16(a)] = [C(a)]|σ = η − 4c1 − ξ1, [Σ

16(b) ] = [C(b)]|σ = ξ1. (3.5)

To obtain the factorized 10 curves, we follow the method proposed in [46, 47, 52, 80]

to calculate the intersection C
(4)
V ∩ τC

(4)
V , where τ is the Z2 involution τ : V → −V

acting on the spectral cover. Since the calculation is straightforward, we omit the

detailed calculation here and only summarize the results7 in Table 4.

[C(b)(b)] 2[C(a)(b)] [C(a)(a)]

16 σ · π∗ξ1 - σ · π∗(η − 4c1 − ξ1)

10 π∗ξ1 · π
∗(c1 + ξ1)

2[σ + π∗(c1 + ξ1)] [2σ + π∗(η − 2c1 − ξ1)]

· π∗(η − 3c1 − ξ1) + 2σ · π∗ξ1 · π∗(η − 3c1 − ξ1) + 2(σ + π∗c1) · π
∗ξ1

∞ σ∞ · π∗(c1 + ξ1) 4σ∞ · π∗(c1 + ξ1)
σ∞ · π∗(η − c1 − ξ1)

+2σ∞ · π∗(η − 2c1 − 2ξ1)

Table 4: The homological classes of the matter curves in the (3, 1) factorization.

It follows from Table 4 that the relevant classes in X̄ for 10 curves are

[C(a)(a)] = [2σ + π∗(η − 2c1 − ξ1)] · π∗(η − 3c1 − ξ1) + 2(σ + π∗c1) · π
∗ξ1, (3.6)

[C(a)(b)] = [σ + π∗(c1 + ξ1)] · π∗(η − 3c1 − ξ1) + σ · π∗ξ1, (3.7)

which give rise to the 10 curves

[Σ
10

(a)(a)] = η − 3c1, [Σ
10

(a)(b)] = η − 3c1, (3.8)

respectively.

7To simplify notations, we denote C(k) ∩ τC(l) by C(k)(l). Notice that [C(k)(l)] = [C(l)(k)].
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3.2 (2, 2) Factorization

In the (2, 2) factorization, the cover is split as C
(4)
V → C(d1) × C(d2). More precisely,

the cover defined in Eq. (2.17) is factorized into the following form:

C(d1) × C(d2) : (e0U
2 + e1UV + e2V

2)(f0U
2 + f1UV + f2V

2) = 0. (3.9)

By comparing the coefficients with Eq. (2.17), one obtains

b0 = e0f0, b1 = e0f1 + e1f0, b2 = e0f2 + e1f1 + e2f0, b3 = e1f2 + e2f1, b4 = e2f2.

(3.10)

Let ξ2 be the homological class of f2 and then the homological classes of other sections

can be written as

[f1] = c1 + ξ2, [f0] = 2c1 + ξ2, [em] = η − (m+ 2)c1 − ξ2, m = 0, 1, 2. (3.11)

In this case, the homological classes of C(d1) and C(d2) are given by

[C(d1)] = 2σ + π∗(η − 2c1 − ξ2), [C(d2)] = 2σ + π∗(2c1 + ξ2). (3.12)

The homological classes of the corresponding matter curves Σ
16(d1) and Σ

16(d2) are

then computed as

[Σ
16

(d1) ] = [C(d1)]|σ = η − 4c1 − ξ2, [Σ
16

(d2)] = [C(d2)]|σ = ξ2, (3.13)

respectively. To calculate the homological classes of the factorized 10 curves, we again

follow the method proposed in [46,47,52,80] to calculate the intersection C
(4)
V ∩ τC

(4)
V .

We omit the detailed calculation here and only summarize the results in Table 5.

[C(d2)(d2)] 2[C(d1)(d2)] [C(d1)(d1)]

16 σ · π∗ξ2 - σ · π∗(η − 4c1 − ξ2)

10
(2σ + π∗(2c1 + ξ2)) 2(2σ + π∗(2c1 + ξ2)) π∗(η − 3c1 − ξ2) · π

∗(η − 4c1 − ξ2)

· π∗(c1 + ξ2) · π∗(η − 4c1 − ξ2) +2(σ + π∗c1) · π
∗(c1 + ξ2)

∞ σ∞ · π∗(2c1 + ξ2) 4σ∞ · π∗(2c1 + ξ2)
σ∞ · π∗(η − 2c1 − ξ2)

+2σ∞ · π∗(η − 4c1 − 2ξ2)

Table 5: The homological classes of the matter curves in the (2, 2) factorization.
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It follows from Table 5 that the classes in X̄ for the factorized 10 curves are as

follows:

[C(d1)(d1)] = 2(σ + π∗c1) · π
∗(c1 + ξ2) + π∗(η − 3c1 − ξ2) · π

∗(η − 4c1 − ξ2), (3.14)

[C(d1)(d2)] = (2σ + π∗(2c1 + ξ2)) · π∗(η − 4c1 − ξ2), (3.15)

[C(d2)(d2)] = (2σ + π∗(2c1 + ξ2)) · π∗(c1 + ξ2). (3.16)

With the classes [C(d1)(d1)], [C(d1)(d2)], and [C(d2)(d2)], one can calculate the classes of

the corresponding 10 curves in S as follows:

[Σ
10(d1)(d1)] = c1 + ξ2, [Σ

10(d1)(d2)] = 2η − 8c1 − 2ξ2, [Σ
10(d2)(d2) ] = c1 + ξ2. (3.17)

4 Spectral Cover Fluxes

Let us consider the case of the cover factorization C
(n)
V → C(l) ×C(m). To obtain well-

defined cover fluxes and maintain supersymmetry, we impose the following constraints

[47]:

c1(pl∗L
(l)) + c1(pm∗L

(m)) = 0, (4.1)

c1(L
(k)) ∈ H2(C

(k),Z), k = l, m, (4.2)

[c1(pl∗L
(l))− c1(pm∗L

(m))] ·S [ω] = 0, (4.3)

where pk denotes the projection map from the cover C(k) to S, pk : C(k) → S, L(k) is

a line bundle over C(k) and [ω] is an ample divisor dual to a Kähler form of S. The

first constraint Eq. (4.1) is the traceless condition for the induced Higgs bundle8. The

second constraint Eq. (4.2) requires that the first Chern class of a well-defined line

bundle L(k) over C(k) must be integral. The third constraint states that the 2-cycle

c1(pl∗L
(l)) − c1(pm∗L

(m)) in S has to be supersymmetic. Note that Eq. (4.1) can be

expressed as

pl∗c1(L
(l))−

1

2
pl∗r

(l) + pm∗c1(L
(m))−

1

2
pm∗r

(m) = 0, (4.4)

8One may think of Eq. (4.1) as the traceless condition of an SU(4) bundle V4 over S split into

V3 ⊕ L with V3 = pa∗L
(a) and L = pb∗L

(b). Then the traceless condition of V4 can be expressed by

c1(V4) = c1(pa∗L
(a)) + c1(pb∗L

(b)) = 0.
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where r(l) and r(m) are the ramification divisors for the maps pl and pm, respectively.

Recall that the ramification divisors r(k) are defined by

r(k) = p∗kc1 − c1(C
(k)), k = l, m. (4.5)

The term c1(C
(k)) in Eq. (4.5) can be calculated by the adjuction formula [82, 83],

c1(C
(k)) = (c1(X̄)− [C(k)]) · [C(k)]. (4.6)

It is convenient to define cover fluxes γ(k) as

c1(L
(k)) = γ(k) +

1

2
r(k), k = l, m. (4.7)

With Eq. (4.7), the traceless condition Eq. (4.1) can be expressed as pl∗γ
(l) +

pm∗γ
(m) = 0. By using Eq. (4.5) and Eq. (4.7), we can recast the quantization

condition Eq. (4.2) by γ(k) + 1
2
[p∗kc1 − c1(C

(k))] ∈ H2(C
(k),Z), k = l, m. Finally, the

supersymmetry condition Eq. (4.3) is reduced to pk∗γ
(k) ·S [ω] = 0. We summarize

the constraints as follows:

pl∗γ
(l) + pm∗γ

(m) = 0, (4.8)

γ(k) +
1

2
[p∗kc1 − c1(C

(k))] ∈ H2(C
(k),Z), k = l, m, (4.9)

pk∗γ
(k) ·S [ω] = 0, k = l, m. (4.10)

In the next section, we shall explicitly construct the cover fluxes γ(k) satisfying Eq.

(4.8), (4.9), and (4.10) for the (3, 1) and (2, 2) factorizations. We also calculate the

restrictions of the fluxes to each matter curve.

4.1 (3,1) Factorization

In the (3, 1) factorization, the ramification divisors for the spectral covers C(a) and

C(b) are given by

r(a) = [C(a)] · [σ + π∗(η − 2c1 − ξ1)], (4.11)

r(b) = [C(b)] · (−σ + π∗ξ1), (4.12)

respectively. We define traceless fluxes γ
(a)
0 and γ

(b)
0 by

γ
(a)
0 = (3− p∗apa∗)γ

(a) = [C(a)] · [3σ − π∗(η − 4c1 − ξ1)], (4.13)

γ
(b)
0 = (1− p∗bpb∗)γ

(b) = [C(b)] · (σ − π∗ξ1) , (4.14)
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where γ(a) and γ(b) are non-traceless fluxes and defined as

γ(a) = [C(a)] · σ, γ(b) = [C(b)] · σ. (4.15)

Then we can calculate the restriction of fluxes γ
(a)
0 and γ

(b)
0 to each matter curve. We

omit the calculation here and only summarize the results in the following table.

γ
(b)
0 γ

(a)
0

16
(b) −ξ1 ·S (c1 + ξ1) 0

16
(a) 0 −(η − c1 − ξ1) ·S (η − 4c1 − ξ1)

10
(a)(b) −ξ1 ·S (c1 + ξ1) −(η − 3c1 − 3ξ1) ·S (η − 4c1 − ξ1)

10
(a)(a) 0 (η − 3c1 − 3ξ1) ·S (η − 4c1 − ξ1)

(4.16)

Due to the factorization, one also can define additional fluxes δ(a) and δ(b) by

δ(a) = (1− p∗bpa∗)γ
(a) = [C(a)] · σ − [C(b)] · π∗(η − 4c1 − ξ1)

δ(b) = (3− p∗apb∗)γ
(b) = [C(b)] · 3σ − [C(a)] · π∗ξ1. (4.17)

Another flux one can include is [47]

ρ̃ = (3p∗b − p∗a)ρ, (4.18)

for any ρ ∈ H2(S,R). We summarize the restriction of fluxes δ(a), δ(b) and ρ̃ to each

matter curve in the following table.

δ(b) δ(a) ρ̃

16
(b) −3c1 ·S ξ1 −ξ1 ·S (η − 4c1 − ξ1) 3ρ ·S ξ1

16
(a) −ξ1 ·S (η − 4c1 − ξ1) −c1 ·S (η − 4c1 − ξ1) −ρ ·S (η − 4c1 − ξ1)

10
(a)(b) ξ1 ·S (2η − 9c1 − 3ξ1) −(η − 3c1 − ξ1) ·S (η − 4c1 − ξ1) 2ρ ·S (η − 3c1)

10
(a)(a) −2ξ1 ·S (η − 3c1) (η − 3c1 − ξ1) ·S (η − 4c1 − ξ1) −2ρ ·S (η − 3c1)

(4.19)

With Eqs. (4.14), (4.17), and (4.18), we define the universal cover flux Γ to be [47]

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ ≡ Γ(a) + Γ(b), (4.20)

where Γ(a) and Γ(b) are given by

Γ(a) = [C(a)] · [(3ka +ma)σ − π∗(ka(η − 4c1 − ξ1) +mbξ1 + ρ)] , (4.21)

Γ(b) = [C(b)] · [(kb + 3mb)σ − π∗(kbξ1 +ma(η − 4c1 − ξ1)− 3ρ)] . (4.22)

Note that

pa∗Γ
(a) = −3mbξ1 +ma(η − 4c1 − ξ1)− 3ρ, (4.23)

pb∗Γ
(b) = 3mbξ1 −ma(η − 4c1 − ξ1) + 3ρ. (4.24)
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Clearly, Γ(a) and Γ(b) obey the traceless condition pa∗Γ
(a) + pb∗Γ

(b) = 0. Besides, the

quantization condition in this case becomes

(3ka+ma+
1

2
)σ−π∗[ka(η−4c1−ξ1)+mbξ1+ρ−

1

2
(η−2c1−ξ1)] ∈ H4(X̄,Z), (4.25)

(kb + 3mb −
1

2
)σ − π∗[kbξ1 +ma(η − 4c1 − ξ1)− 3ρ−

1

2
ξ1] ∈ H4(X̄,Z). (4.26)

The supersymmetry condition is given by

[3mbξ1 −ma(η − 4c1 − ξ1) + 3ρ] ·S [ω] = 0. (4.27)

4.2 (2,2) Factorization

We can calculate the ramification divisors r(d1) and r(d2) for the (2, 2) factorization

and obtain

r(d1) = [C(d1)] · π∗(η − 3c1 − ξ2), (4.28)

r(d2) = [C(d2)] · π∗(c1 + ξ2). (4.29)

We then define traceless cover fluxes γ
(d1)
0 and γ

(d2)
0 by

γ
(d1)
0 = (2− p∗d1pd1∗)γ

(d1) = [C(d1)] · [2σ − π∗(η − 4c1 − ξ2)] , (4.30)

γ
(d2)
0 = (2− p∗d2pd2∗)γ

(d2) = [C(d2)] · (2σ − π∗ξ2) , (4.31)

where γ(d1) and γ(d21) are non-traceless fluxes and given by

γ(d1) = [C(d1)] · σ, γ(d2) = [C(d2)] · σ. (4.32)

We summarize the restriction of the fluxes to each factorized curve in the following

table.

γ
(d2)
0 γ

(d1)
0

16
(d2) −ξ2 ·S (2c1 + ξ2) 0

16
(d1) 0 −(η − 2c1 − ξ2) ·S (η − 4c1 − ξ2)

10
(d2)(d2) 0 0

10
(d1)(d2) 0 −2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2)

10
(d1)(d1) 0 2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2)

(4.33)

Due to the factorization, one also can define following fluxes [47]

δ(d1) = (2− p∗d2pd1∗)γ
(d1) = [C(d1)] · 2σ − [C(d2)] · π∗(η − 4c1 − ξ2),

δ(d2) = (2− p∗d1pd2∗)γ
(d2) = [C(d2)] · 2σ − [C(d1)] · π∗ξ2, (4.34)
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and

ρ̂ = (p∗d2 − p∗d1)ρ, (4.35)

for any ρ ∈ H2(S,R). We summarize the restriction of the fluxes δ(d1), δ(d2), and ρ̂ to

each factorized curve as follows:

δ(d2) δ(d1) ρ̂

16
(d2) −2c1 ·S ξ2 −ξ2 ·S (η − 4c1 − ξ2) ρ ·S ξ2

16
(d1) −ξ2 ·S (η − 4c1 − ξ2) −2c1 ·S (η − 4c1 − ξ2) −ρ ·S (η − 4c1 − ξ2)

10
(d2)(d2) 2ξ2 ·S (c1 + ξ2) −2(c1 + ξ2) ·S (η − 4c1 − ξ2) 2ρ ·S (c1 + ξ2)

10
(d1)(d2) 0 −2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2) 0

10
(d1)(d1) −2ξ2 ·S (c1 + ξ2) 2(η − 3c1 − ξ2) ·S (η − 4c1 − ξ2) −2ρ ·S (c1 + ξ2)

(4.36)

In this case the universal cover flux is defined by

Γ = kd1γ
(d1)
0 + kd2γ

(d2)
0 +md1δ

(d1) +md2δ
(d2) + ρ̂ = Γ(d1) + Γ(d2), (4.37)

where

Γ(d1) = [C(d1)] · {2(kd1 +md1)σ − π∗[kd1(η − 4c1 − ξ2) +md2ξ2 + ρ]} ,

Γ(d2) = [C(d2)] · {2(kd2 +md2)σ − π∗[kd2ξ2 +md1(η − 4c1 − ξ2)− ρ]} . (4.38)

Note that

pd1∗Γ
(d1) = −2md2ξ2 + 2md1(η − 4c1 − ξ2)− 2ρ, (4.39)

pd2∗Γ
(d2) = 2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ. (4.40)

It is easy to see that Γ(d1) and Γ(d2) satisfy the traceless condition pd1∗Γ
(d1)+pd2∗Γ

(d2) =

0. In addition, the quantization condition in this case becomes

2(kd1 +md1)σ−π∗[kd1(η−4c1−ξ2)+md2ξ2+ρ−
1

2
(η−3c1−ξ2)] ∈ H4(X̄,Z), (4.41)

2(kd2 +md2)σ − π∗[kd2ξ2 +md1(η − 4c1 − ξ2)− ρ−
1

2
(c1 + ξ2)] ∈ H4(X̄,Z). (4.42)

The supersymmetry condition is then given by

[2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ] ·S [ω] = 0. (4.43)

17



5 D3-brane Tadpole Cancellation

The cancellation of tadpoles is crucial for consistent compactifications. In general,

there are induced tadpoles from 7-brane, 5-brane, and 3-brane charges in F-theory.

It is well known that 7-brane tadpole cancellation in F-theory is automatically sat-

isfied since X4 is a Calabi-Yau manifold. In spectral cover models, the cancellation

of the D5-brane tadpole follows from the topological condition that the overall first

Chern class of the Higgs bundle vanishes. Therefore, the non-trivial tadpole cancel-

lation needed to be satisfied is the D3-brane tadpole. The D3-brane tadpole can be

calculated by the Euler characteristic χ(X4). The cancellation condition is of the

form [81]

ND3 =
χ(X4)

24
−

1

2

∫

X4

G ∧G, (5.1)

where ND3 is the number of D3-branes and G is the four-form flux on X4. For a

non-singular elliptically fibered Calabi-Yau manifold, it was shown in [81] that the

Euler characteristic χ(X4) can be expressed as

χ(X4) = 12

∫

B3

c1(B3)[c2(B3) + 30c1(B3)
2], (5.2)

where ck(B3) are the Chern classes of B3. It follows from Eq. (5.2) that χ(X4)/24 is

at least half-integral9. When X4 admits non-abelian singularities, the Euler charac-

teristic of X4 is replaced by the refined Euler characteristic, the Euler characteristic

of the smooth fourfold obtained from a suitable resolution of X4. On the other hand,

G-flux encodes the two-form gauge fluxes on 7-branes. It was shown in [84] that

1

2

∫

X4

G ∧G = −
1

2
Γ2, (5.3)

where Γ is the universal cover flux defined in section 4 and Γ2 is the self-intersection

number of Γ inside the spectral cover10. It is a challenge to find compactifications

9For a generic Calabi-Yau manifold, it was shown in [81] that χ(X4)/6 ∈ Z, which implies that

χ(X4)/24 takes value in Z4.
10Eq. (5.3) originates from the spectral cover construction in heterotic string compactifications [84].

This equation holds for F-theory compactified on elliptically fibered fourfolds possessing a heterotic

dual by heterotic/F-theory duality. However, since X4 is not a global fibration over S, we assume

that Eq. (5.3) is valid for F-theory models without heterotic dual, and the fluxes can correctly

described by spectral covers.
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with non-vanishing G-flux and non-negative ND3 to satisfy the tadpole cancellation

condition Eq. (5.1). In the next two subsections, we shall derive the formulae of

refined Euler characteristic χ(X4) and the self-intersection of universal cover fluxes

Γ2 for (3, 1) and (2, 2) factorizations.

5.1 Geometric Contribution

In the presence of non-abelian singularities, X4 becomes singular and the Euler char-

acteristic χ(X4) is modified by resolving the singularities. To be more concrete, let

us consider X4 with an elliptic fibration which degenerates over S to a non-abelian

singularity corresponding to gauge group H and define G to be the complement of H

in E8. The Euler characteristic is modified to

χ(X4) = χ∗(X4) + χG − χE8 , (5.4)

where χ∗(X4) is the Euler characteristic for a smooth fibration over B3 given by Eq.

(5.2). The characteristic χE8 is given by [54, 84, 85]

χE8 = 120

∫

S

(3η2 − 27ηc1 + 62c21). (5.5)

For the case of G = SU(n), the characteristic χSU(n) is given by11

χSU(n) =

∫

S

(n3 − n)c21 + 3nη(η − nc1). (5.6)

When G splits into a product of two groups G1 and G1, χG in Eq. (5.4) is then

replaced by χ
(k)
G1

+ χ
(l)
G2

in which η is replaced by the class η(m) in the spectral cover

C(m) for m = k, l. For the case of (3, 1) factorization, the refined Euler characteristic

is then calculated by

χ(X4) = χ∗(X4) + χ
(a)
SU(3) + χ

(b)
SU(1) − χE8

= χ∗(X4) +

∫

S

3[c1(38c1 − 21t− 20ξ1) + (3t2 + 6tξ1 + 4ξ21)]− χE8 .(5.7)

11Eqs. (5.4)-(5.6) initially were derived in heterotic string compactifications [84, 85]. A priori,

these formulae are valid only for F-theory models with a heterotic dual. It was observed in [54] that

these formulae also hold for some F-theory models which do not admit a heterotic dual. However,

this match fails in other examples observed in [86]. In these examples, extra gauge groups appear in

regions away from S and cannot be described by spectral covers. We assume that Eqs. (5.4)-(5.6)

hold for our models.

19



In the (2, 2) factorization, the refined Euler characteristic12 is

χ(X4) = χ∗(X4) + χ
(d1)
SU(2) + χ

(d2)
SU(2) − χE8

= χ∗(X4) +

∫

S

6[c1(10c1 − 6t− 4ξ2) + (t2 + 2tξ2 + 2ξ22)]− χE8 . (5.8)

5.2 Cover flux Contribution

It follows from Eqs. (5.1) and (5.3) that

ND3 =
χ(X4)

24
+

1

2
Γ2. (5.9)

In the previous subsection, we discussed the first term on the right hand side of

Eq. (5.9). To calculate ND3, it is necessary to compute the self-intersection Γ2 of the

universal cover flux Γ. Recall that in section 4, the universal cover flux was defined

by

Γ =
∑

k

Γ(k), (5.10)

where Γ(k) are cover fluxes satisfying the traceless condition,

∑

k

pk∗Γ
(k) = 0. (5.11)

In what follows, we will compute Γ2 for both the (3, 1) and (2, 2) factorizations.

5.2.1 (3, 1) Factorization

Recall that for the case of (3, 1) factorization, the universal cover flux is given by

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ = Γ(a) + Γ(b), (5.12)

where Γ(a) and Γ(b) are

Γ(a) = [C(a)] · [(3ka +ma)σ − π∗(ka[a3] +mb[d1] + ρ)] ≡ [C(a)] · [C̃(a)], (5.13)

Γ(b) = [C(b)] · [(kb + 3mb)σ − π∗(kb[d1] +ma[a3]− 3ρ)] ≡ [C(b)] · [C̃(b)]. (5.14)

12For the (3, 1) factorization, η(a) = (η− c1 − ξ1) and η(b) = (c1 + ξ1). For the (2, 2) factorization,

η(d1) = (η − 2c1 − ξ2) and η(d2) = (2c1 + ξ2).
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Then the self-intersection of the cover flux Γ is calculated by [47]

Γ2 = [C(a)] · [C̃(a)] · [C̃(a)] + [C(b)] · [C̃(b)] · [C̃(b)]. (5.15)

In the (3, 1) factorization, [C(a)] = 3σ + π∗(η − c1 − ξ1) and [C(b)] = σ + π∗(c1 + ξ1).

By Eqs. (5.13) and (5.14), one can obtain

[C(a)] · [C̃(a)] · [C̃(a)] = −(3ka +ma)
2([a3] ·S c1)− ka(3ka + 2ma)[a3]

2 + 3m2
b [d1]

2

− 2mbma([a3] ·S [d1])− 2(ma[a3]− 3mb[d1]) ·S ρ

+ 3(ρ ·S ρ), (5.16)

and

[C(b)] · [C̃(b)] · [C̃(b)] = −(kb + 3mb)
2([d1] ·S c1)− kb(kb + 6mb)[d1]

2 +m2
a[a3]

2

− 6mbma([a3] ·S [d1])− 6(ma[a3]− 3mb[d1]) ·S ρ

+ 9(ρ ·S ρ). (5.17)

Putting everything together, one obtains

Γ2 = −
1

3
(3ka+ma)

2([a0] ·S [a3])− (kb+3mb)
2([d0] ·S [d1])+

4

3
(ma[a3]−3mb[d1]−3ρ)2.

(5.18)

5.2.2 (2, 2) Factorization

Recall that in the (2, 2) factorization, the universal flux is given by

Γ = kd1γ
(d1)
0 + kd2γ

(d2)
0 +md1δ

(d1) +md2δ
(d2) + ρ̂ ≡ Γ(d1) + Γ(d2), (5.19)

where Γ(d1) and Γ(d2) are

Γ(d1) = [C(d1)] · [2(kd1 +md1)σ − π∗(kd1 [e2] +md2 [f2] + ρ)] ≡ [C(d1)] · [C̃(d1)], (5.20)

Γ(d2) = [C(d2)] · [2(kd2 +md2)σ − π∗(kd2[f2] +md1 [e2]− ρ)] ≡ [C(d2)] · [C̃(d2)]. (5.21)

Then the self-intersection Γ2 can be computed as

Γ2 = [C(d1)] · [C̃(d1)] · [C̃(d1)] + [C(d2)] · [C̃(d2)] · [C̃(d2)]. (5.22)
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Notice that [C(d1)] = 2σ+ π∗(η− 2c1 − ξ2) and [C(d2)] = 2σ+ π∗(2c1 + ξ2) in the (2, 1)

factorization. It follows from Eqs. (5.20) and (5.21) that

[C(d1)] · [C̃(d1)] · [C̃(d1)] = −4(kd1 +md1)
2([e2] ·S c1)− 2kd1(kd1 + 2md1)[e2]

2 + 2m2
d2
[f2]

2

− 4md1md2([e2] ·S [f2])− 4(md1 [e2]−md2 [f2]) ·S ρ

+ 2(ρ ·S ρ), (5.23)

and

[C(d2)] · [C̃(d2)] · [C̃(d2)] = −4(kd2 +md2)
2([f2] ·S c1)− 2kd2(kd2 + 2md2)[f2]

2 + 2m2
d1
[e2]

2

− 4md1md2([f2] ·S [e2])− 4(md1 [e2]−md2 [f2]) ·S ρ

+ 2(ρ ·S ρ). (5.24)

Therefore, Γ2 is given by

Γ2 = −2(kd1 +md1)
2([e0] ·S [e2])−2(kd2 +md2)

2([f0] ·S [f2])+4(md1 [e2]−md2 [f2]−ρ)2.

(5.25)

6 Models

6.1 U(1)X Flux and Spectrum

Let us start with the (3, 1) factorization. Consider the breaking pattern as follows:

SU(4)⊥ → SU(3)× U(1)
15 → 80 + 3−4 + 3̄4 + 10

6 → 32 + 3̄−2

4 → 3−1 + 13

(6.1)

Then the representations (16, 4) and (10, 6) in Eq. (2.10) are decomposed as

(16, 4) → (16−1, 3) + (163, 1), (10, 6) → (102, 3) + (10−2, 3̄) (6.2)

On the other hand, we can further break SO(10) in Eq. (2.10) by U(1)X flux as

follows:
SO(10) → SU(5)× U(1)X

16 → 10−1 + 5̄3 + 1−5

10 → 52 + 5̄−2

(6.3)
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Curve Matter Bundle Chirality

16
(a)
−1

10−1,−1 V16 ⊗ L−1
X |

Σ
(a)
16

Ma

5̄−1,3 V16 ⊗ L3
X |Σ(a)

16

Ma +Na

1−1,−5 V16 ⊗ L−5
X |

Σ
(a)
16

Ma −Na

16
(b)
3

103,−1 V16 ⊗ L−1
X |

Σ
(b)
16

Mb

5̄3,3 V16 ⊗ L3
X |Σ(b)

16

Mb +Nb

13,−5 V16 ⊗ L−5
X |

Σ
(b)
16

Mb −Nb

10
(a)(a)
−2

5−2,2 V10 ⊗ L2
X |Σ(a)(a)

10

Maa +Naa

5̄−2,−2 V10 ⊗ L−2
X |

Σ
(a)(a)
10

Maa

10
(a)(b)
2

52,2 V10 ⊗ L2
X |Σ(a)(b)

10

Mab +Nab

5̄2,−2 V10 ⊗ L−2
X |

Σ
(a)(b)
10

Mab

Table 6: Chirality of matter localized on matter curves 16 and 10 in the (3,1) fac-

torization.

We suppose that V16 ⊗ L−1
X has restriction of degree Mk to Σ

16(k) while L4
X has

restriction of degree Nk. Similarly, we define V10 ⊗ L−2
X has restriction of degree Mkl

to Σ
10

(k)(l) while L4
X has restriction of degree Nkl. We summarize the chirality on each

matter curve in Table 6. For the (2, 2) factorization, the analysis is similar to the

case of the (3, 1) factorization. We summarize the chirality induced from the cover

and U(1)X fluxes in Table 7.

6.2 (3,1) Factorization and CY4 with a dP2 Surface

In this section, we shall explicitly realize models in specific geometries. We first

consider the Calabi-Yau fourfold constructed in [45] to be our X4. This Calabi-Yau

fourfold contains a dP2 surface embedded into the base B3. For the detailed geometry

of this Calabi-Yau fourfold, we refer readers to [45]. Here we only collect the relevant
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Curve Matter Bundle Chirality

16
(d2)
−1

10−1,−1 V16 ⊗ L−1
X |

Σ
(d2)
16

Md2

5̄−1,3 V16 ⊗ L3
X |Σ(d2)

16

Md2 +Nd2

1−1,−5 V16 ⊗ L−5
X |

Σ
(d2)
16

Md2 −Nd2

16
(d1)
1

101,−1 V16 ⊗ L−1
X |

Σ
(d1)
16

Md1

5̄1,3 V16 ⊗ L3
X |Σ(d1)

16

Md1 +Nd1

11,−5 V16 ⊗ L−5
X |

Σ
(d1)
16

Md1 −Nd1

10
(d2)(d2)
−2

5−2,2 V10 ⊗ L2
X |Σ(d2)(d2)

10

Md2d2 +Nd2d2

5̄−2,−2 V10 ⊗ L−2
X |

Σ
(d2)(d2)
10

Md2d2

10
(d1)(d2)
0

50,2 V10 ⊗ L2
X |Σ(d1)(d2)

10

Md1d2 +Nd1d2

5̄0,−2 V10 ⊗ L−2
X |

Σ
(d1)(d2)
10

M
d1d2

10
(d1)(d1)
2

52,2 V10 ⊗ L2
X |Σ(d1)(d1)

10

Md1d1 +Nd1d1

5̄2,−2 V10 ⊗ L−2
X |

Σ
(d1)(d1)
10

Md1d1

Table 7: Chirality of matter localized on matter curves 16 and 10 in the (2,2) fac-

torization.

geometric data13 for calculation. The basic geometric data of X4 is

c1 = 3H − E1 −E2, t = −c1(NS/B3) = H, χ∗(X4) = 13968. (6.4)

From Eq. (6.4), we can conclude η = 17H − 6E1 − 6E2, η
2 = 217, c1 · η = 39, and

c21 = 7. For the (3,1) factorization, it follows from Eq. (5.7) that the refined Euler

characteristic is

χ(X4) = 10746 + (12ξ21 − 18ξ1η + 48ξ1c1). (6.5)

The self-intersection of the cover flux Γ is then given by

Γ2 = −(3k2
a + 2kama)(50 + ξ21 − 2ξ1η + 5ξ1c1) +m2

a(6 + ξ21 − 2ξ1η + 9ξ1c1)

−(kb + 3mb)
2(ξ21 + ξ1c1) + 12m2

bξ
2
1 + 8mamb(ξ

2
1 − ξ1η + 4ξ1c1)

+12ρ2 − 8ma(ρη − ρξ1 − 4ρc1) + 24mbρξ1, (6.6)

13In section 6, H and Em, m = 1, 2, .., k are defined to be the hyperplane divisor and exceptional

divisors of dPk, respectively.
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and the number of generations for matter 16 and 10 on the curves are

N
16

(b) = (ma − kb)ξ
2
1 −maξ1η + (4ma − kb − 3mb)ξ1c1 + 3ρξ1, (6.7)

N
16(a) = −(50ka + 11ma) + (mb − ka)ξ

2
1 + (2ka −mb)ξ1η

+(4mb − 5ka +ma)ξ1c1 − ρη + 4ρc1 + ρξ1, (6.8)

N
10

(a)(b) = −28(ka +ma)− (kb + 3ka +ma + 3mb)ξ
2
1 + (4ka + 2ma + 2mb)ξ1η

−(kb + 15ka + 7ma + 9mb)ξ1c1 + 2ρη − 6ρc1, (6.9)

N
10(a)(a) = 28(ka +ma) + (3ka +ma)ξ

2
1 − (4ka + 2ma + 2mb)ξ1η

+(15ka + 7ma + 6mb)ξ1c1 − 2ρη + 6ρc1. (6.10)

In this case, the supersymmetric condition Eq. (4.10) reduces to

[(3mb +ma)ξ1 −ma(η − 4c1) + 3ρ] ·S [ω], (6.11)

where we choose [ω] = α(E1+E2)+β(H−E1−E2), 2α > β > α > 0 to be an ample

divisor in dP2. In the (3,1) factorization, one more constraint that we may impose

is that the ramification of the degree-one cover should be trivial. In other words, we

impose the following constraint:

(c1 + ξ1) · ξ1 = 0. (6.12)

In what follows, we show three examples based on this geometry. We find that there

are only finite number of solutions for parameters.

6.2.1 Model 1

In this model we represent a three-generation example. The numerical parameters

are listed in Table 8.

kb ka mb ma ρ ξ1 α β

-1.5 -0.5 -2 1 H + 3E1 + E2 E2 9 11

Table 8: Parameters of Model 1 of the (3,1) factorization in dP2.

The matter content and the corresponding classes are listed in Table 9. By using

Eqs. (6.5) and (6.6), we obtain χ(X4) = 10674 and Γ2 = −159.5. It follows from

Eq. (5.9) that ND3 = 365.
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Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16
(b) ξ1 E2 0 1

16
(a) η − 4c1 − ξ1 5H − 2E1 − 3E2 3 −1

10
(a)(b) η − 3c1 8H − 3E1 − 3E2 14 0

10
(a)(a) η − 3c1 8H − 3E1 − 3E2 −14 0

Table 9: Model 1 matter content with [FX ] = E1−E2. It is a three-generation model

with non-trivial flux restrictions.

6.2.2 Model 2

Model 2 is another example of a three-generation model with χ(X4) = 10674, Γ2 =

−159.5, and ND3 = 365. The construction is similar to the model 1. We list the

numerical parameters in Table 10.

kb ka mb ma ρ ξ1 α β

-1.5 0.5 -2 -2 −4H + 4E1 + 5E2 E1 9 11

Table 10: Parameters of Model 2 of the (3,1) factorization in dP2.

The matter content and the corresponding classes are shown in Table 11.

Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16
(b) ξ1 E1 0 1

16
(a) η − 4c1 − ξ1 5H − 3E1 − 2E2 3 −1

10
(a)(b) η − 3c1 8H − 3E1 − 3E2 14 0

10
(a)(a) η − 3c1 8H − 3E1 − 3E2 −14 0

Table 11: Model 2 matter content with [FX ] = E1 − E2.

6.2.3 Model 3

Next we build a four-generation model in SO(10). The reason why we would like

to discuss such a case is that the only choice for the U(1)X flux on dP2 is [FX ] =
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±(E1 − E2), and then the restrictions of [FX ] to the 16 curves are always non-

zero, which results in the variation of the chirality numbers of the SU(5) matter

descended from the 16 curves. The two examples shown above only make sense for

an three-generation SO(10) model, and they are no longer three-generation models

after gauge breaking. Since we expect to build a three-generation model at SU(5)

level, we slightly increase the generation number at the SO(10) level to prevent the

chirality being too small. The numerical parameters are listed in Table 12. In this

model, it is not difficult to obtain χ(X4) = 10674 and Γ2 = −355.5. It turns out that

ND3 = 267 is a positive integer.

kb ka mb ma ρ ξ1 α β

-1.5 -0.5 -2 1 5E1 + E2 E2 12 17

Table 12: Parameters of Model 3 of the (3,1) factorization in dP2.

The matter content and the corresponding classes are listed in Table 13.

Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16
(b) ξ1 E2 0 1

16
(a) η − 4c1 − ξ1 5H − 2E1 − 3E2 4 −1

10
(a)(b) η − 3c1 8H − 3E1 − 3E2 10 0

10
(a)(a) η − 3c1 8H − 3E1 − 3E2 −10 0

Table 13: Model 3 matter content with [FX ] = E1 − E2. There are four generations

on the 16
(a) curve.

6.2.4 Discussion

Model 1 and Model 2 of (3,1) factorization have the following SO(10) structure:

Maatter Copy U(1)C
16

(b) 0 −3
16

(a) 3 1
10

(a)(b) 14 −2
10

(a)(a) −14 2

(6.13)
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where U(1)C is from the cover, the U(1)3 Cartan subalgebra of SU(4)⊥ that is not

removed from the monodromy. The Yukawa coupling is filtered by the conservation

of this U(1)C . Before turning on the U(1)X flux, this spectrum can fit the minimum

requirement by forming the Yukawa coupling 16
(a)
−116

(a)
−110

(a)(b)
2 of the SO(10) GUT

with some exotic 10s. However, when U(1)X flux is turned on, the non-vanishing

restriction of the flux to each 16 curve changes the chirality, while the chirality on

the 10 curves remain untouched. The analysis in Table 6 suggests that a three-

generation model may descend from a four-generation SO(10) model after the gauge

group is broken to SU(5)×U(1)X by [FX ] = E1 −E2. Here we try to explain Model

3 as a flipped SU(5) model with its spectrum presented in Table 14.

Matter Rep. Generation

10M 10−1,−1 3

5̄M 5̄−1,3 3

1M 1−1,−5 3

10H + 10H 10−1,−1 + 10−1,1 1

5h 52,2 1

5̄h 5̄2,−2 1

10 10−1,−1 1

5̄ 5̄3,3 1

1 1−1,−5 2

1 13,5 1

5 + 5̄ exotics
5−2,2 + 5̄−2,−2 9

52,2 + 5̄2,−2 -10

Table 14: Flipped SU(5) spectrum of Model 3.

In this case, the Yukawa couplings are

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄−1,3M 5̄2,−2h + 5̄−1,3M1−1,−5M52,2h

+ 10−1,−1H10−1,−1H52,2h + 10−1,1H10−1,1H 5̄2,−2h + . . . . (6.14)

We may identify the flipped SU(5) superheavy Higgs fields with one of the 10 + 10

vector-like pairs on the 16(a) curve, which is not obvious from this configuration. Since
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the restrictions of the flux to the curves change the chirality, there are unavoidable

exotic fermions, like the examples studied in [47]. In the following subsection, we will

study models from a different geometric backgrounds to see if it is possible to retain

the chirality unchanged while the flux FX is turned on.

6.3 (3,1) Factorization and CY4 with a dP7 Surface

Although dP2 surface is elegant, it does not possess enough degrees of freedom in

the number of exceptional divisors for model building. Therefore, we turn to the

geometry of the compact Calabi-Yau fourfold realized as complete intersections of

two hypersurfaces with an embedded dP7 surface14. The detailed construction can

be found in [54]. Again here we only collect relevant geometric data for calculation.

The basic geometric data is as follows:

c1 = 3H −E1 − E2 − E3 − E4 − E5 −E6 − E7,

t = 2H −E1 − E2 − E3 − E4 − E5 −E6,

η = 16H − 5E1 − 5E2 − 5E3 − 5E4 − 5E5 − 5E6 − 6E7. (6.15)

with χ∗(X4) = 1728. From Eq. (6.15), we have η2 = 70, η · c1 = 12, and c21 = 2. The

refined Euler characteristic is given by

χ(X4) = 738 + (12ξ21 − 18ξ1η + 48ξ1c1), (6.16)

and the self-intersection of the cover flux Γ is

Γ2 = −(3k2
a + 2kama)(18 + ξ21 − 2ξ1η + 5ξ1c1) +m2

a(2 + ξ21 − 2ξ1η + 9ξ1c1)

−(kb + 3mb)
2(ξ21 + ξ1c1) + 12m2

bξ
2
1 + 8mamb(ξ

2
1 − ξ1η + 4ξ1c1)

+12ρ2 − 8ma(ρη − ρξ1 − 4ρc1) + 24mbρξ1. (6.17)

14By abuse of notation, we also denote this Calabi-Yau fourfold by X4.
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Again we summarize the generation number on each curve as follows:

N
16

(b) = (ma − kb)ξ
2
1 −maξ1η + (4ma − kb − 3mb)ξ1c1 + 3ρξ1, (6.18)

N
16(a) = −(18ka + 4ma) + (mb − ka)ξ

2
1 + (2ka −mb)ξ1η

+(4mb − 5ka +ma)ξ1c1 − ρη + 4ρc1 + ρξ1, (6.19)

N
10(a)(b) = −10(ka +ma)− (kb + 3ka +ma + 3mb)ξ

2
1 + (4ka + 2ma + 2mb)ξ1η

−(kb + 15ka + 7ma + 9mb)ξ1c1 + 2ρη − 6ρc1, (6.20)

N
10

(a)(a) = 10(ka +ma) + (3ka +ma)ξ
2
1 − (4ka + 2ma + 2mb)ξ1η

+(15ka + 7ma + 6mb)ξ1c1 − 2ρη + 6ρc1. (6.21)

The supersymmetry condition is then

[(3mb +ma)ξ1 −ma(η − 4c1) + 3ρ] ·S [ω] = 0, (6.22)

where [ω] is an ample divisor dual to a Kähler form of dP7. For simplicity, we choose

[ω] to be

[ω] = 14βH − (5β − α)
7∑

i=1

Ei, (6.23)

with constraints 5β > α > 0.

In what follows, we present one example based on this geometry. This model is

three-generation with vanishing restrictions of the U(1)X flux to the 16 curves.

6.3.1 Model

We present a three-generation model in this example. The numerical result of the

parameters is listed in Table 15. With data in Table15 and Table16, one can obtain

χ(X4) = 648 and Γ2 = −42 by using Eqs. (6.16) and (6.17). It follows from Eq. (5.9)

that ND3 = 6.

kb ka mb ma ρ ξ1 α β

-1.5 -1 0 1.5 1
2
(2E1 + 2E2 + E4) 2H −E1 − E2 −E3 − E5 − E6 3 2

Table 15: Parameters of the (3,1) factorization model in dP7.

The matter content and the corresponding classes are listed in Table 16.
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Matter Class in S Class with fixed ξ1 Generation

16
(b) ξ1 2H −E1 − E2 −E3 − E5 − E6 0

16
(a) η − 4c1 − ξ1 2H − E4 − 2E7 3

10
(a)(b) η − 3c1 7H − 2

∑6
i=1Ei − 3E7 1

10
(a)(a) η − 3c1 7H − 2

∑6
i=1Ei − 3E7 -1

Table 16: The dP7 model matter content. Since it is a three-generation model, the

flux is chosen to have trivial restriction. For example, [FX ] = E5 − E6.

6.3.2 Discussion

In this example we tune [FX ] = E4−E5 to obtain trivial restrictions on all the curves,

so the chirality on each curve remains unchanged. By the analysis of Table 6, we can

create a flipped SU(5) spectrum as shown in Table 17. The Yukawa couplings turn

out to be

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄−1,3M 5̄2,−2h + 5̄−1,3M1−1,−5M52,2h

+ 10−1,−1H10−1,−1H52,2h + 10−1,1H10−1,1H 5̄2,−2h + · · · . (6.24)

Matter Rep. Generation

10M 10−1,−1 3

5̄M 5̄−1,3 3

1M 1−1,−5 3

5h 52,2 1

5̄h 5̄2,−2 1

10H + 10H 10−1,−1 + 10−1,1 1

5 + 5̄ exotics∗

Table 17: Flipped SU(5) spectrum with vanishing restrictions of [FX ] on the curves

in (3,1) factorization in dP7.

This spectrum looks standard, and the advantage is that there are no exotic

fermions and the quantum numbers(charges) of the matter are typical. We again

∗There is one (5, 5̄) on the 10
(a)(a) curve.
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assume that the superheavy Higgses 10H and 10H come from one of the vector-like

10 + 10 pairs on the 16
(a) curve. It is not obvious to calculate the number of such

pairs. For simplicity, we just extract one pair for phenomenology purposes.

6.4 (2,2) Factorization and CY4 with a dP2 Surface

Let us consider the (2, 2) factorization with the geometric background in Eq. (6.4)

[45]. In this case, the refined Euler characteristic turns out to be

χ(X4) = 10446 + (12ξ22 − 12ξ2η + 48ξ2c1). (6.25)

The self-intersection of the cover flux Γ is

Γ2 = −2(kd1 +md1)
2(39 + ξ22 − 2ξ2η + 6ξ2c1) + 4m2

d1
(17 + ξ22 − 2ξ2η + 8ξ2c1)

−2(kd2 +md2)
2(ξ22 + 2ξ2c1) + 4m2

d2ξ
2
2 + 8md1md2(ξ

2
2 − ξ2η + 4ξ2c1)

+4ρ2 − 8md1(ρη − ρξ2 − 4ρc1) + 8md2ρξ2. (6.26)

In this case, we can find models with integral ND3. However, to have more degrees

of freedom for model building, we shall focus on the geometry of the CY4 with an

embedded dP7 surface [54] in the next subsection.

6.5 (2,2) Factorization and CY4 with a dP7 Surface

We again consider the geometric background in Eq. (6.15)and the (2,2) factorization.

In this case, the refined Euler characteristic is given by

χ(X4) = 636 + (12ξ22 − 12ξ2η + 48ξ2c1). (6.27)

The self-intersection of the cover flux Γ is

Γ2 = −2(kd1 +md1)
2(14 + ξ22 − 2ξ2η + 6ξ2c1) + 4m2

d1
(6 + ξ22 − 2ξ2η + 8ξ2c1)

−2(kd2 +md2)
2(ξ22 + 2ξ2c1) + 4m2

d2ξ
2
2 + 8md1md2(ξ

2
2 − ξ2η + 4ξ2c1)

+4ρ2 − 8md1(ρη − ρξ2 − 4ρc1) + 8md2ρξ2. (6.28)
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The generations of matter on the curves are

N
16(d2) = (md1 − kd2)ξ

2
2 −md1ξ2η + (4md1 − 2kd2 − 2md2)ξ2c1 + ρξ2, (6.29)

N
16

(d1) = −(14kd1 + 8md1) + (md2 − kd1)ξ
2
2 + (2kd1 −md2)ξ2η

+(4md2 − 6kd1 + 2md1)ξ2c1 − ρη + 4ρc1 + ρξ2, (6.30)

N
10(d2)(d2) = −8md1 + 2(md1 +md2)ξ

2
2 + 2(md2 + 5md1)ξ2c1 − 2md1ξ2η

+2ρc1 + 2ρξ2, (6.31)

N
10(d1)(d2) = −2(kd1 +md1)(6 + 2ξ22 − 3ξ2η + 12ξ2c1), (6.32)

N
10(d1)(d1) = (12kd1 + 20md1) + (4kd1 + 2md1 − 2md2)ξ

2
2 − 2(3kd1 + 2md1)ξ2η

+(24kd1 − 2md2 + 14md1)ξ2c1 − 2ρc1 − 2ρξ2. (6.33)

The supersymmetry condition is then

[2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ] ·S [ω] = 0, (6.34)

where [ω] is an ample divisor dual to a Kähler form of dP7. For simplicity, we choose

[ω] to be

[ω] = 14βH − (5β − α)
7∑

i=1

Ei, (6.35)

with constraints 5β > α > 0.

In the (2,2) factorization of the SU(4) cover, we expect the matter spectrum for

an SO(10) model as
Maatter Copy U(1)C
16

(d2) 0/3 -1
16

(d1) 3/0 1
10

(d2)(d2) n1 -2
10

(d1)(d2) n2 0
10

(d1)(d1) n3 2

(6.36)

The U(1)C is of the U(1)3 Cartan subalgebra of SU(4)⊥ that is not removed from

the monodromy. The Yukawa coupling is filtered by the conservation of this U(1)C .

The possible Yukawa couplings for constructing a minimum SO(10) GUT are then

16
(d1)16

(d1)10
(d2)(d2) and 16

(d2)16
(d2)10

(d1)(d1). We will demonstrate examples of the

flipped SU(5) GUT model from the following models.
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6.5.1 Model 1

In this example we demonstrate a three-generation model. The numerical parameters

are shown in Table 18, and the matter content and the corresponding classes with

the flux [FX ] = E2 − E3 are listed in Table 19. By using Eqs. (6.25) and (6.26), we

obtain χ(X4) = 600 and Γ2 = −18 which gives rise to ND3 = 16.

kd2 kd1 md2 md1 ρ ξ2 α β

-1 0 1.5 -0.5 −1
2
(H − 2E1 + 2E2 + 2E3 + 2E4 + E7) H −E1 1 3

Table 18: Parameters of Model 1 of the (2,2) Factorization in dP7.

Matter Class in S Class with fixed ξ2 Generation Restr. of FX

16
(d2) ξ2 H − E1 0 0

16
(d1) η − 4c1 − ξ2 3H −

∑6
i=2Ei − 2E7 3 0

10
(d2)(d2) c1 + ξ2 4H − 2E1 −

∑6
i=2Ei − 2E7 4 0

10
(d1)(d2) 2η − 8c1 − 2ξ2 6H − 2

∑6
i=2Ei − 4E7 -3 0

10
(d1)(d1) c1 + ξ2 4H − 2E1 −

∑6
i=2Ei − 2E7 -1 0

Table 19: The Matter content of Model 1. The flux is tuned that the restriction is

zero on each curve.

6.5.2 Model 2

kd2 kd1 md2 md1 ρ ξ2 α β

1 0 -0.5 -0.5 −1
2
(H − 2E1 + 2E2 − 2E3 − E7) 2H −E1 − E2 −E3 − E7 1 3

Table 20: Parameters of Model 2 of the (2,2) Factorization in dP7.

In this model, we show a four-generation example with non-zero restrictions of FX

on the matter curves. The spectrum can maintain a three-generation model after the

gauge is broken to SU(5)×U(1)X by FX . The parameters are presented in Table 20,

while the matter content and the corresponding classes with the flux [FX ] = E3 −E4
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are listed in Table 21. In this model, we have χ(X4) = 600 and Γ2 = −26 which gives

rise to ND3 = 12.

Matter Class in S Class with fixed ξ2 Gen. Restr. of FX

16
(d2) ξ2 2H −E1 − E2 −E3 − E7 0 1

16
(d1) η − 4c1 − ξ2 2H −E4 − E5 −E6 − E7 4 -1

10
(d2)(d2) c1 + ξ2 5H − 2E1 − 2E2 − 2E3 −

∑6
i=4Ei − 2E7 4 1

10
(d1)(d2) 2η − 8c1 − 2ξ2 4H − 2E4 − 2E5 − 2E6 − 2E7 -3 -2

10
(d1)(d1) c1 + ξ2 5H − 2E1 − 2E2 − 2E3 −

∑6
i=4Ei − 2E7 -1 1

Table 21: Matter content of Model 2. The flux [FX ] = E3 − E4 has restrictions on

the curves.

6.5.3 Discussion

Matter Rep. Generation

10M 101,−1 3

5̄M 5̄1,3 3

1M 11,−5 3

5h 5−2,2 1

5̄h 5̄−2,−2 1

10H + 10H 101,−1 + 101,1 1

5+ 5̄ exotics

5−2,2 + 5̄−2,−2 3

50,2 + 5̄0,−2 3

52,2 + 5̄2,−2 -1

Table 22: Flipped SU(5) spectrum of Model 1 of the (2,2) factorization in dP7.

The number of (−2) 2-cycles in dP7 is large enough that it is possible to remain

the chirality unchanged by tuning FX with vanishing restrictions on all the curves.

An example is presented in Model 1, and the corresponding flipped SU(5) spectrum

can be found in Table 22.
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The Yukawa couplings of the flipped SU(5) model from Model 1 then are

W ⊃ 101,−1M101,−1M5−2,2h + 101,−1M 5̄1,3M 5̄−2,−2h + 5̄1,3M11,−5M5−2,2h

+ 101,−1H101,−1H5−2,2h + 101,1H101,1H 5̄−2,−2h + . . . . (6.37)

Similar to the examples with trivial restriction of FX in the previous models,

the spectrum in this model is standard in the sense that there are no exotic chiral

fermions, and the quantum numbers of the matter are typical. We claim that the

superheavy Higgses 10H and 10H come from a vector-like pair on the 16
(d1) curve,

however again it is not obvious and we are not able to fix the number of such pairs.

In addition, there exist a few exotic 5 fields from the 10 curves.

On the other hand, the restrictions of the flux FX on the curves in Model 2

are non-vanishing, thus they contribute to the chirality on the curves. From the

information in Table 7 we can interpret the matter content to fit the flipped SU(5)

GUT spectrum in Table 23.

Matter Rep. Generation

10M 101,−1 3

5̄M 5̄1,3 3

1M 11,−5 3

10H + 10H 101,−1 + 101,1 1

5h 5−2,2 1

5̄h 5̄−2,−2 1

5̄ 5̄−1,3 1

1 1−1,5 1

1 11,−5 2

5+ 5̄ exotics from the 10 curves†

Table 23: Flipped SU(5) spectrum of Model 2 of the (2,2) factorization in dP7.

In this case, the Yukawa couplings for flipped SU(5) are the same:

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄1,3M 5̄0,−2h′ + 5̄1,3M1−1,−5M50,2h′

+ 10−1,−1H10−1,−1H52,2h + 101,1H101,1H 5̄−2,−2h + . . . . (6.38)

†The (5, 5̄) exotics from the 10 curves of SO(10) can be obtained from Table 7.
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The 10 + 10 superheavey Higgses are identified as a vector-like pair from the 16

curve. In this model there are a few unavoidable exotic fields descended from both

16 and 10 curves.

6.5.4 The Singlet Higgs

In the flipped SU(5) model, the matter singlet is the right-handed electron, while

it is the right-handed neutrino in the Georgi-Glashow SU(5) GUT. Different from

the SU(5) spectral cover construction, the flipped SU(5) matter singlet is naturally

embedded into the 16 representation of SO(10) in the SU(4) spectral cover configu-

ration. Thus there is no need of additional effort to identify it in the spectrum.

Moreover, in flipped SU(5) models, a Yukawa coupling needed to explain neu-

trino masses with the seesaw mechanism is [87, 88]

101M10−1H10φ. (6.39)

This singlet 10 is an SO(10) object and descends neither from the 16 nor from the

10 curves. Naively, one might think that it can be captured by the spectral cover

associated to the adjoint representation in SU(4) and the matter curve corresponds

to ±(λi − λj) = 0 with i 6= j. The locus would then be given by [47]

b50

4∏

i<j

(λi − λj)
2 = −4b32b

2
3 − 27b0b

4
3 + 16b42b4 + 144b0b2b

2
3b4 − 128b0b

2
2b

2
4 + 256b20b

3
4 = 0.

However, this is not the case. In fact, this singlet matter curve lives in the base B3

instead of the surface S and can not be described by the spectral cover. To calculate

the matter chirality on this singlet matter curve, we need the information of global

geometry transverse to the surface S. In other words, we need to go beyond the spec-

tral cover construction15. In the future, we hope there will be a global understanding

of this singlet curve [47]. Therefore, we just assume this singlet exists and can provide

the above Yukawa coupling.

15Recently this singlet has been discussed in [90] for the SU(5) GUT, and it is possible to apply

the same idea in this case. We leave this topic for our future work.
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7 Conclusions

In this paper we built flipped SU(5) models from the SO(10) singularity by the

SU(4) spectral cover construction in F-theory. The 10 curve in the SU(4) spectral

cover configuration forms a double curve, and there are codimension two singularities

on this curve [39]. It has been also shown that the net chirality on the 10 curve

vanishes [39]. In order to obtain more degrees of freedom and non-zero generation

number on the 10 curve, we split the SU(4) cover into two factorizations. In the

(3,1) factorization there are two 16 curves and two 10 curves on S, while in the (2,2)

factorization there are two 16 curves and three 10 curves. The fluxes are also spread

over the curves, providing additional parameters for model building.

We start model building from setting up appropriate SO(10) spectrum on the

16 and 10 curves. Some Higgs fields, such as 210, 120, and 126 + 126 breaking

the SO(10) gauge group are absent in this construction. Therefore, we introduce a

U(1)X flux to break SO(10) to SU(5)× U(1)X . We interpret the resulting spectrum

as a flipped SU(5) model. The flux may have non-vanishing restrictions on the curves

such that the corresponding chiralities may be modified. The superheavy Higgs fields

10H and 10H needed for breaking the gauge group to the MSSM are not obvious from

the spectrum. We assume that they are a vector-like pair from the 16 curve including

the fermion representations, but we are not able to fix the number of such pairs.

In the (3,1) factorization, we discuss first the construction on the geometry of the

Calabi-Yau fourfold with an embedded dP2 surface constructed in [45]. We demon-

strated three examples. Two of them have three-generation, minimal SO(10) GUT

matter spectra. The U(1)X flux has always non-vanishing restrictions on the 16

curves, while it generically has vanishing restrictions on the 10 curves. Therefore,

on a 16 curve, the chiralities of the 10, 5, and 1 representations are modified in the

factor of the U(1)X charges, and the model no longer has three generations after the

SO(10) gauge symmetry is broken. To solve this problem, we constructed a four-

generation model such that its corresponding flipped SU(5) spectrum can possess at

least three generations after the U(1)X flux is turned on. On the other hand, the

U(1)X flux in the case of dP7 geometry background [54] can be tuned to have trivial

restrictions on the 16 curves so the chiralities remain untouched. We presented one

three-generation example of the (3,1) factorization based on this geometry.
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In the (2,2) factorization, to have more degrees of freedom for model building,

we focused only on the geometry of the Calabi-Yau fourfold with an embedded dP7

surface [54] and presented two examples. The first was a three-generation flipped

SU(5) model from the SO(10) gauge group broken by the flux with trivial restrictions

on all the matter curves. The second example, however, starts from a four-generation

SO(10) model whose gauge group is broken to SU(5) × U(1)X by the flux with

non-trivial restrictions on the matter curves. The resulting chiralities are modified

by the flux restrictions to achieve the spectrum of a three-generation flipped SU(5)

model. Generically, the flipped SU(5) models from a four-generation SO(10) setup

with non-vanishing flux restrictions to the 16 curves results in exotic fields from the

16 curves.

There remain some interesting directions for future research. First, we could

construct SO(10) singularities directly on Calabi-Yau fourfolds. Some examples in

toric geometry are discussed in [86], and it would be interesting to consider more

general fourfolds. Second, the SO(10) singlet is important for the neutrino mass

problem in the flipped SU(5) phenomenology, however the mechanism of defining

this singlet remains unclear. Third, we could investigate flipped SU(5) models that

do not descend from a D5 singularity. The flipped SU(5) models can be built from the

anomaly-cancellation of the U(1)s of the monodromy group [89] in the well-studied

SU(5) spectral cover configuration in F-theory. A recent study on the abelian gauge

factor from a certain global restriction of the Tate model [90] may be useful to study

the U(1) gauge groups. In addition, it is also exciting if we can turn on a non-abelian

flux to break the SO(10) gauge symmetry down to a standard-like model, such as the

Pati-Salam model. We leave these questions for our future study.
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