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Anion effects on the cloud-point temperature for the liquid�liquid
phase transition of lysozyme were investigated by temperature
gradient microfluidics under a dark field microscope. It was found
that protein aggregation in salt solutions followed 2 distinct
Hofmeister series depending on salt concentration. Namely, under
low salt conditions the association of anions with the positively
charged lysozyme surface dominated the process and the phase
transition temperature followed an inverse Hofmeister series. This
inverse series could be directly correlated to the size and hydration
thermodynamics of the anions. At higher salt concentrations, the
liquid–liquid phase transition displayed a direct Hofmeister series
that correlated with the polarizability of the anions. A simple
model was derived to take both charge screening and surface
tension effects into account at the protein/water interface. Fitting
the thermodynamic data to this model equation demonstrated its
validity in both the high and low salt regimes. These results
suggest that in general positively charged macromolecular systems
should show inverse Hofmeister behavior only at relatively low
salt concentrations, but revert to a direct Hofmeister series as the
salt concentration is increased.

liquid–liquid phase transition � protein aggregation

Protein–protein interactions can lead to aggregation. Such
intermolecular contacts underlie the mechanistic basis for a

variety of diseases (1–4) and are key to protein crystallization
(5–7). An effective way to determine the strength of biomacro-
molecular interactions is to study the temperature-induced phase
separation that occurs in concentrated protein solutions (8).
When a concentrated protein solution is cooled below its
cloud-point temperature, the system can separate into 2 coex-
isting liquid phases: 1 rich in protein and 1 poor. As coacervate
droplets of the protein-rich phase grow, the solution turns cloudy
(white) as a result of the scattering of visible light. Upon
standing, the solution may completely separate by gravity into a
protein-rich phase and a nearly pure aqueous phase above it. The
temperature at which the initial cloud point occurs provides a
simple physical measurement of the forces acting among biomac-
romolecules. Specifically, the higher the temperature at which
the initial cloud point occurs, the stronger the putative attractive
forces between the protein molecules should be.

Dissolved salts in aqueous solutions have a strong influence on
protein–protein interactions and the subsequent aggregated
states which are formed. In fact, cloud-point temperatures
typically follow a specific ion order according to the Hofmeister
series (5, 6, 9–14). The relative effectiveness of anions to induce
protein aggregation typically follows 1 of 2 trends depending on
the pH of the solution (15, 16). Above a protein’s isoelectric
point, the macromolecule bears a net negative charge and a
direct Hofmeister series is normally observed. In this case,
chaotropes such as I�, ClO4

�, and SCN� help to unfold proteins
and salt them into solution. By contrast, kosmotropes such as
SO4

2� and F� lead to the stabilization of the folded state and
cause a salting-out effect. If the solution pH is below the pI of
the protein, the macromolecules are net positively charged. In
that case, it has been widely reported that an inverse Hofmeister
series is observed (15, 16). Namely, chaotropic anions become
more effective at salting-out proteins from solution than kos-
motropic anions.

Perhaps the quintessential example of an inverse Hofmeister
series is the precipitation of lysozyme from solution (8, 17–24).
Herein, we show that lysozyme actually displays an inverse
Hofmeister series only at low salt concentration when studied at
pH 9.4. As the concentration of monovalent salts is raised, the
order reverts back to a direct Hofmeister series. Indeed, the
charge screening effects that lead to the inverse series are only
dominant below �200 or 300 mM salt. Above this concentration,
the physical properties follow a direct series. Moreover, we build
a simple model based on charge screening and surface tension
effects, which can completely account for the hydrophobic
collapse and aggregation behavior of these charged macromol-
ecules in the presence of chaotropic anions.

Results and Discussion
Cloud-Point Temperature of Lysozyme vs. Salt Concentration. Fig. 1A
shows a dark field micrograph from a 6-channel temperature
gradient microfluidic assay. The temperature rises linearly
across the image from left to right. Dark areas denote regions
where proteins are soluble in bulk solution while the purple
regions arise from light scattering caused by protein aggregation.
The 4 channels in the middle each contain a 90.4 mg/mL
lysozyme solution made with 20 mM Tris(hydroxymethyl) ami-
nomethane buffer at pH 9.4. In addition, each solution in
channels 2 through 5 contains a different concentration of
NaSCN ranging from 0.10 to 0.16 M, respectively. Two polymer
solutions with known lower critical solution temperatures
(LCSTs) were used as standards to calibrate the temperature
gradient (25–30). These channels were placed at the very top and
very bottom. At temperatures below the cloud point, the ly-
sozyme solutions were cloudy and scattered light. Above the
phase transition temperature, the solutions became clear. By
contrast, the polymer solutions at the top and bottom show the
opposite behavior. Namely, they are clear at low temperature,
but scatter light at higher temperature upon going through their
LCST. Fig. 1B displays a linescan from the 90.4 mg/mL lysozyme
solution with 0.10 M NaSCN. As can be seen, the phase
transition occurred over �2 °C. The temperature at which the
phase transition was completed was used in all data analysis as
the cloud-point temperature and is demarked with a vertical red
line in the image. This temperature is �30.2 °C for the case
shown.

Cloud-point temperature measurements were taken at pH 9.4
for 90.4 mg/mL lysozyme solutions as a function of anion type
and concentration. These phase transition temperature data are
plotted in Fig. 2 for 6 different chaotropic sodium salts. The
specific pH and concentration conditions were chosen as they
allowed phase transition measurements to be made over a wide
range of salt concentrations (see SI). The cloud-point behavior
is complex and shows different dependencies on anion identity
in the low and high salt concentration regions. For all salts except
NaCl, the cloud-point temperature increases with salt concen-
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tration to a maximum value and then decreases linearly. In the
low salt regime, the relative effectiveness of the anions follows
an inverse Hofmeister series: ClO4

� � SCN� � I� � NO3
� �

Br� � Cl�. At higher salt concentration, the order reverts to a
direct Hofmeister series: Cl� � NO3

� � Br� � ClO4
� � I� �

SCN�.

Modeling the Phase Transition Data. Despite the apparent com-
plexity of Fig. 2, the aggregation behavior as a function of salt
concentration can be explained by the simultaneous occurrence
of 2 processes: (i) the attenuation of electrostatic repulsion
through the specific association of chaotropic anions and (ii) the
ability of the ions to alter the surface tension of the protein/
aqueous interface. Qualitatively, the interplay of these 2 phe-
nomena can be described as follows: Lysozyme is a basic protein
with a pI of 11.2 (15) and, hence, its surface is positively charged
at pH 9.4. Repulsive electrostatic interactions between lysozyme
molecules keep them from flocculating at low salt concentra-
tions. The presence of electrolyte ions in the solution, however,
changes this situation. When chaotropic anions associate with
positively charged sites on the protein surface, the effective
surface charge on the macromolecule will be reduced (31–33).
This in turn diminishes the surface potential of the protein/water
interface causing the cloud-point temperature to rise. On the

other hand, ions partitioning to the protein/water interface will
also modulate the interfacial tension (34). For example, if the
surface tension is increased, this will cause protein aggregation
and thereby increase the cloud-point temperature.

To a first approximation, the specific association behavior of
chaotropic anions can be modeled by a Langmuir-type isotherm
(25–27, 35). However, because electrostatic neutralization is
involved, an exponential factor must be added (36) and the
justification for this is provided in the SI. By contrast, the surface
tension should simply vary linearly with salt concentration
(25–27, 34, 37–39). Therefore, the data in Fig. 2 can be modeled
by Eq. 1, which includes a constant, a modified binding isotherm,
and a linear term:

T � T0 �
Bmax�M�e�b�M�

Kd � �M�e�b�M� � c�M� [1]

Here, T0 is the cloud-point temperature of lysozyme in the
absence of salt, and [M] is the molar concentration of salt. The
constant, Bmax, has units of temperature and represents the
maximum increase in cloud-point temperature when all of the
positive charges on protein surface have anions associated with
them. The constant, b, has units of reciprocal molarity and is an
electrostatic interaction factor that is related to the surface
potential of lysozyme. The values of both Bmax and b are
measures of the effectiveness for a specific anion to associate
with positive charges on the protein surface and thereby atten-
uate the electrostatic repulsion between the charged macromol-
ecules. By contrast, the constant, c, has units of temperature/
molarity and characterizes specific anion effects on the
interfacial tension at the protein/water interface. The dashed
lines in Fig. 2 are fits to the data with Eq. 1. The abstracted values
for Kd, Bmax, b, and c are provided in Table 1 along with relevant
thermodynamic information for the anions. It should be noted
that Eq. 1 is completely general and can also be applied to
neutral systems. In that case the exponential term goes to 1
because b goes to 0 (25–27).

To more clearly visualize the inverse and direct Hofmeister
effects for lysozyme aggregation, the binding and the interfacial
tension contributions to the cloud-point temperature can be
plotted separately. This can be done by subtracting the linear fit
(T0 � c[M]) to the cloud-point data in Fig. 2 and replotting the
residual values as a function of salt concentration (Fig. 3A). As
can be seen, a saturation type binding curve is revealed. More-
over, subtracting the binding contribution from Fig. 2 and
replotting the residuals shows linear behavior as a function of salt
concentration (Fig. 3B). Strikingly, the binding curve behavior
and the linear behavior can be seen to obey an inverse and direct
Hofmeister series, respectively. Because the binding curves
represent a saturation phenomenon, they cease to show much
change after 200 or 300 mM of salt. On the other hand, the linear
term associated with the interfacial tension remains effective up
to at least several moles of salt.

Anion Binding and Ionic Volume. Changes in the aqueous solution
volume upon addition of salt provides vital information on the
hydration of inorganic anions by adjacent water molecules (40).
Both the Bmax and b values abstracted from fits to the data in Fig.
2 are well correlated with the partial molar volumes (Vi

0) of the
anions (Fig. 4 A and B). Partial molar volume values for ions have
previously been interpreted to describes the size of the hydrated
ions (41). As can be seen from the data, the larger anions are
more effective at associating with the positively charged ly-
sozyme surface. As a consequence, these anions are more
efficient at screening the electrostatic repulsion between protein
molecules and promoting salting-out behavior. Therefore, an
inverse Hofmeister series is followed according to the hydrated
volume of the anions. Such a finding is consistent with previous
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Fig. 1. (A) A dark field image from a linear array of 6 microcapillary tubes.
Channels 1 and 6 were filled with polymer solutions and used as standards to
calibrate the temperature gradient. Channels 2 through 5 were filled with
90.4 mg/mL lysozyme solutions at pH 9.4 with 0.10, 0.12, 0.14, and 0.16 M
NaSCN, respectively. (B) A light scattering intensity curve taken from the
lysozyme solution containing 0.10 M NaSCN. The cloud-point temperature
was determined by drawing straight purple lines through the data during the
transition and above the transition. The intersection of these lines is denoted
by a dashed red vertical line, which is taken to be the cloud-point temperature.
The region of the fluorescence micrograph that was used to obtain this
linescan is denoted with a red line in A.
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Fig. 2. The cloud-point temperature of lysozyme as a function of anion type
and concentration. All experiments were conducted with 90.4 mg/mL ly-
sozyme in 20 mM Tris buffer at pH 9.4. The dashed lines are fits to the data
points using Eq. 1.
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observations that the efficacy of different salts for screening
charge–charge interactions correlates with the denaturing
strength of the ions and consequently the position of the ions in
the Hofmeister series (42).

The partial molar volume Vi
0 for a given anion in aqueous

solution is directly proportional to its hydration free energy,
�Ghydr (43). Moreover, the free energy of ion hydration is
typically defined as its transfer from a fixed point in vacuum
to a fixed point in the solution (44). The direct correlation
between Vi

0 and �Ghydr necessarily implies that Bmax and b are
also linearly correlated to �Ghydr (see SI). This leads to a
simple mechanistic picture for the inverse Hofmeister series of
lysozyme. Namely, bigger anions have a lower free energy cost
for shedding their hydration shells and engaging in ion pairing
relative to smaller anions. It should also be noted that bigger
anions also have fewer water molecules in their hydration
shells (45). X-ray crystallography has revealed the presence of
associated anions in lysozyme crystals when they are grown in
the presence of the corresponding salt solution (46, 47). The

anions are not randomly distributed on protein surface, but
instead prefer to interact with specific hydrophilic residues,
especially those which are positive charged such as Arg and Lys
(46, 47). The distance between individual anions and the
protein binding sites in the crystal structures indicate that
intervening water is not present, although water molecules
may be directly involved in anion–lysozyme interactions in
solution.

Interfacial Tension and Polarizability. As a lysozyme solution is
lowered below its cloud-point temperature, the formation of
coacervate droplets rapidly reduces the area of the protein/
bulk water interface. Moreover, the partitioning of anions to
this interface modulates the interfacial tension and thereby the
thermodynamics of protein aggregation (34, 48). It is well
known that interfacial tension for the air/water and many
hydrocarbon/water interfaces varies linearly with salt concen-
tration up to at least moderate ionic strengths (37–39). As
shown above, subtracting the binding contribution to the
cloud-point vs. salt concentration data in Fig. 2, reveals a linear

Salt Concentration (M)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

T
g

ni
d

ni
b

( 
o

)
C

0

10

20

30

40

50

60

70

NaClO4

NaSCN
NaI
NaNO3

NaBr
NaCl

Salt Concentration (M)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

T-
T

g
ni

d
ni

b
(o

)
C

-60

-40

-20

0

20

40

NaClO4

NaSCN
NaI
NaNO3

NaBr
NaCl

B 

A

Fig. 3. (A) Residual cloud-point temperature data from Fig. 2 after subtract-
ing the linear portion from the curves. (B) The residual cloud-point tempera-
ture data after removing the binding term. The dashed lines represent fits to
the data points.
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Fig. 4. (A) Plot of partial molar volume of the anions vs. Bmax. (B) Plot of the
partial molar volumes of anions vs. the constant, b.

Table 1. Fitted values for Kd, Bmax, b, and c from cloud-point temperature measurements and literature values
for some thermodynamic properties

Anion
Vi

0

(cm3/mol)
�Ghydr

(KJ/mol)
�

(10�30 m3)
�air/water

(mN L/mM)
Kd

(M)
Bmax

(°C)
b

(M�1)
c

(°C/mol)
�lysozyme/water

(mN L/mM)

ClO4� 49.6 �214 5.062 1.4 0.10 60.1 �7.02 �17.0 �2.7
SCN� 41.2 �287 6.739 0.5 0.10 61.1 �5.35 �31.4 �5.0
I� 41.7 �283 7.512 1.0 0.09 55.5 �4.89 �26.3 �4.2
NO3� 34.5 �306 4.134 1.1 0.10 42.9 �3.21 �0.9 �0.1
Br� 30.2 �321 4.852 1.3 0.18 43.8 �1.75 �8.7 �1.4
Cl� 23.3 �347 3.421 1.6 0.12 28.1 �0.10 10.3 1.6

The estimated interfacial tension increments for the anions at the protein/water interface (�protein/water) are also listed. Vi
0, �Ghydr, and

� data are from ref. 43; � data are from ref. 59. Note that 10�30 m3 � 1 Å3
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dependence between the residual cloud-point data and salt
concentration (Fig. 3B). With the exception of chloride, the
slopes of all of these lines are negative, which indicates that
increasing the salt concentration actually lowers the interfacial
tension and thereby the cloud-point temperature. Such behav-
ior is consistent with the effect of chaotropic ions at aqueous/
oil interfaces, where more chaotropic ions such as I� and
SCN

�
are known to decrease surface tension, while Cl� is

actually known to increase it (49, 50). Moreover, it has been
proposed that the salt-induced change of interfacial tension at
protein/water interfaces may be either positive or negative
depending on the particular salt (51). By contrast, the sodium
salts of all these ions raise the surface tension at the air/water
interface (37–39). As such, the slopes of the lines in Fig. 3B (c
values from Eq. 1) are uncorrelated with the known surface
tension increment values of the air/water interface (Fig. 5A).
Instead, a strong correlation is noted with the polarizability of
the ions (Fig. 5B).

The polarizability of an anion ref lects the ability of its
electronic shell to undergo deformation in an electric field.
This constant is usually reported in dimensions of volume (43).
As can be seen in Fig. 5B, the most polarizable anions exhibit
the strongest tendency to decrease the interfacial tension at
the protein/water interface and salt in the protein. This finding
is consistent with the partitioning of compounds in octanol/
water systems where the octanol/water partition coefficient
has been shown to be directly correlated with the polarizability
of a given compound (52, 53). Specifically, more polarizable
compounds tend to partition to the oil phase compared to the
aqueous phase. This notion is also consistent with molecular
dynamics simulations that show that ions with low charge
density exhibit preferential binding to hydrophobic surface
moieties and to hydrophobic plates in aqueous solution
(33, 54).

The results shown in Fig. 5 are quite curious in light of the
fact that surface tension data from the air/water interface
correlate quite well with changes in the LCST values for
poly(N-isopropylacrylamide) and elastin-like polypeptides in
the presence of chaotropic anions (25–27). Of course, the
LCST of those systems involves hydrophobic collapse. In the
present case, the lysozyme molecules are already folded and
the dielectric constant of the surface should be significantly
higher than for hydrophobically hydrated polymer molecules
(55–58).

The interfacial tension increments at the lysozyme/water
interface for the sodium salts of all of the chaotropic ions used
in these studies are abstracted by fitting the linear portion of the
data in Fig. 2. This can be done by using Cl� as the calibrating
ion, because it is known that its interfacial tension increment
value is approximately the same at the air/water and oil/water
interface (50). By extension, we assume this value also remains
constant at the protein/water interface. The surface tension
increment values are reported in Table 1. To the best of our
knowledge, these data represent the first experimentally deter-
mined estimates for interfacial tension increments at a protein/
water interface.

Generality of the Reversed and Direct Hofmeister Series. The mech-
anism for the modulation of the liquid–liquid phase transition
temperature of lysozyme by specific anions depends on the
ionic volume and the polarizability of the anions as shown
above. Such a finding is consistent with the idea that the anions
partition to the protein/water interface and can directly asso-
ciate with positively charged surface moieties. The inf luence
of charge pairing is relatively strong and displays saturation
behavior after the addition of a few hundred mM of mono-
valent salts. On the other hand, anion partitioning to the
protein/water interface does not display saturation behavior
under the conditions that were investigated, but is significantly
weaker. As a consequence, the cloud-point temperature be-
havior for the liquid–liquid phase transition of lysozyme
appears to be relatively complex. For more chaotropic anions,
the phase transition temperature rises sharply at low concen-
tration because of ion pairing, but then reaches a maximum
and reverses because of the decrease in the interfacial tension.
The behavior of NaCl is different. The cloud-point tempera-
ture rises at low salt concentration because of ion pairing;
however, the phase transition temperature continues to rise as
the interfacial tension goes up at higher concentration. This
type of strong ion pairing and relatively weak surface tension
behavior may be general. As a consequence, other positively
charged systems that display inverse Hofmeister behavior at
low salt concentration may also revert to a direct Hofmeister
series as the salt concentration is raised.

Materials and Methods
Hen egg white lysozyme was obtained from Fisher Scientific (catalog no. 61193-
0050). It was subjected to dialysis to remove salt and the protein was lyophilized
to form a powder. The powdered protein was redissolved in 20 mM Tris(hy-
droxymethyl) aminomethane buffer in all cases. The inorganic salts used in these
experiments were purchased from Aldrich. Low-conductivity H2O, produced
from a NANOpure Ultrapure Water System (Barnstead) with a minimum resistiv-
ity of 18 M	�cm, was used to prepare the buffer solutions. The protein solutions
were prepared at twice the desired final concentration and salt solutions were
addedimmediatelybeforethesampleswereplacedontothetestingplatform.All
cloud-point measurements were carried out with a linear temperature gradient
microfluidic platform inside capillary tubes, which has been described previously
(25–30). The measurements had a typical standard error of 
0.1 °C. Experimental
conditions other than pH 9.4 and 90.4 mg/mL lysozyme were also explored and
are described in the SI.
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Fig. 5. (A) Plot of surface tension increment values for the anions at the
air/water interface vs. the constant, c. (B) Plot of polarizability values for the
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