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Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in

response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdor-
feri carries one superoxide dismutase gene (sodA) capable of controlling intracellular super-

oxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in
the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-

DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify

targets that were differentially oxidized in the soluble fractions of the sodAmutant compared

to its isogenic parental control strain following treatment with an endogenous superoxide

generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins

revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhib-

ited increased carbonylation in the sodAmutant treated with MV. Levels of ATP and NAD/

NADH were reduced in the sodAmutant compared with the parental strain following treat-

ment with MV and could be attributed to increased levels of oxidation of proteins of the gly-

colytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A

(OspA, BBA15) were also observed to be oxidized in the sodAmutant. Immunoblot analysis

revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A

(DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodAmutant compared

to the control strains. Viable sodAmutant spirochetes could not be recovered from both

gp91/phox−⁄− and iNOS deficient mice while borrelial DNA was detected in multiple tissues

samples from infected mice at significantly lower levels compared to the parental strain.

Taken together, these observations indicate that the increased oxidation of select borrelial

determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute

to the in vivo deficit of the sodAmutant in the mouse model of Lyme disease. This study,
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utilizing the sodAmutant, has provided insights into adaptive capabilities critical for survival

of B. burgdorferi in its hosts.

Introduction
Borrelia burgdorferi, the causative agent of Lyme disease is transmitted to humans by the bite
of infected Ixodes spp. ticks [1]. Due to the highly disparate nature of the environmental signals
present in the tick vector before and after a blood meal, B. burgdorferi exhibits rapid adaptive
gene expression in response to these cues [2–5]. Some of these signals include differences in
temperature, pH, levels of dissolved gases, reactive oxygen and nitrogen species (ROS/RNS)
and a variety of other nutrients resulting in significant changes in growth characteristics of the
spirochetes in the tick mid-gut following the ingestion of a blood meal [6–8]. The alterations in
the physiology/metabolism of B. burgdorferi, in turn, enable the spirochetes to migrate from
the tick mid-gut to the salivary glands facilitating transmission, colonization and dissemination
to and within vertebrate hosts [9–12]. While a large body of information exists on the variety
of lipoproteins critical for the initial stages of infection, the role of non-specific effects of factors
present in the incoming blood meal and tick saliva affecting the kinetics of transmission of B.
burgdorferi are beginning to be understood in greater detail [4, 6, 13–18].

We previously reported that the inactivation of the gene encoding superoxide dismutase A
(sodA) in B. burgdorferi resulted in a mutant strain that could not be re-isolated from infected
tissues following intradermal needle inoculation in C3H/HeN mice at 21 days post-infection
[19]. Additional studies employing these strains have expanded the significance of sodA within
the context of borrelial physiology ([20] The sodA deficient strain was also more susceptible to
the killing effects of activated macrophages and neutrophils compared to the wild type or com-
plemented strains [19, 21]. Components of the tick saliva with anti-oxidant properties have
also been shown to enhance the survival capabilities of B. burgdorferi following transmission
from the ticks suggesting that multiple borrelial and vector specific components contribute to
the resistance against the mediators of innate immune response in the mammalian host [17,
22–24]. While the sodAmutant did not have a significant growth defect under in vitro growth
conditions, we analyzed the contributions of the levels of oxidation and synthesis of select bor-
relial proteins that contributed to reduced survival capabilities of the sodAmutant under in
vivo conditions.

The deleterious effects of reactive oxygen species (ROS) on the survival of several bacterial
pathogens have been attributed to DNA damage induced via the interaction of hydrogen per-
oxide with “free” Fe2+ resulting in highly reactive OH (Fenton reaction) [25]. Previous studies
have shown that the intracellular levels of free Fe in B. burgdorferi are not sufficient to sustain a
robust Fenton reaction and that DNA is not the primary target of ROS [26, 27]. Borrelial mem-
branes, which incorporate polyunsaturated lipids from either the host or from in vitro growth
medium, were identified as the primary target for ROS [26, 27]. These aforementioned studies
identified linoleic acid as a major target for ROS in the wild type B. burgdorferi strain B31-A3.
In addition, an increase in the level of end products from the oxidation of polyunsaturated
fatty acids and detectable changes to the borrelial membrane architecture was observed [26].
Moreover, the accumulation of damage to a variety of biomolecules and structures could even-
tually contribute to increased sensitivity of B. burgdorferi to reactive oxygen and reactive nitro-
gen species (ROS/RNS) [28]. Nitric oxide toxicity in B. burgdorferi leads to alteration in free
and zinc-bound cysteine thiols notably zinc-dependent glycolytic enzyme fructose-1,
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6-bsiphosphate, Borrelia oxidative stress regulator (BosR) and neutrophil activating protein
(NapA). BosR and NapA were specifically shown to be S-nitrosylated in borrelial cells exposed
to NO donor diethylamnine NONOate (DEA/NO) [28]. Collectively, alterations affecting the
structure/function of key borrelial proteins could have a significant impact on the survival of
the spirochetes in different microenvironments where the levels of these stressors are elevated,
such as in the vicinity of activated macrophages and neutrophils in the vertebrate hosts.

A number of studies have determined the contributions of bacterial superoxide dismutases
(Sods) in the colonization capabilities of the respective bacterial pathogens in different experi-
mental animal models (reviewed in [29]). Several bacterial pathogens possess multiple Sods
and the absence of Mn-SodA may not confer a significant reduction in the colonization capa-
bilities in animal models. However, deletion of SodA in Yersinia enterolitica serotype O8
resulted in mutants with a significant reduction in tissue colonization [30]. Since B. burgdorferi
has a single Sod and has a paucity of antioxidant defense mechanisms even though the intracel-
lular levels of free iron is low, it is feasible that host-derived ROS and RNS can limit the survival
of sodAmutant via the interaction of NO and superoxide. While the ROSs are produced by
macrophage NADPH oxidase (Phox), RNS is generated via the inducible nitric oxide synthase
(iNOS). Therefore, we rationalized that mice lacking the heme-binding subunit of the superox-
ide generating NADPH oxidase, gp91/phox−⁄− [31] or iNOS [32, 33] could potentially allow for
the colonization sodAmutant and provide a basis for the inability of sodAmutant spirochetes
to survive in C3H/HeN mice.

In this study, we hypothesized that lack of SodA leads to increased levels of intracellular O2
–

in B. burgdorferi and result in changes in key borrelial proteins ultimately reducing the survival
of the sodAmutant in mouse models of infection. We undertook a proteomic approach to
identify the proteins with increased susceptibility to oxidation in the absence of SodA [34–36].
A subset of proteins of the glycolytic pathway were found to be oxidized at a higher level in the
sodAmutant compared to the parental wild type strain in the presence of 20 mMMV. A con-
comitant reduction in the levels of ATP/NADH was also observed in the sodAmutant reflect-
ing reduced function of select enzymes in the glycolytic pathway. Mutant strains of mice either
lacking gp91/phox–/– or iNOS were unable to support the survival of the sodAmutant. Addi-
tional phenotypic analysis of the sodAmutant revealed that multiple lipoproteins critical for
colonization of the vertebrate host by B. burgdorferi were reduced in the sodAmutant com-
pared to the parental and complemented strains. T Regulators of gene expression such as RpoS
and BosR were reduced in the sodAmutant that could partly contribute to the reduced levels of
select lipoproteins thereby limiting survival of the sodAmutant in the vertebrate hosts. Proteo-
mic analysis of borrelial mutants serves as a tool to dissect the molecular basis for the in vitro
and in vivo phenotype, which can be readily applied to a growing list of borrelial mutants with
a wide-range of colonization and infectivity capabilities.

Materials and Methods

Ethics statement
All animal experiments were done using protocols approved by the Institutional Animal Use
and Care Committee (IACUC) at The University of Texas at San Antonio.

Bacterial Strains and Growth conditions
A clonal isolate of B. burgdorferi strain B31 lacking lp25 transformed with pBBE22 (ML23/
E22) and a mutant strain lacking sodA (sodA–/E22) as previously described were cultured in
BSK-II medium supplemented with 6% normal rabbit serum (Pel-Freez, AK) at 32°C in a CO2

incubator with 1% CO2 [19, 37–39]. The spirochetes were grown to a density of 5 x107
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spirochetes/ml and washed thrice in HBSS/5mM Ca2Cl/50mM sucrose/2%bovine serum albu-
min and was subjected to oxidative stress by treating with 20mMMV, an endogenous O2

– gen-
erator for a period of 1 hr in the aforementioned buffer [19]. Oxidative stress experiments were
done in triplicate, and all replicates were processed for proteomic analysis as described below.

Preparation of Protein Fractions
After the induction of oxidative stress for the indicated time, the spirochetes were washed to
remove MV and bovine serum albumin with 25mMNaCl + 5mMDTT + 20mMHEPES pH
7.6 containing Complete protease inhibitor (Roche) and lysed by sonication. The cell lysates
were cleared by centrifugation for 15 minutes at 10,000g and 4°C to remove intact bacteria and
the membrane, and soluble proteins were separated by ultracentrifugation at 150,000xg for 1h
at 4°C. The total protein concentrations of the membrane and soluble fractions were quantified
using BCA Assay (Pierce, Thermo Scientific Ltd.) and stored in aliquots at -80°C until use [36].

Two-dimensional Electrophoresis (2DE)
Immobilized pH gradient (IPG) strips, (11 cm, pH 5–8; BioRad, Hercules CA) were rehydrated
for 16 h at 20°C in 200 μL of rehydration/sample buffer containing B. burgdorferi cytosolic
extracts (approximately 250 μg of total protein). Isoelectric focusing (IEF) was carried out
using the PROTEAN IEF (BioRad, Hercules CA) under the following conditions: Step 1, 250V
for 20 min; Step 2, ramped to 8000 V over 2.5 h; and Step 3, 8000 V for a total of 20,000 V/h.
Strips were then placed into equilibration buffer (EB) and disulfide groups were subsequently
blocked with iodacetamide. Equilibrated IPG strips were then placed and fixed using hot aga-
rose on the top of SDS-PAGE, 12% PAGE (Criterion Precast Gels; BioRad, Hercules CA) and
separation of proteins in the second dimension done under reducing conditions. After electro-
phoresis, protein spots were visualized by staining with SYPRO Ruby gel stain (BioRad, Hercu-
les CA) following manufacturer’s instructions. To assure maximal coverage, initial experiments
were also performed with pH 3–10 IPG strips in the first dimension and SDS-12% PAGE gels
in the second dimension [36]. These experiments revealed that most of the proteins of interest
separated optimally between the pI of 5 and 8.

Immunoblot analysis of oxidized proteins of B. burgdorferi
After loading the samples onto IPG strips and separating the proteins in the first dimension,
oxidized proteins were labeled using the on-strip derivatization method [40]. Briefly, strips
were incubated for 20 minutes in 10mM dinitrophenylhydrazine (DNPH) (Sigma-Aldrich) in
2M HCl at room temperature. After derivatization, strips were neutralized by incubating 30
minutes in EB-I followed by 30 minutes incubation in EB-II/iodoacetamide. Proteins were sep-
arated in the second dimension as described above. An OxyBlot protein standard (Chemicon
International, Inc) was used in these gels as an internal control for the detection of oxidized
proteins using the procedures described in this section. This protein standard was used as per
manufacturer’s recommendations, and mixed with the same pre-stained molecular weight
marker used in the SYPRO stained gels (EZ-Run Pre-stained Rec Protein ladder, Thermo
Fisher Scientific Inc.). Separated proteins were transferred to PVDF membranes (Hybond GE
Healthcare) using a semidry transfer unit (BioRad) for 30 minutes at 15V. Membranes were
blocked overnight using 10% skim milk in Tris Buffer Saline (50mM Tris, 150mMNaCl) con-
taining 0.2% Tween 20 (TTBS). After blocking, the membranes were incubated with 1:4000
dilution of the rabbit anti-DNP antiserum (Sigma-Aldrich) at room temperature for 2 hrs. This
antiserum detects proteins that are preferentially derivatized using dinitrophenylhydrazine
(DNPH). Membranes were washed 4 times with TTBS and 1:20,000 dilution of the secondary
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HRP-conjugated goat anti-rabbit antiserum (GE Healthcare) was added and incubated for 1hr
at room temperature. Finally, membranes were washed 10 times in TTBS and oxidized proteins
were visualized using Enhanced Chemiluminescence Plus Detection reagents (GE Healthcare).
Spots corresponding to proteins with significant differences in the levels of oxidation in paren-
tal and sodAmutant strains were excised from SYPRO Ruby stained gels and subjected to mass
spectrophotometry to determine the identity of the proteins oxidized in the presence of MV.
The protein spots subjected to mass spectrometry analysis were those consistently detected in
each biological replicate performed in this study.

Identification of oxidized proteins by mass spectrophotometry
Spots of interest were excised from the gels and digested in situ with trypsin (Promega) in
40mMNH4HCO3 at 30°C overnight according to standard protocols [41–44]. The resulting
digests were analyzed by capillary HPLC-electrospray ionization tandem mass spectrometry
(HPLC-ESI/MS/MS) on a Thermo Fisher LTQ ion trap mass spectrometer fitted with a New
Objective PicoView nanospray source. On-line HPLC separation of the proteolytic peptides
was accomplished with an Eksigent Nano-LC micro HPLC system: column, PicoFrit (New
Objective; 75 μm i.d.) packed to 10 cm with C18 adsorbent (Vydac; 218MSB5; 5 μm, 300 Å);
mobile phase A, 0.5% acetic acid/0.005% TFA; mobile phase B, 90% acetonitrile/0.5% acetic
acid/0.005% trifluoroacetic acid; linear gradient of 2 to 42% B in 30 min; flow rate, 0.4 μl/min.
As a part of the data-dependent acquisition protocol, the seven most intense ions in each sur-
vey scan was sequentially fragmented in the ion trap by collision-induced dissociation using an
isolation width of 2.5 and a relative collision energy of 35%. For identification of sites of protein
modification, experiments were also conducted in which specific ions are targeted for MSn

analysis. Uninterpreted tandem mass spectra were analyzed by Mascot (Matrix Science, Lon-
don, UK; 10 processor; in-house license). Methionine oxidation was selected as a variable mod-
ification for all searches. In some cases, oxidation of Cys (sulfinic, sulfenic and sulfonic acids),
His and Trp was also considered. In addition, use of the "error-tolerant" search feature of Mas-
cot was used to detect unanticipated modifications. Cross correlation of the Mascot results
with X! Tandem, and determination of probabilities of protein identifications was determined
using Scaffold (Proteome Software, Portland, OR). Assignment of the MS/MS fragments was
verified by comparison with the predicted ions generated in silico by GPMAW (Lighthouse
Data, Odense, Denmark).

Purification of recombinant glyceraldehyde 3-phosphate dehydrogenase
(rGAPDH) and generation of anti-GAPDH serum
Recombinant GAPDH (BB0057) with a C-terminal 6X histidine tag was over-expressed by
inducing E. coli expression host Rosetta-gami containing pET23a/bb0057 with 1mM IPTG for
3 hrs [19]. The purification of rGAPDH was done as described previously [19] and the purified
rGAPDH was used to generate anti-serum in BALB/c mice in accordance with protocols
approved by the Institutional Animal Care and Use Committee at UTSA.

Immunoblot analysis
Total protein lysates from the parental, sodAmutant and complemented strains were separated
using 12% SDS-PAGE gels, transferred to PVDF (Hybond-P GE Healthcare) membranes and
blocked overnight using 10% skim milk in TTBS. The membranes were incubated for 1h at
room temperature with anti-sera against OspA, OspB, OspC, DbpA, BBK32, BosR, lactate
dehydrogenase (LDH), FlaB (as a loading control) and RpoS at appropriate dilutions [45–47].
The blots were developed following incubation with appropriate dilutions of HRP conjugated
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anti-mouse or anti-rabbit secondary antibodies using ECLWestern blotting reagents (GE
Healthcare, Buckinghamshire, UK). The same protocol was used for the detection of GAPDH
(glyceraldehyde 6-phosphate dehydrogenase) before and after parental and the sodA negative
strains were treated with MV.

ATP levels
Spirochetes were grown to a cell density of 5x107 cells/ml washed and treated with 20mMMV
as described above. The lysates were prepared in buffer without DTT. Cell lysates were cleared
by centrifugation at 10,000g for 15 minutes and supernatants were stored as aliquots at -80°C
until use. Protein concentration of each supernatant was quantified using BCA assay (Pierce,
Thermo Scientific, Ltd.). Levels of ATP in the parental and sodAmutant before and after oxida-
tive stress were measured using the Adenosine 5'-triphosphate (ATP) Bioluminescent Assay
Kit (Sigma-Aldrich). Briefly, a standard solution of ATP was prepared by making serial dilu-
tions ranging from 10-3M to 10-11M of ATP to quantify the test samples. The assay was per-
formed in a white, flat bottom, 96-well plate where 25μl of the ATP assay mix (provided by the
manufacturer) were added per well and incubated at room temperature for 3 minutes. This
was followed by the addition of 25μl of each of the standards and samples in triplicate to the
wells containing the ATP assay mix rapidly and luminescence was measured using Synergy HT
(BioTek) plate reader. ATP concentrations were calculated from a standard curve as picomoles
(pM) and normalized per μg of protein. Levels of ATP were measured in four independent
experiments. Values are represented as mean ± SD.

NAD+-NADH levels
B. burgdorferi wild type and sodAmutant strains were grown to a cell density of 5x107 cells/ml
washed and treated with 20mMMV as described above. Levels of NAD+ and NADH were cal-
culated using the Fluoro NAD/NADH kit (Cell Technology) following manufacturer’s recom-
mendations. Briefly, after washing cells with HBSS thrice to remove MV and excess BSA, each
sample was split into two aliquots one for NAD+ and the other one for NADH extraction.
Washed cells were re-suspended in 200μl of the NAD+ or NADH extraction buffer and 200μl
of the NAD/NADH lyses buffer was added to each tube. Samples were homogenized and incu-
bated at 65°C for 15 minutes, cooled on ice and 100μl of reaction buffer was added. Each sam-
ple was then neutralized by the addition of 200μl of the opposite extraction buffer as per
manufacturer’s instructions. Extracts were cleared by centrifuging at 8,000g for 5 minutes and
4°C and supernatants were used immediately in the fluorescence assay. An NADH standard
solution was prepared by serial dilution ranging from 1000nM to 15.625nM. The assay was
performed in a black, clear bottom, 96- well plate. 50μl of each sample and standard were
added in triplicates followed by the addition of 100μl of reaction cocktail provided by the man-
ufacturer. Plates were incubated at room temperature in the dark for 1hr and read with excita-
tion at 560nm and emission at 590nm. NAD+ and NADH concentration were calculated from
the calibration curves and normalized per μg of protein. NAD/NADH levels were obtained
from 4 independent experiments. Values are represented as mean ± SD.

Infectivity analysis of sodAmutant in C57BL/6, gp91/phox−⁄− and
iNOS−⁄−mice
Groups of mice (n = 3) were challenged intradermally with the 103 or 105 parental (ML23/E22)
or sodA− mutant (sodA–/E22) strain and the levels of infection were monitored after 21 days
post-infection by either propagating different tissues (skin, lymph nodes, spleen, bladder, heart
and one tibio tarsal joint) in BSKII growth medium or by enumeration of spirochetal numbers
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from a portion of skin, lymph node, spleen and one tibio-tarsal joint by quantitative real time
PCR. Tissue samples propagated in borrelial growth medium were blind-passed into fresh
medium after 5 days and spirochetal cultures were examined under dark field microscopy for
presence of viable spirochetes. The levels of spirochetal DNA in each sample was normalized
against mouse actin and represented as number of borrelial flaB copies for every 100, 000 actin
copies.

Statistical analysis
Levels of ATP, NAD+ and NADH in the wild type and sodAmutant before and after oxidative
stress were compared by using one-way ANOVA, followed by the Bonferroni’s multiple com-
parison test.

Results

Increased oxidation of soluble proteins in the sodAmutant
We hypothesized that lack of sodA will impact the functions of cytosolic proteins critical for
multiple metabolic pathways of B. burgdorferi. Therefore, we exposed the parental and mutant
strains to methyl viologen and determined the identity of soluble borrelial proteins that were
oxidized using anti-DNP antibodies following derivatization of oxidized proteins using dinitro-
phenylhydrazine (DNPH) [36]. As shown in Fig 1, there were no significant differences in the
levels of proteins stained with SYPRO Ruby between the parental and mutant strains before
and after treatment with methyl viologen. On the other hand, as shown in Fig 2, immunoblot
analysis using anti-DNP antibodies showed a collection of proteins with significant levels of
oxidation in the sodA deficient strain compared to the parental control strain. Furthermore,
even in the absence of MV treatment, the sodAmutant exhibited increased levels of oxidation
in select proteins that were not observed in the parental strain. Five proteins that were prefer-
entially oxidized in the sodAmutant were identified by mass spectrometry (Table 1). Three of
the five identified proteins [glyceraldehyde 6-phosphate dehydrogenase (BB0057, GAPDH),
pyrophophate phospho fructo kinase (BB0020, Pfk) and pyruvate kinase (BB0348, Pky)] are
part of the glycolytic pathway (Fig 3). One heat shock protein (hsp90, HtpG, BB0590) involved
in protein folding and the outer surface protein A (OspA, BBA15) known to play a key role in
the attachment of the spirochetes to the tick midgut were also observed to have increased levels
of oxidation in the sodA negative mutant [48]. We also analyzed the putative target residues of
the enzymes that were identified by mass spectrophotometric analysis and determined that the
active sites of several of these enzymes had residues that could serve as targets of oxidation
(Table 2). These observations demonstrated that oxidation of key residues of cytosolic proteins
are increased in the absence of sodA and that these changes could lead to alterations in the sur-
vival capabilities of B. burgdorferi in the presence of oxidative stressors. We focused on identi-
fying the effects of oxidation of soluble, cytosolic proteins on the central metabolic pathways of
B. burgdorferi although determination of levels of oxidation of membrane proteins may pro-
vide additional information on the phenotype of the sodAmutant. In addition, the availability
of specific antibody reagents to major lipoproteins of B. burgdorferi also allowed us to deter-
mine if there are significant changes in the levels of expression of select borrelial proteins as
described below.

Levels of ATP are reduced in the sodAmutant
GAPDH, Pfk and Pky are key enzymes of the glycolytic pathway (Fig 3). Oxidation of these
proteins might alter their function and consequently, there is a possibility that the cellular
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levels of ATP could be reduced rendering the sodAmutant more susceptible under conditions
of limited nutrient availability or in microenvironments with limited energy sources [49–54].
To test this hypothesis, we measured the levels of ATP before and after treatment with 20mM
MV in the parental and sodA negative strains. As shown in Fig 4A, in the presence of MV, the
levels of ATP in the sodA negative strain were significantly reduced when compared with those
of the untreated sample (P< 0.001), and were also lower than the levels observed in the paren-
tal strain after treatment (P< 0.001). On the other hand, the ATP levels in the parental strain
were not significantly reduced in the presence of stressor. Furthermore, we hypothesized that if
levels of ATP are reduced, levels of NADH will also be affected by the increased oxidation of
GAPDH, Pfk and Pky in the sodAmutant with an increase in the levels of accumulated NAD+

(Fig 3). As shown in Fig 4B, the parental strain had the same levels of NAD+ in the presence or
absence of MV, while the sodAmutant strain had significantly more NAD+ compared to the
parental strain independent of the levels of oxidative stress. This accumulation of NAD+ is con-
sistent with the observation that GAPDH—a critical enzyme involved in generating NADH
from NAD+—presumably has reduced enzymatic functions due to oxidation of critical residues
in its active site. We observed a reduction in the levels of NADH in the parental strain after
treatment with MV (P< 0.01) as a potential outcome of oxidation of GAPDH in wild type

Fig 1. Two- dimensional electrophoretic (2-DE) profile of the soluble fractions of parental and sodAmutants strains of B. burgdorferi. Soluble
proteins of B. burgdorferi parental (wt) and sodAmutant (mt) strains before (Control) and after exposure to 20 mMMV (Treated) were separated from
membrane proteins by ultracentrifugation and resolved using IPG strips (pH 5–8) in the first dimension and by SDS-12% PAGE gels in the second
dimension. Following 2-DE, the total proteins were stained with SYPRORuby (Molecular Probes) with basic and acid ends indicated for each gel. Numbers
with lines represent the spots that correlate with oxidized proteins detected by immunoblot in Fig 2. Spots were excised and analyzed by MALDI-TOFMS.
Results are outlined in Table 1 with spot number indicated within parenthesis. Molecular mass markers (MW) are represented on the left side of each gel in
kDa. Representative gels are presented in this figure.

doi:10.1371/journal.pone.0136707.g001
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Fig 2. Immunoblot analysis of oxidized soluble proteins of parental and sodAmutant strains ofB. burgdorferi. Soluble proteins from the parental
strain (wt) and sodAmutant (mt) were obtained before (Control) and after treatment with 20 mMMV (Treated) and subjected to two-dimensional gel
electrophoresis after derivatization with dinitrophenylhydrazine (DNPH) as described in the material and methods. The proteins were transferred to PVDF
membranes and probed with anti-DNP antiserum and blots developed using Enhanced Chemiluminescence Plus Detection reagents. Lines and numbers
represent the protein spots oxidized in the sodAmutant compared with the parental strain. Spots were excised from the SYPRO stained gels as shown in Fig
1 and analyzed by MALDI-TOF MS. Molecular mass markers (MW) are represented on the left side of each gel in kilodaltons, OxyBlot Protein standard was
used in this assay (Chemicon International, Inc.). Representative blots are presented in this figure.

doi:10.1371/journal.pone.0136707.g002

Table 1. Proteins with increased levels of oxidation in the sodAmutant identified bymass spectrometric analysis.

Peptides
identified

Coverage (%)

Protein ID* pI Size
(KDa)

Exp
1

Exp
2

Exp
1

Exp
2

Gene
Locus

Function

• Glyceraldehyde 6-phosphate dehydrogenase
(GAPDH) (4)

8.2207 36.25 4 15 34 45 bb0057 Glycolysis

• Pyrophophate phospho fructo kinase (2) 6.5319 62.48 9 11 14 20 bb0020 Glycolysis

• Pyruvate kinase (Pky) (3) 7.23 53.03 22 5 32 10 bb0348 Glycolysis

• Chaperon hp90 (HtpG) (1) 5.3925 75.43 14 15 22 25 bb0560 Protein folding

• Outer Membrane protein A(5) 9.35 29.35 7 ND 27 ND Bba015 Cell envelop,
Lipoprotein

*: The numbers of the spots in the gel shown in Fig 2 are indicated within parentheses.

ND: Not determined

doi:10.1371/journal.pone.0136707.t001
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strain (Fig 4C). Surprisingly, the levels of NADH in the sodA negative strain were significantly
higher than those observed in the parental strain (P< 0.001) prior to treatment with MV.
However, the levels of NADH in the sodAmutant after treatment with MV dropped to levels
significantly lower than those observed in the untreated sample (P< 0.001) as well as that
observed in the treated parental strain. These observations suggest that oxidative damage of
key enzymes, notably GAPDH, involved in the glycolytic pathway, result in a significant reduc-
tion of the energy levels of the spirochetes and could translate into reduced survival capability
of the sodAmutant in select microenvironments. The survival capabilities of sodAmutant of B.

Fig 3. Glycolytic pathway of B. burgdorferi. A schematic representation of the glycolytic pathway based on
the genome information from Frazer et al (1997). Numbers indicate the locus in B. burgdorferi encoding the
enzyme catalyzing each of the steps of the pathway. Highlighted in bold and underlined are the enzymes with
oxidative damage in the B. burgdorferi sodAmutant strain after treatment with the MV.

doi:10.1371/journal.pone.0136707.g003

Table 2. Amino acid residues that are potential targets for carbonylation within the oxidized proteins.

Protein ID Position1 Sequence2 Function

Glyceraldehyde 6-phosphate dehydrogenase (GAPDH,
bb0057)

7–12 GFGRIG ATP binding site

148–164 SNA SCTTNCLAPL AKVL Active site with C-xxx-C motif

179–203 HA YTNDQRILDL PHSDLRRARA AAL S-Loop

Pyrophophate phospho fructo kinase (bb0020) 280–283 KKKT AMP phosphorylation site

Pyruvate kinase (Pky, bb0348) 209–221 VK IISKIENQEG I Phosphokinase activity

Chaperon hsp90 (HtpG, bb0560) 21–30 YSHKEIFLRE Signature site

3–238 Multiple target residues could be potentially
oxidized

ATPase activity site for Hsp90
proteins

1: amino acid position from N-terminal end of the protein.

2: The possible target residues for carbonylation are indicated in the bold: cysteine (C), histidine (H), leucine (L), isoleucine (I), valine (V), proline (P),

arginine (R) and lysine (K).

doi:10.1371/journal.pone.0136707.t002
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burgdorferi could be significantly compromised under conditions of increased oxidative stress
due to a reduced energy flux and contribute to a defect in the colonization of the mouse model
of Lyme disease [19].

Fig 4. Levels of ATP, NAD/NADH and GAPDH in parental and sodAmutant strains of B. burgdorferi.
Soluble proteins from the parental (wt) and sodAmutant (mt) of B. burgdorferi before (-) and after (+)
treatment with 20 mMMVwere prepared for measuring the ATP levels using ATP-Bioluminescent Assay Kit
as per manufacturer’s instructions and the luminescence was measured using Synergy HT (BioTek) (A). A
similar procedure was adopted for the isolation of soluble proteins for measurement of NAD/NADH using
Fluoro NAD/NADH kit (Cell Technology) (B and C). The data represented were from 4 separate experiments
and statistical analysis was carried out using one-way ANOVA followed by the Bonferroni’s multiple
comparison test. * Denotes P value < 0.05, ** P value < 0.01 and *** P value < 0.001. The soluble proteins
were from the parental (wy) and the sodAmutant (mt) were isolated as described above before (-) and after
(+) treatment with 20 mMMV and separated on SDS-12% PAGE gels and stained with Coommassie blue (D)
or transferred to PVDFmembrane, probed with anti-GAPDH serum and blots developed using Enhanced
Chemiluminescence system (E).Molecular masses in kilodaltons are indicated to the left of panel D and E.

doi:10.1371/journal.pone.0136707.g004
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Levels of select lipoproteins in the sodAmutant
In order to determine the changes in the levels of lipoproteins in the sodAmutant, total protein
lysates from parental (ML23/E22), sodAmutant and two complemented strains propagated
under conventional growth conditions (32˚C/ pH7.6) were separated on SDS-12%PAGE gels.
Total staining of the proteins with Coomassie brilliant blue showed equivalent loading of pro-
teins (Fig 5A) and immunoblot analysis was done following electrotransfer of separated pro-
teins using specific sera against select lipoproteins of B. burgdorferi (Fig 5B). The levels of
DbpA, BBK32 and OspC were reduced in the sodAmutant compared to the control strains.
However, the levels of OspA, OspB (lipoproteins) and FlaB (major flagellin, loading control)
and GAPDH were similar in all three strains (Fig 5B). Lactate dehydrogenase, however was rel-
atively more in the sodAmutant compared to the wild-type strain. The levels of RpoS and
BosR was lower in the sodAmutant compared to the control strains suggesting that the reduc-
tion in the levels of select lipoproteins may be reflective of the reduction in the levels of RpoS as
these lipoproteins are part of the rpoS regulon [12, 55–57]. While DbpA and BBK32 bind to
mammalian extracellular matrix components such as decorin and fibronectin respectively
OspC is required for infectivity of mammalian host [58–62]. OspA/B is up-regulated under
tick-specific conditions whereas OspC, DbpA and BBK32 are up-regulated under mammalian
host-specific conditions and therefore a reduction in the levels of these key lipoproteins likely
contributed to the reduced levels of infectivity of the sodAmutant [60, 61].

sodAmutant is incapable of survival in gp91/phox- and iNOS-deficient
strains of mice
We have previously shown that even though borrelial DNA from sodAmutant was detected in
different tissues following intradermal challenge of C3H/HeN mice, we were unable to isolate
viable spirochetes from any of the tissues tested at 21 days post-infection [19]. We hypothe-
sized that the inability of the sodAmutant to survive in C3H/HeN mice could be due to one or
more oxidative stressors such as reactive oxygen specifies (ROS) or reactive nitrogen species
(RNS). Therefore, we evaluated the phenotype of sodAmutant in either gp91/phox or iNOS-
deficient mice lacking ROS and RNS production, respectively, following intradermal needle
challenge at either 103 or 105 organisms per mouse. We were unable to re-isolate viable sodA
mutant spirochetes in all the tissues tested even though sodAmutant-specific DNA was
detected (Fig 6). Viable wild-type spirochetes (ML23-E22) were isolated from all tissues from 2
out of 3 C57BL/6 (wild type mouse strain), while they were isolated from all tissues from gp91/
phox and iNOS-deficient mice (Fig 6A). In addition, qPCR data (Fig 6B, 6C and 6D) shows
that the bacterial burden of gp91/phox—/— and iNOS—/— mice infected with the parental strain
was higher than the bacterial burden of C57BL6 mice infected with the same strain. In addition,
there was increased survival of the parental strain in mice deficient in generating reactive oxy-
gen species (ROS, gp91/phox—/—mice, Fig 6C), compared to reactive nitrogen species (iNOS—/

— mice, Fig 6D). Based on these observations, it appears that the sodA-deficient spirochetes are
incapable of survival in the presence of either reactive oxygen or reactive nitrogen species even
though we were able to detect low levels of borrelial DNA in select tissue samples from trans-
genic mice deficient in ROS or RNS.

Discussion
The ability of B. burgdorferi to survive in the mammalian host requires not only a coordinated
regulation of expression of a variety of determinants to overcome the deleterious effects of the
adaptive immune system, but also mechanisms to survive and colonize in microenvironments
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that are limited in nutrients and elevated in mediators of innate immune response [63]. Some
of the components of the innate immune systems such as complement, phagocyctic and

Fig 5. Levels of virulence determinants in B. burgdorferi lacking SodA. The parental (wt), sodAmutant
(mt), the two complemented strains (ct1 and ct2) were propagated at 32°C at pH7.6 and total protein lysates
were separated on SDS-12%PAGE either stained with Coomassie blue (A) or transferred to PVDF
membranes for immunoblot analysis using antisera against different borrelial proteins indicated to the right of
each blot (B). Note the reduction in expression of RpoS, decorin binding protein A (DbpA), fibronectin binding
protein (BBK32) and outer surface protein C (OspC) in the sodAmutant compared with the control strains. No
obvious differences were noted in the levels of OspA, OspB. Lactate dehydrogenase (Ldh) and FlaB levels
between the sodAmutant and control strains. Molecular masses (MW) in kilodaltons are indicated to the left
of each blot.

doi:10.1371/journal.pone.0136707.g005
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bacteriocidal effects of activated macrophages and neutrophils, as well as the appropriate acti-
vation of the Toll-like receptors, regulate the host-pathogen interactions either facilitating
clearance of the bacteria or allow for successful colonization leading to establishment of the dis-
ease [1]. These interactions are critical for B. burgdorferi, which is dependent on the host to
acquire a variety of nutrients due to its limited metabolic capabilities. Therefore the limited
metabolic capabilities of B. burgdorferi and/or accumulation of lesions in the DNA, proteins
and lipids can significantly reduce the in vivo survival capabilities of Lyme spirochetes [64].

The lack of requirement of iron as a cofactor for enzymes and the presence of very limited
concentrations of free Fe in B. burgdorferi has been shown to limit the deleterious effects of the
Fenton reaction on DNA. On the other hand, much of the damage due to oxidative stressors
were directed at polyunstaturated fatty acids acquired from the host or in vitro growth medium

Fig 6. sodAmutant is unable colonize gp91/phox–/– and iNOS–/–deficient mice.Groups (n = 3) of mice were infected with either parental (wt) or sodA
mutant (mt) at 103 or 105 spirochetes per mouse. (A) Twenty one days post-infection, samples of skin, spleen, one popliteals lymph node, bladder, heart and
one tibio-tarsal joint were aseptically isolated and propagated in BSK-II medium with supplemented with 6% normal rabbit serum and scored for viable
spirochetes using dark field microscopy. The y axis indicates the total number of tissues tested that are positive for infection with each rectangular
box representing a specific tissue and the height of each box is indicative of the number of animals with infection in the respective tissue. (B-D)Quantitative
real-time PCR analysis of spirochetal burden in infected mouse tissues. Skin, spleen, lymph nodes and joint were isolated at 21 days post-infection from
groups of C57BL/6, gp91/phox−⁄− or iNOs−⁄− mice. The number of spirochetes in these tissues at the end of infection was enumerated by quantitative real-
time PCR. Numbers of borrelial flaB copies were normalized to mouse β-actin copies and levels of significance were as follows: **, P<0.01; *, P<0.05.

doi:10.1371/journal.pone.0136707.g006
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[20, 21, 26, 27, 65]. Among the polyunstraturated fatty acids linoleic acid exhibited increased
oxidation leading to detectable damage in the borrelial membranes [27]. In addition to induced
damage to membranes through lipid peroxidation, MV a charged quaternary ammonium com-
pound (MV2+) can diffuse through bacterial outer membrane when reduced to a more stable
radical with a single positive charge (MV+) [66]. Moreover, previous studies have shown that
MV can be accumulated in Salmonella enterica serovar Typhimurium, in which a number of
porins have been characterized as efflux pumps that can move MV out of the cell and, therefore
induce resistance to oxidative damage [67, 68]. In a previous study, we found that increased
intracellular accumulation of O2

— following treatment with MV, resulted in increased sensitiv-
ity of the B. burgdorferi sodA deficient mutant, compared to the parental or complemented
strains [19]. Furthermore, the regulation of gene expression under oxidative stress has been
reported in several publications [20, 21, 65, 69–73]. In our study, proteomic analysis of the sol-
uble fraction from the sodAmutant demonstrated a significant increase in the levels of oxida-
tion as determined by immunoblot analysis using antibodies specific to DNP-derivatized
proteins (Figs 1 and 2). Mass spectrophotometric analysis of the corresponding proteins from
SYPRO Ruby stained gels revealed that several oxidized proteins (GAPDH, phospho-fructo-
kinase and pyruvate kinase, Fig 3 and Table 1) were critical enzymes involved in glycolysis and
if these proteins were to be oxidized, there could be a concomitant decrease in the levels of
ATP generated. Consistent with this prediction, the levels of ATP and NADH were signifi-
cantly reduced in the sodAmutant treated with MV compared to the untreated sample
(P<0.001). Moreover, there was also significant decrease in the levels of ATP in the sodA
mutant compared to the parental control strain treated with MV (P<0.001) even though the
untreated sodAmutant had higher levels of ATP (P<0.05) compared to its parental counter-
part. While this difference in the initial levels of ATP could be reflective of multiple metabolic
parameters such as growth, motility and other energy consuming functions that may deplete
the levels of ATP in the parental strain, the most significant difference in ATP levels were
observed following the treatment of the sodAmutant with MV (Fig 4A). Moreover, the levels
of NAD+ was similar in both the parental and sodAmutant with and without treatment while
there was a significant decrease in the levels of NADH following the treatment of sodAmutant
with MV (Fig 4B and 4C). One of the steps of the glycolytic pathway that contributes to the
generation of NADH + H+ from NAD+ + Pi is the oxidation and phosphorylation of glyceral-
dehyde- 3- phosphate (GAP) to 1, 3 bisphosphoglycerate by glyceraldehyde-3-phophate dehy-
drogenase (GAPDH). This suggests that the consequence of oxidation of GAPDH could result
in reduced amount of NADH due to the alteration in the active sites of GAPDH following
treatment of the sodAmutant with MV. Following the same line of evidence, previous studies
with Pseudomonas aeruginosa demonstrated that, in the absence of functional intracellular
GAPDH there was an increase in sensitivity to oxidative stress generated by MV [74].

Analysis of the amino acid sequence of GAPDH also revealed that there are several residues,
most notably cysteines in the active site (CXXXC within the residues 148 to 164; Table 2), that
could have a significant effect on the enzymatic function of GAPDH. It needs to emphasized
that while the mass spectrophotometric analysis facilitated identification of the proteins with
increased oxidation, the functional deficiency of GAPDH could be due to changes in the key
residues of the active site, ATP binding site or in the S-loop [53, 54]. Even though there was
increased oxidation of GAPDH in the sodAmutant following treatment with MV, there was no
significant difference in the levels of this proteins as determined by immunoblot analysis using
monospecific antibodies (Fig 4E), suggesting that oxidative changes per semay not be sufficient
for increased turnover of this protein. Similar modifications in the active sites of other oxidized
proteins such as the AMP phosporylation site of phosphofructo kinase or the site involved in
the phosphokinase activity associated with pyruvate kinase either individually or together
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could lead to significant reduction in the ATP generating capabilities of the spirochetes via the
glycolytic pathway. Therefore, it is interesting to speculate that while the levels of ATP and
NADH are higher in the untreated sodAmutant compared to the parental control strain, the
induction of oxidative stress with MV leads to a significant reduction in the concentrations of
both of these compounds due to the reduction in function of enzymes contributing to the
energy generating phase (second phase) of glycolysis. It is important to state that the levels of
ATP and NADHmeasured following addition of MV is essentially a snapshot of the energy
flux of spirochetes and that it is feasible that under in vivo conditions a proportion of spiro-
chetes may not have sufficient energy to mediate critical metabolic processes in select microen-
vironments. The accumulation of oxidized residues in the absence of a scavenger of superoxide
generated within the cytoplasm could therefore lead to reduced or no survival capabilities for
B. burgdorferi and this scenario could partly contribute to the lack of infectivity of the sodA
mutant in the C57BL6 mice as well as in gp91/phox and iNOS-deficient mice respectively (Fig
6). Since RNS has synergistic effects with hydrogen peroxide to limit bacterial survival, we
anticipated that the iNOS deficient mice could support the colonization of the sodAmutant
due to the reduced levels of hydrogen peroxide formation consistent with the lack of dismuta-
tion reaction in the sodAmutant. It is feasible that the pH of select microenvironments could
favor the formation of protonated OH—ions that could traverse through the membranes result-
ing in survival deficits [75, 76]. These observations expand the role of SodA in the patho-physi-
ology of the Lyme spirochetes.

In addition to the effects of oxidation of key enzymes of the glycolytic pathway, there was
increased oxidation of the HtpG or Hsp90 (BB0560) in the sodAmutant. This could lead to a
variety of metabolic deficits such as improper of folding of proteins affecting their transport to
appropriate locales of cell most notably to the periplasm. Since many of the lipoproteins critical
for the pathogenic mechanisms of B. burgdorferi are located on the surface, the chaperone
functions of HtpG may therefore be a key component of the adaptive response during the colo-
nization of the mammalian host. We also observed that OspA was one of the proteins that
exhibited increased oxidation in the sodAmutant suggesting that select residues of lipoproteins
could be targets of oxidation during their synthesis in the cytosol. This could have implications
in the level of surface expression of lipoproteins, which could limit the infectivity potential of
the spirochetes.

Immunoblot analysis of lysates from spirochetes propagated at pH7.6/32°C revealed
decreased synthesis of OspC, DbpA and BBK32 in the mutant compared to the parental and
the complemented strains (Fig 5). Moreover, the levels of regulators of gene expression such as
RpoS and BosR were also lower and partly explain the reduction in the levels of OspC, DbpA
and BBK32—key virulence-associated lipoproteins that are members of its regulon [55, 57].
Recently, post-transcriptional and post-translational regulation of RpoS in B. burgdorferi is
being investigated in greater detail. Dulebohn and others demonstrated that a plasmid-encoded
protein, BBD18, contributes to post-transcriptional regulation of rpoS presumably via protein
destabilization/degradation [77]. Even though B. burgdorferi has homologs of Clp protease
complex (ClpXP), the absence of an apparent homolog of an adaptor protein, RssB, that has
been shown to deliver RpoS to the Clp protease complex in other bacterial systems, suggests
that either other borrelial proteins provide these adaptor functions or a novel mechanism con-
tribute to regulating RpoS at post-transcriptional level [77–79] One other mechanism that
leads to proteolysis of RpoS in E. coli is the levels of ATP (but not GTP or NADH) [80]. ClpXP
is incapable of proteolysis of RpoS with low rates of ATP hydrolysis even though its proteolytic
effects on other proteins remain intact [80]. Since the ATPs levels in the sodAmutant was sig-
nificantly higher under normal laboratory growth conditions (pH 7.6 32°C), it is possible that
the increased levels of ATPs could lead to increased proteolysis of RpoS resulting in reduced
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levels of virulence associated lipoproteins consistent with our data shown in Fig 5. While the
levels of ATP are considerably reduced in the sodAmutant following treatment with MV, it
can be argued that the lack of infectivity of the sodAmutant is a reflection of the cumulative
effects of defects in a variety of proteins involved in both the pathogenic mechanisms and in
the reduced efficiency of central metabolic pathways such as glycolysis resulting in reduced
ATP/NADH flux. Moreover, the levels of BosR are also lower in sodAmutant compared to the
control strains (Fig 5 α-BosR). BosR was previously shown to be a target for nitrosative damage
induced in the presence of NO donor [28]. We are cognizant of the fact that the culture condi-
tions of the strains grown under standard laboratory growth conditions (pH7.6/32°C),
although consistent for all mutant and control strains, reflect the phenotype of the sodA
mutant. Previous studies from our laboratory showed significant differences in the levels of
regulators (RpoS, BosR) and a variety of lipoproteins (OspC, DbpA and BBK32) when B. burg-
dorferi cultures are shifted from growth conditions mimicking the mid-gut of the tick vector
before (pH7.6/23°C) to after (pH6.8/37°C) the ingestion of a blood meal [45, 81–86]. Similar
analysis of the functional status of proteins using multiple, rapidly expanding proteomic tools
will facilitate identification of differences between the in vitro and in vivo phenotypes that are
not readily discernable in pauci-bacillary infections such as that of B. burgdorferi in experiment
models of infection[87–89]. In summary, the absence of sodA leads to not only changes in the
functional roles of proteins critical for the central and intermediary metabolism but also play a
role to connect the levels of small energy products such as ATP, NAD and NADH towards
controlling levels of synthesis of key virulence determinants critical for infectivity of the verte-
brate hosts.
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