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ABSTRACT

Recently it was established in Einstein-Maxwell-Dilaton gravity that the KSS viscos-

ity/entropy ratio associated with AdS planar black holes can be viewed as the boundary

dual to the generalized Smarr relation of the black holes in the bulk. In this paper we es-

tablish this relation in Einstein gravity with general minimally-coupled matter, and also in

theories with an additional non-minimally coupled scalar field. We consider two examples

for explicit demonstrations.
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1 Introduction

The AdS/CFT correspondence [1–4] has provided many remarkable insights into the con-

nections between gravitational backgrounds in string theory or more general settings and

some strongly coupled gauge field theories. Among numerous results established so far, one

well-known example is the universality of the ratio of the shear viscosity to the entropy

density for wide classes of gauge theories that have gravity duals, namely [5–8]

η

S
=

1

4π
. (1.1)

A number of papers have demonstrated the universality of this bound for a variety of

supergravity and gravity theories [9–14] . These proofs are based on two methods, one uses

the formula for the viscosity derived from the membrane paradigm [15], and the other uses

Kubo formula [16] to calculate the viscosity which is proportional to the absorption cross

section of a minimal-coupled scalar and the fact [17,18] that the absorption is equal to the

area of the horizon.

Recently, a new method was developed to prove the universality of the ratio of the AdS

planar black holes in Einstein-Maxwell-Dilaton theories [19]. It was shown that the identity

(1.1) of the boundary field theory is duel to the bulk generalized Smarr relation. It turns out

that the effective Lagrangian of the AdS planar black holes has a global scaling symmetry.

The generalized Smarr relation is a manifestation of the corresponding Noether charge. In

this paper we extend the proof to more general class of theories that admit planar black
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holes whose effective Lagrangians have the scaling symmetry. We find that the Noether

charge builds a bridge between shear viscosity and the entropy density, which enables us to

confirm the universality of the viscosity bound. On the other hand, evaluating the Noether

current on both the horizon and asymptotic infinity in the bulk leads to the generalized

Smarr relation [19].

The paper is organized as follows. In section 2, we derive the shear viscosity in theory of

matter fields minimally coupled to Einstein gravity. Next, we generalize theory to include

a non-minimally coupled scalar in section 3. We give two explicit examples in section 4 to

confirm our results. The paper ends with conclusions in section 5.

2 Theories of Einstein Gravity with Minimally Coupled Mat-

ter Fields

In this section, we give a derivation of the η/s ratio for black holes in the theory of a generic

matter field minimally coupled to Einstein gravity in general dimension n. We require that

the effective Lagrangian of the black hole have a global scaling symmetry. The theory is

described by the n-dimensional action

Sn =
1

16πG

∫

dnx
√
g
[

R+M(φ ,∇φ , gµν)
]

. (2.1)

where M denotes the Lagrangian of matter field φ. We shall for now only consider mat-

ter field minimally coupled to gravity through gµν , that M contains no terms that have

derivatives on gµν . The equations of motion are given by

Gµν +Mµν −
1

2
Mgµν = 0 , ∂µ

(

√
gδM

δ(∂µφ)

)

−√
g
(δM

δφ

)

= 0, . (2.2)

where Gµν = Rµν − 1
2Rgµν is Einstein tensor and Mµν = δM

δgµν
.

2.1 Isotropic Subspace

We start by considering the static black-brane with the following general form

ds2 = dr2 − a2 dt2 + b2 dxidxi , φ = φ(r) , (2.3)

where a and b are functions only of r. It should be emphasized that φ represents a generic

matter field, rather than just a simple scalar. The brane subspace dxidxi has an isotropic

scaling factor b2. (The anisotropic configuration will be dealt in the next subsection.)
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Substituting ansatz into (2.2) gives four equations,

Mtt

a2
+

1

2
M − (n− 2)

(b′′

b
+
n− 3

2

b′2

b2
)

= 0 , (2.4)

Mrr −
1

2
M + (n− 2)

(a′b′

ab
+
n− 3

2

b′2

b2
)

= 0 , (2.5)

Mxx

b2
− 1

2
M +

a′′

a
+ (n − 3)

b′′

b
+

(n− 3)(n − 4)

2

b′2

b2
+ (n− 3)

a′b′

ab
= 0 , (2.6)

∂r

(

√
gδM

δφ′

)

−√
g
(δM

δφ

)

= 0 , (2.7)

We assume that the system admits a black hole solution. In order to see the global scaling

symmetry of the system, we substitute the ansatz into the Lagrangian, we have the reduced

one-dimensional effective Lagrangian,

L = abn−2
(

− 2a′′

a
− 2(n− 2)b′′

b
− (n − 2)(n − 3)b′2

b2
− 2(n− 2)a′b′

ab
+M

)

, (2.8)

where the prime denotes a derivative respect to r. The first four terms in the bracket

correspond to Einstein gravity and the last term is the matter contribution. We find that

the gravity part is invariant under the scaling,

b→ λb , a→ λ−(n−2)a . (2.9)

In order for the whole system to have the scaling invariance, we can require the matter field

scale correspondingly, namely

φ→ λcφφ , (2.10)

where the constant cφ is the scaling dimension of matter field φ. The invariance of the full

Lagrangian under this scaling implies that

0 =
∑

i

ciψi
δM

δψi
≡ ctg

tt δM

δgtt
+

n−2
∑

i=1

cig
xixi

δM

δgxixi
+ cφ(φ

δM

δφ
+ φ′

δM

δφ′
) , (2.11)

with ct = 2(n− 2) , ci = −2. Subsituting ansatz (2.3) into it, we get

Mtt

a2
+
Mxx

b2
+∆(

δM

δφ
φ+

δM

δφ′
φ′) = 0 , (2.12)

where ∆ = − cφ
2(n−2) is a constant related to the scaling dimension of matter field. Since the

subspace is uniform, we further require the matter fields have the full rotational symmetry,

i.e. Mxixj
=Mxxδij , with x one of the spatial direction. This scaling property (2.12) plays

an important role in solving the perturbation equation of motion which will be presented

later.
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Since the theory has the scaling symmetry, we can derive the corresponding Noether

charge by allowing the transformation parameter λ to be r dependent, and obtain the

Noether charge

J = abn−2(
a′

a
− b′

b
−∆

δM

δφ′
φ) . (2.13)

If we consider a black hole solution of the equations (2.2), with an event horizon located at

r = r0, then near the horizon we shall have the expansions

a(r) = a1 [(r − r0) + a2 (r − r0)
2 + · · · ] , b(r) = b0 + b1 (r − r0) + · · · . (2.14)

(We have written a(r) with an overall scale a1, which is a “trivial” parameter, in the sense

that it can be absorbed into a rescaling of the time coordinate t.) With standard procedure

we can calculate the temperature and entropy density of the black hole

T =
a1
2π

, s =
bn−2
0

4
. (2.15)

Evaluating Noether charge on the horizon(2.14) gives

J = 8πTs . (2.16)

Evaluating J at asymptotic infinity on the other hand yields mass and other conserved

quantities. The conservation of the Noether charge thus gives rise to the generalized Smarr

relation [19].

We now consider a transverse-traceless metric perturbation in the (n − 2)-dimensional

space of the planar section, by making the replacement

dxidxi −→ dxidxi + 2Ψ dx1dx2 , (2.17)

where for the present purpose it suffices to allow Ψ to depend on r and t only. This field

has O(2) symmetry in the x1x2 plane. The linearized equation for Ψ comes from,

G(1)
x1x2

+M (1)
x1x2

− 1

2
M (0)g(1)

x1x2
= 0 . (2.18)

Where, G(1)
x1x2 ,M

(1)
x1x2 , g

(1)
x1x2 are linearised terms in Ψ and M (0) is the unperturbed value.

Due to the O(2) symmetry, the perturbation of matter field can be set to zero consistently.

Since matter field is minimally coupled, the tensor Mµν defined under (2.2), which is a

function of the metric, should have the following expansion form at the linear order of Ψ





Mx1x1 Mx1x2

Mx2x1 Mx2x2



 = Mxx





1 Ψ

Ψ 1



+O(Ψ2) . (2.19)
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Then, with background (2.3) and equation (2.6) the linearised equation is given by,

Ψ′′ +
(a′

a
+ (n− 2)

b′

b

)

Ψ′ − 1

a2
d2Ψ

dt2
= 0 . (2.20)

For a perturbation of the form Ψ(t, r) = e−iωt ψ(r), we therefore have

ψ′′ +
(a′

a
+ (n− 2)

b′

b

)

ψ′ +
ω2

a2
ψ = 0 . (2.21)

Near horizon(2.14), the equation (2.21) therefore takes the form

a21(r − r0)
2 ψ′′ + a21(r − r0)ψ

′ + ω2 ψ = 0 , (2.22)

which can be solved exactly, leading to the ingoing solution

ψin ∝ exp
[

− iω log(r − r0)

a1

]

. (2.23)

(The outgoing solution is obtained by sending ω −→ −ω in (2.23).)

Since in the Kubo formula we only need to know ψ up to the linear order in ω, we can

seek the solution for the metric perturbation away from the horizon, in the approximation

where ω is small. We choose an ansatz of the form

ψ(r) = exp
[

− iω

a1
log

a(r)

ã(r)

] (

1− iωU(r) +O(ω2)
)

, (2.24)

where ã(r) is chosen to make the wave function approches to 1 at infinity. Keeping terms

only up to linear order in ω, we find that U(r) satisfies the equation

U ′′+
(a′

a
+(n−2)

b′

b

)

U ′+
1

a1

(a′′

a
+(n−2)

a′b′

ab
− ã′′

ã
+
ã′2

ã2
− a′ã′

ãa
− (n−2)

ã′b′

ãb

)

= 0 , (2.25)

which can be solved by

U ′(r) =
1

a1
(
ã′

ã
− b′

b
−∆

δM

δφ′
φ) . (2.26)

In the following, we shall show that only the expression of U ′(r) is needed to calculate the

viscosity, the exact expression for U(r) is not necessary.

We can derive the viscosity by using standard methods described in the literature. For

our purpose, it is convenient to follow the procedure given in [6,20], making use of the Kubo

formula. The first step involves calculating the terms in the action at quadratic order in

the metric perturbation Ψ(t, r). When doing so, one should include the Gibbons-Hawking

term in the original action. However, one simple way to do so is to remove the second

derivatives on Ψ by performing integrations by parts in the quadratic action. Then the

action at quadratic order has the form

S(2)
n =

1

16πG

∫

dnx
[

P1 Ψ
′2 + P2 ΨΨ′ + P3 Ψ

2 + P4 Ψ̇
2
]

, (2.27)
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with

P1 = −1
2r

n−2 abn−2 . (2.28)

Since the matter field is coupled to gravity through gµν , the derivative terms come from

gravity part. The prescription described in [6, 20] requires knowing only the P1 ΨΨ′ term,

for which we have
∫

L(2)
n drdn−2x = −1

2 ab
n−2ΨΨ′

∣

∣

∣

r=∞

, (2.29)

As only term to linear order of ω is needed in the calculation of viscosity , with (2.24), we

expand the surface term to linear order in ω

− abn−2ΨΨ′ =
iωabn−2

a1

(a′

a
− ã′

ã
+ a1U

′
)

. (2.30)

Substituting U ′, we find the surface term is proportional to Noether charge,

− abn−2ΨΨ′

∣

∣

∣

r=∞

=
iω

a1
J = i4ωs . (2.31)

Using the prescription in [6, 20], we therefore find that the viscosity is given by

η =
s

4π
. (2.32)

It is worthwhile to emphasise at this point that the derivation of the above universal value

is valid without needing any specific solution of equation of motion(2.2) or the explicit form

of matter field, and hence the result is rather general.

The generalisation to multiple matter fields is straightforward. Here, we shall skip the

detailed derivation and just give the key results. The lagrangian we consider is

L =
√
g
(

R+M(ΦI ,∇ΦI , gµν)
)

, (2.33)

with static metric ansatz and matter fields

ds2
n
= dr2 − a2dt2 + b2(dx21 + ...+ dx2i ) , ΦI = ΦI(r) . (2.34)

where we use I to denote different matter fields. The lagrangian is invariant under scaling

b→ λb , a→ λ−(n−2)a , ΦI → λcΦIΦI , (2.35)

where cΦI
is the scaling dimension of matter field ΦI . The scaling property of matter field

can be expressed as

Mtt

a2
+
Mxx

b2
+
∑

I

∆I(
δM

δΦI
ΦI +

δM

δΦ′

I

Φ′

I) = 0 , (2.36)
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with ∆I = − cΦI

2(n−2) . The corresponding Noether charge is

J = abn−2(
a′

a
− b′

b
−

∑

I

∆I
δM

δΦ′

I

ΦI) = 8πTs . (2.37)

Doing perturbation (2.17), the linearised equation of motion for perturbation has the same

form as that of previous case(2.21). With the same ansatz(2.24), the equation can be solved

to linear order in ω by

U ′ =
1

a1
(
ã′

ã
− b′

b
−

∑

I

∆I
δM

δΦ′

I

ΦI) . (2.38)

Then, following the same procedure to calculate viscosity, one gets the universal result

η

s
=

1

4π
. (2.39)

2.2 Anisotropic Subspace

In this subsection, we consider Einstein gravity coupled to multiple matter fields(2.33) with

black hole background that has two uniform subspaces

ds2
n
= dr2 − a2dt2 + b2(dx21 + ...+ dx2p) + c2(dy21 + ...+ dy2q ) . (2.40)

a , b , c and matter fields ΦI are only functions of r and we shall denote these two subspaces

as x-space and y-space respectively. Since the background can have one more subspace, the

lagrangian has two copies of scaling symmetry

b→ λxb , c→ λyc , a→ λ−p
x λ−q

y a , ΦI → λ
cΦxI
x λ

cΦyI
y ΦI . (2.41)

Where λx , λy are scaling parameters related to x-space and y-space respectively and cΦxI
, cΦxI

are the corresponding scaling dimension of matter field ΦI . The matter part has the scaling

properties

Mtt

a2
+
Mxx

b2
+

∑

I

∆xI(
δM

δΦI
ΦI +

δM

δΦ′

I

Φ′

I) = 0 .

Mtt

a2
+
Myy

c2
+

∑

I

∆yI(
δM

δΦI
ΦI +

δM

δΦ′

I

Φ′

I) = 0 . (2.42)

where ∆xI = − cΦxI

2p ,∆yI = − cΦyI

2q and Mxx ,Myy are the diagonal components of matter

tensor in x-space and y-space respectively. With the similar procedure, one can derive the

associated Noether charges

Jx = abpcq(
a′

a
− b′

b
−

∑

I

∆xIΦI
δM

δΦ′

I

) ,
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Jy = abpcq(
a′

a
− c′

c
−

∑

I

∆yIΦI
δM

δΦ′

I

) . (2.43)

We consider the black hole background with an event horizon located at r = r0, then near

the horizon we have expansions

a(r) ≈ a1[(r − r0) + a2 (r − r0)
2] , b(r) ≈ b0 + b1 (r − r0) , c(r) ≈ c0 + c1 (r − r0) . (2.44)

The temperature and entropy density can be calculated through standard method

T =
a1
2π

, s =
bp0c

q
0

4
. (2.45)

And evaluating Noether charges on the horizon gives

Jx = Jy = 8πTs . (2.46)

Now, we consider a transverse-traceless metric perturbation in the x-space , by making the

replacement

dxidxi → dxidxi +Ψdx1dx2 . (2.47)

Following the steps in the previous section, one can get linearised equation for Ψ from the

x1x2 component of equation of motion. With the same ansatz (2.24), one can solve the

equation by

U ′ =
1

a1
(
ã′

ã
− b′

b
−

∑

I

∆xIΦI
δM

δΦ′

I

) , or U ′ =
1

a1
(
ã′

ã
− c′

c
−

∑

I

∆yIΦI
δM

δΦ′

I

) (2.48)

Combining this and the Noether charge, the viscosity is given by

η =
s

4π
. (2.49)

One can also do the perturbation in the y-space

dyidyi → dyidyi +Ψdy1dy2 , (2.50)

and will finally get the same value as that of (2.49).

3 Including an Non-minimally Coupled Scalar

In the previous section, we considered theories in which matter fields couple to gravity

minimally. In this section, we want to go one step further, we add a non-minimally coupled

scalar to the previous theory (2.33), namely

L =
√
g
[

κ(φ)R − 1

2
(∂φ)2 − V (φ) +M(φ ,∇ΦI ,ΦI , gµν)

]

(3.1)
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for which the equations of motion are

κ(φ)(Rµν −
1

2
Rgµν)−

(

∇µ∇νκ(φ)−�κ(φ)gµν
)

− 1

2

(

∂µφ∂νφ− 1

2
(∂φ)2gµν

)

+ Mµν −
1

2
Mgµν +

1

2
V gµν = 0 ,

�φ− ∂V (φ)

∂φ
+
∂κ(φ)

∂φ
R+

δM

δφ
= 0 , ∂µ

(√
g

δM

δ(∂µΦ
′

I)

)

−√
g
δM

δΦI
= 0 .(3.2)

We consider general black brane solution and static matter fields

ds2 = dr2 − a2dt2 + b2dx2i , φ = φ(r) , ΦI = ΦI(r) . (3.3)

The lagrangian has a scaling symmetry

b→ λb , a→ λ−(n−2)a , Φ → λcΦIΦI , φ→ φ . (3.4)

Note that non-minimally coupled scalar φ is invariant under this scaling, with scaling di-

mension equals to zero. The corresponding Noether charge is

J = κabn−2(
a′

a
− b′

b
−

∑

I

∆I

κ

δM

δΦI
ΦI) , (3.5)

where ∆I = − cΦI

2(n−2) . Notice that ΦI appears in the Noether charge, whilst φ doesn’t, since

its scaling dimension is zero . So the scaling property of matter part is unchanged in this

case, and it takes the same form as that of minimally coupled case (2.36). Near the horizon

(2.14), we can calculate the temperature and entropy density

T =
a1
2π

, s =
κ0b

n−2
0

4
, (3.6)

where κ0 is the value of κ(φ) on the horizon. Since the scalar is non-minimally coupled to

gravity, there is an additional factor κ0 compared to the minimally coupled case. However,

remembering that the Noether charge also has a κ factor, it turns out to be that the

relationship between Noether charge and entropy density is unchanged. This can be verified

by evaluating Noether charge on the horizon

J = 8πTs . (3.7)

Then, with similar method, one can do a perturbation, get the linearised equation for the

perturbation and find that the equation can solved with the form of (2.24) by

U ′ =
1

a1
(
ã′

ã
− b′

b
−
∑

I

∆I

κ

δM

δΦI
ΦI) . (3.8)
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Since now the relevant surface term in the quadratic action of the linearised mode is

− 1
2 κ(φ)ab

n−2 ΨΨ′

∣

∣

∣

r=∞

, (3.9)

rather than the previous expression (2.29), it follows that the viscosity/entropy ratio will

be the same value as the minimally coupled case. Thus we see that again η/s = 1/(4π)

through the connection of the Noether charge.

We can also generalise it to two subspaces(2.40), the lagrangian is invariant under scal-

ing(2.41), the scaling property of matter part is the same as (2.42). However, the corre-

sponding Noether charges are changed by a factor of κ

Jx = κabpcq(
a′

a
− b′

b
−

∑

I

∆xI

κ

δM

δΦ′

I

ΦI) ,

Jy = κabpcq(
a′

a
− c′

c
−

∑

I

∆yI

κ

δM

δΦ′

I

ΦI) , (3.10)

where ∆xI = − cΦxI

2(n−2) ,∆yI = − c
ΦyI

2(n−2) . Evaluating on the horizon(2.44) gives

Jx = Jy = 8πTs . (3.11)

Then, one can consider a perturbation, and again with form(2.24), the perturbation equation

can be solved by

U ′ =
1

a1
(
ã′

ã
− b′

b
−
∑

I

∆xI

κ

δM

δΦ′

I

ΦI) or U ′ =
1

a1
(
ã′

ã
− c′

c
−

∑

I

∆yI

κ

δM

δΦ′

I

ΦI) . (3.12)

Now, the surface term of the quadratic action is

− 1

2
κabpcqψψ′

∣

∣

∣

r=∞

. (3.13)

Making use of Noether charge, one can again get the viscosity

η =
s

4π
. (3.14)

The result is not surpring since a non-minimally coupled scalar is invariant under the

scaling, acting like a singlet, and doesn’t contribute to the Noether charge which connects

the viscosity and entropy density.

4 Explicit Examples

In the previous sections, we derived the universal result η/s = 1/(4π) for general theories

of Einstein gravity minimally coupled to matter fields with or without a non-minimally
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coupled scalar. In this section we study two explicit theories, namely Einstein-Proca and

massive vector. In all cases we find that the scaling property of matter part is satisfied as

what we derived in the general theory and the KSS bound is saturated as expect. (The

Einstein-Maxwell-Dilaton theory is a specific example of the non-minimally coupled scalar

case, which has been studied in [19], the result of the viscosity ratio presented there is

consistent with ours.)

4.1 Einstein-Proca gravity

Einstein-Proca gravity are the simplest theory [21] for constructing Lifshitz spacetimes [22].

Lifshitz or AdS black holes in pure Einstein gravity also exists, although no exact solutions

were constructed. Recently the first law of thermodynamics were analysed for these black

holes [23,24]. We now use this as an example to derive the viscosity/entropy ratio for black

holes in this theory even though no exact solutions were known. The lagrangian is

L =
√
g(R− 2Λ− 1

4
F 2 − 1

2
m2A2) , (4.1)

where Λ is cosmological constant and F = dA. Considering the following ansatz,

ds2n = dr2 − a2dt2 + b2dx2i , A = φdt , (4.2)

the lagrangian in terms of a, b, φ is given by,

L = abn−2
(

−2a′′

a
−2(n − 2)b′′

b
− (n− 2)(n − 3)b′2

b2
−2(n − 2)a′b′

ab
+
m2φ2 + φ′2

2a2
−2Λ

)

. (4.3)

The lagrangian is invariant under scaling

b→ λb , a→ λ−(n−2)a , φ→ λ−(n−2)φ , (4.4)

with cφ = −(n− 2). And the corresponding Noether charge is

J = abn−2
(a′

a
− b′

b
− φφ′

2a2
)

(4.5)

which equals to 8πTs when evaluating on the horizon. One can verify that the vector field

has the scaling property (2.12) with M = −1
4F

2 − 1
2A

2 and ∆ = 1
2 .

Then, one can do the perturbation, get the linearized equation for the perturbation and

solve the equation with form(2.24) by

U ′ =
1

a1
(
ã′

ã
− b′

b
− φφ′

2a2
) . (4.6)

Combining this and the Noether charge, one can calculate the viscosity

η =
s

4π
. (4.7)
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4.2 Massive p-Form

For examples with anisotropic brane configurations, we consider Einstein gravity coupled

to a massive (p− 1)-form potential:

L =
√
g
(

R− 2Λ− 1

2p!
F 2

(p) −
m2

2(p − 1)!
A2

(p−1)

)

, (4.8)

where Λ is cosmological constant and F(p) = dA(p−1). We consider the black brane metric

ansatz with two subspaces and static form

ds2
n
= dr2 − a2dt2 + b2(dx21 + ...+ dx2p−2) + c2(dy21 + ....+ dy2n−p) ,

A = φdt ∧ dx1 ∧ ... ∧ dxp−2 . (4.9)

As observed before, there are two copies of scaling symmetry

b→ λxb , c→ λyc , a→ λ−(p−2)
x λ−(n−p)

y a , φ→ λ−(n−p)
y φ . (4.10)

The corresponding Noether charges are

Jx = abp−2cn−p(
a′

a
− b′

b
) ,

Jy = abp−2cn−p(
a′

a
− c′

c
− φφ′

2a2b2(p−2)
) . (4.11)

Note that the form field has scaling dimension zero under scaling related to x-space, so the

form field doesn’t appear in the charge related to x-space. One can verify that the two

scaling properties (2.42) for p-form are satisfied.

Following the similar procedure, one can do the perturbation, get the linearized equation

for the perturbation and solve the equation with form(2.24) by

U ′ =
1

a1
(
ã′

ã
− b′

b
) or U ′ =

1

a1
(
ã′

ã
− c′

c
− φφ′

2a2b2(p−2)
) . (4.12)

Combining this and the Noether charge, one can get the viscosity

η =
s

4π
. (4.13)

One can see that, when set b = c , p = 2, the scaling degree of x-space vanishes, and the

system goes back to Einstein-Proca case.

5 Conclusion

In this paper we considered the planar black holes that have a global scaling symmetry.

Such a scaling symmetry does not exist for spherically-symmetric black holes. We focused
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on the theories with some generic minimally-coupled matter fields, and derived the scaling

properties for these matter fields. We then show that system has a conserved Noether

charge which equals to 8πTs when evaluated on the horizon. We used the Kubo formula to

compute the viscosity and found that the result was related to the Noether charge, and hence

confirmed the universality of the KSS viscosity/entropy ratio. The Noether charges in these

black holes are related to the generalized Smarr relation, which is derived by evaluating the

Noether charge both on the horizon and on the asymptotic infinity. Our results demonstrate

a duality relation between the universality viscosity/entropy ratio of the boundary theory

and the generalized Smarr relation on the bulk. It should be emphasized that our proof

breaks down for black holes that do not exhibit such a globle scaling symmetry and indeed

the viscosity/ratio bound can be violated in such cases [25].

Our results are general, for planar black holes with isotropic brane subspace or general

anisotropic subspaces. We further extend the conclusion to include a non-minimally coupled

scalar field as well. The scaling symmetry and the corresponding Noether charge play an

important role in our derivation, whilst the existence of an analytical black hole solution

is of less important. This technique may be useful in other linear response system in the

AdS/CFT correspondence.
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