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Baryogenesis

Bhaskar Dutta1 and Kuver Sinha1
1 Department of Physics, Texas A&M University,

College Station, TX 77843-4242, USA

Working in D = 4, N = 1 supergravity, we utilize relations between holomorphic sectional and
bisectional curvatures of Kahler manifolds to constrain Affleck-Dine baryogenesis. We show the
following No-Go result: Affleck-Dine baryogenesis cannot be performed if the holomorphic sectional
curvature at the origin is isotropic in tangent space; as a special case, this rules out spaces of
constant holomorphic sectional curvature (defined in the above sense) and in particular maximally
symmetric coset spaces. We also investigate scenarios where inflationary supersymmetry breaking
is identified with the supersymmetry breaking responsible for mass splitting in the visible sector,
using conditions of sequestering to constrain manifolds where inflation can be performed.

I. INTRODUCTION

Supersymmetry, if it is a symmetry of nature, had im-
portant consequences for the physics of the very early
universe. This can be understood at several different
levels. One of the most fundamental connections be-
tween supersymmetry and early universe cosmology lies
in the fact that the finite energy density during infla-
tion [1] breaks supersymmetry. This breaking of super-
symmetry induces soft terms along flat directions in the
scalar potential, the existence of which constitutes an-
other central feature of supersymmetric (as opposed to
non-supersymmetric) theories.
The first important effect of supersymmetry in this

context is the production of condensates of non-
relativistic particles. The analysis starts with the ob-
servation that the inflation-induced soft terms (usually
called the Hubble-induced terms) are of order the Hub-
ble scale H , and in the early universe, during inflation,
this is typically taken to be

H ≫ m3/2 . (1)

In the above, m3/2 gives the scale of hidden sector su-
persymmetry breaking that gives the mass splitting of
particles and superpartners in our universe. The fields
are thus critically (and not over) damped and follow the
instantaneous minimum of the potential. If initial condi-
tions are set up such that the instantaneous minimum is
displaced from the true minimum (as happens when the
Hubble-induced and hidden sector-induced soft masses
have opposite sign), then the field begins to oscillate
whenH becomesO(m3/2). These oscillations correspond
to a condensate of non-relativistic particles, and can have
dramatic consequences on the history of the universe.
Thus, the magnitude and sign of inflation-induced soft

masses clarify initial conditions for paradigms such as
Affleck-Dine baryogenesis [2], in addition to providing a
clearer picture of the cosmological moduli problem.
The second important effect of supersymmetry may

simply be to set the scale of early universe physics. This
was observed by Kallosh and Linde [3], by studying the
effect of inflation on the stabilized potential of moduli
in D = 4, N = 1 effective supergravity. Finite vacuum
energy V0 in some sector (the energy during inflation pro-
vides the most compelling example) induces a potential of
the form ∼ V0/σ

n along a modulus σ, from Weyl rescal-
ing. This induced potential may destabilize the moduli;
the importance of this effect clearly depends on the height
of the barrier protecting the moduli. In the most widely
studied example of KKLT [4], the barrier is of O(m3/2),
thus providing a critical value of the vacuum energy dur-
ing inflation H ∼ m3/2. This suggests that it may be
interesting to study inflation and supersymmetry break-
ing as related paradigms - for example, one can ask: what
kinds of effects do slow-roll inflation leave on soft masses?
Or, going the other way, how can known properties of
soft masses influence inflation? For example, one way to
address the flavor problem is sequestering, which places
constraints on the allowed underlying Kahler geometry;
could such constraints back-react on inflation?
Clearly, the setting for understanding the effects of

supersymmetry in the early universe is D = 4, N = 1
supergravity. In the case of the production of conden-
sates, this is necessitated by the importance of Planck
scale operators that give rise to important couplings be-
tween the supersymmetry breaking field and the flat di-
rection. In the second case mentioned above, the poten-
tial for string moduli are usually studied in the effective
D = 4, N = 1 supergravity Lagrangian, that comes from
a suitable string compactification.
Given the above, can one make general statements

about when Affleck-Dine baryogenesis would be possi-
ble, or, in the other case, where properties of soft masses
may be in conflict with inflation? This depends on how
general one wants to be - so for example, making state-
ments about the superpotential W may be more model-
dependent but robust, given that the superpotential is
protected by holomorphy and symmetries. On the other
hand, making statements about the Kahler potential
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could be powerful enough to rule out classes of mani-
folds where these phenomena can take place, based on
geometry alone.
In this paper, we will follow the route of looking at

these questions purely from the point of view of geometry.
We will ask: can one make broad statements about the
underlying Kahler geometry of D = 4, N = 1 effective
supergravity, in relation to Affleck-Dine baryogenesis and
inflation-induced soft masses?
This will necessitate using several necessary conditions

for the various paradigms mentioned above in terms of
quantities that are fundamental to the underlying Kahler
geometry, without relying on information about the su-
perpotential. This involves two aspects: necessary geo-
metric conditions for inflation to happen, and necessary
conditions for induced scalar masses to satisfy a requisite
feature (say a condition to obtain a tachyonic mass).
While such conditions could be given at various levels

of sophistication, we will choose the simplest conditions
available. On the inflation side, the relevant condition
will involve the holomorphic sectional curvature of the
plane (in tangent space) spanned by the field breaking
supersymmetry (say (Ψ,Ψ)). These conditions have been
worked out in great detail by [5]. We note that these
conditions apply for F−term inflationary models; we will
be restricting ourselves to this class for the purposes of
this paper, reserving the case of D−term inflation for
future work.
For the scalar masses, the relevant conditions are best

expressed in terms of the holomorphic bisectional curva-
ture [6] of the (Ψ,Ψ) plane and the plane spanned by
the scalar field (Q,Q) one is interested in studying. The
use of the holomorphic bisectional curvature is already
implicit in [7], and has been recently stressed in [8], [9].
A summary of these results is provided in Table I. As

we go along the text, we will provide details for each
entry.
Secondly, having expressed our conditions in terms of

these quantities, we will stress that one can go on to con-
strain scenarios where inflation-induced soft masses play
a role by exploiting relations between holomorphic sec-
tional and bisectional curvatures on classes of manifolds.
Again, how general these constraints are would depend
on how precisely one wants to pinpoint a manifold.
For example, we will prove the following No-Go Theo-

rem: Affleck-Dine baryogenesis cannot be performed if
the holomorphic sectional curvature at the origin (or
whatever vev fields are expanded about) is constant for
all choices of planes in the tangent space. In particular,
this rules out Kahler manifolds with constant holomor-
phic sectional curvatures (in the above sense), and as a
special case, maximally symmetric coset spaces.
While we are agnostic about the UV completion of our

effective supergravity setting, we will note that this rules
out, as special cases, the simplest coset spaces available
from type IIB compactifications, a fact already noted in
[8], [9].
Likewise, we will continue our investigation into sce-

narios where one wants to constrain inflationary physics
from flavor physics, using geometric conditions from se-
questering. We will see that the simplest sequestering ge-
ometries, which have constant holomorphic sectional cur-
vature, also cannot accomodate inflation. We will briefly
look at more complicated sequestering geometries, which
satisfy the necessary condition for inflation.

Phenomenon H[Ψ] H[Ψ, Q] Comment

Inflation > −

2

3
- Necessary

A-D Baryogenesis - < −1 Necessary

Sequestering - = −

1

3
Sufficient

TABLE I: Conditions on the holomorphic sectional and bi-
sectional curvatures of the Kahler manifold in D = 4, N = 1
supergravity for different phenomena. H[Ψ] is the holomor-
phic sectional curvature of the plane spanned by the field
breaking supersymmetry (Ψ,Ψ). H[Ψ, Q] is the holomorphic
bisectional curvature of the (Ψ,Ψ) plane and the (Q,Q) plane,
where Q denotes a supersymmetric flat direction in the case
of Afflck-Dine baryogenesis, and a generic matter field in the
case of sequestering. We follow the conventions of [6]. Details
in the text.

The plan of the paper is as follows. In Section II, we
will define holomorphic sectional and bisectional curva-
tures in the context of D = 4, N = 1 supergravity and
state certain relations between them that will be of use
to us. In Section III, we show a condition on holomor-
phic sectional curvatures that is necessary for inflation.
In Section IV, we write expressions for the soft masses in
effective supergravity in terms of holomorphic bisectional
curvatures, in a form that is most useful for us. In Sec-
tion V, we consider Affleck-Dine baryogenesis, showing
a necessary condition on holomorphic bisectional curva-
tures and a No-Go result. In Section VI, we consider
the scenario when the supersymmetry breaking during
inflation is identified as the sector responsible for mass
splitting in the visible sector, studying sequestering in
this context.

II. HOLOMORPHIC SECTIONAL AND

BISECTIONAL CURVATURES

In this Section, we write expressions for the holomor-
phic sectional and bisectional curvatures in terms of the
fields appearing in the D = 4, N = 1 supergravity po-
tential. Then, we mention relations between them that
we will find useful in the rest of the paper. For more
careful definitions of all quantities and the proofs of the
relations, we refer to the Appendix.
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We consider chiral multiplets ΦI ≡ (Φi,Φi) (hence-
forth, we will use the same notation for a superfield and
its scalar component). The potential for the scalar com-
ponents of the ΦI depends on the Kahler potential K and
the superpotential W , and their derivatives with respect
to Φi and Φj .
We will not consider any particular UV completion;

rather, we will view our setting as an effective theory,
with a superpotential and Kahler potential determined
by physics at a higher scale. Among the set of fields {ΦI},
there is a set of SUSY breaking fields {ΨI} ⊂ {ΦI} that
acquire non-zero F−terms thus breaking supersymmetry
during inflation or afterwards. There are also other fields
{QI} ⊂ {ΦI}, which constitute chiral fields that may
be flat directions in the visible sector, or generic fields,
depending on the context.
K defines the Kahler potential of a Kahler manifold

spanned by the (Φi,Φi). The potential for the scalar
fields ΦI depends on the Kahler geometry as well as the
superpotential W , and is given by

V = FiFjg
ij − 3m2

3/2 , (2)

where

Fi = eKDiW = eK(∂iW +W∂iK)

m2

3/2 = eK |W |2 . (3)

Since the ΨI = (Ψi,Ψi) define the SUSY breaking di-
rection in field space, one has

FΨI 6= 0 . (4)

The metric, connection, and curvature tensor of the
Kahler manifold are given by

gij = ∂i∂jK

Γk
ij = glk∂igjl

Rklij = ∂i∂j∂l∂kK − gnm(∂i∂k∂mK)(∂j∂l∂nK) .(5)

The holomorphic sectional curvature of a plane (Ψ,Ψ)
(defined in the tangent space at a given point in field
space) is defined in components by

H[Ψ] = − R
ΨΨΨΨ

g
ΨΨ

g
ΨΨ

. (6)

We will be following the conventions of [6] throughout,
note in particular the negative sign in the above equation.
We will also be interested in the holomorphic bisec-

tional curvature of a plane (Ψ,Ψ) and a plane (Q,Q).
We will assume that the fields Q have been rescaled such
that gQQ = 1, as is usually done for the matter fields,
and that the planes defined by Ψ and Q are orthogonal.
Thus, we will assume gQ,Ψ = 0, which is usually the case
when one studies the potential near the origin of Q. One
then has

H[Ψ, Q] = −
R

ΨΨQQ

g
ΨΨ

. (7)

Although we write the metric g
ΨΨ

in the above defini-
tions, we will usually normalize the field direction.

A. Relations between Holomorphic Sectional and

Bisectional Curvatures

We will be particularly interested in relations between
holomorphic sectional and bisectional curvatures. The
reason should be clear from Table I: the necessary con-
dition for inflation that we will be showing in the next
Section is a condition on the holomorphic sectional curva-
ture H[Ψ], while the conditions on the inflation-induced
masses, which we will be showing in Section IV, are con-
ditions on the holomorphic bisectional curvatureH[Ψ, Q].
The relation we will use is the following. At a given

point x in the manifold, for orthonormal directions Q
and Ψ, the holomorphic bisectional curvature H[Q,Ψ]
between the planes (Q,Q) and (Ψ,Ψ) may be written
as a linear combination of certain holomorphic sectional
curvatures:

H[Ψ, Q] =
1

4
{

4
∑

a=1

H[λa]−H[Ψ]−H[Q]} , (8)

where the λa denote certain holomorphic and anti-
holomorphic sections associated with the section spanned
by the pair (Q,Ψ).
In order to demonstrate the utility of this relation, we

will focus, in this paper, on the special case where the
holomorphic sectional curvatures are simply constant for
all choices of planes in tangent space at x.

Rjjjj = constant ∀ [span(∂j , ∂j) ∈ Tx(M)] . (9)

In that case, one obtains

H[Ψ] = const. (c)

⇒ |c|
2

≤ |H[Ψ, Q]| ≤ |c| . (10)

For orthonormal planes, the lower bound is exactly sat-
isfied, as follows from Eq. 8. The general inequality will
be shown in the Appendix.
If the isotropy of the holomorphic sectional curvature

in tangent space holds for all x belonging to the Kahler
manifold, we say that the manifold has constant holo-
morphic sectional curvature. We note that this is a state-
ment about special components of the curvature tensor;
namely, a manifold has constant holomorphic sectional
curvature when

Rjjjj = constant ∀ [x ∈ M, span(jj) ∈ Tx(M)] . (11)

Clearly, for manifolds of constant holomorphic sec-
tional curvature c, the holomorphic bisectional curvature
is bounded between c/2 and c. This fact can be proven
without recourse to Eq. 8, and we will do so in the Ap-
pendix. As a special case, one can moreover consider the
case when the full curvature tensor is also covariantly
constant, apart from being isotropic in tangent space at
all points. For example one has the maximally symmet-
ric coset spaces, for which the above bound holds, as can
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be checked explicitly starting from the Kahler metric of
such spaces.
In the next Section, we will derive the necessary con-

dition for inflation that we will be interested in. We will
then have two applications in mind. First, we will con-
sider the case of Affleck-Dine baryogenesis, where there
are certain requirements on the vacuum-energy induced
soft mass along a baryon number carrying supersymmet-
ric flat direction. Next, we will consider the case where
the supersymmetry breaking during inflation is taken as
the breaking that is responsible for mass splitting in the
visible sector.

III. NECESSARY CONDITIONS FOR

INFLATION

The vacuum energy during inflation breaks supersym-
metry; we assume that the field Ψ is responsible for the
supersymmetry breaking. In this section, following [5],
we prove a necessary condition on the holomorphic sec-
tional curvature of the (Ψ,Ψ) plane for inflation to take
place. This proves the first entry in Table I.
Inflation requires that certain slow-roll parameters

which depend on the derivatives of the scalar potential
be small. In a general manifold, the slow-roll parameters
are given by [10]

ǫ = ∇
iV ∇iV
V 2

η = min eigenvalue {N} , (12)

where

N =
1

V

(

∇i∇jV ∇i∇jV

∇i∇jV ∇i∇jV

)

. (13)

In the above, we have used the covariant derivative on
the Kahler manifold M

∇if
k ≡ ∂if

k + Γk
ijf

j (14)

for any vector fk on M. In the above, I = (i, i) and
J = (j, j) and ∇i is a covariant derivative with respect
to the metric gij .
These expressions for the slow-roll parameters reduce

to the usual ones in the Gaussian normal frame.
Since η is defined as the minimum eigenvalue of the

matrix N , it always satisfies a bound. For any given unit

vector uI = (ui, ui) one has

η ≤ uIN
I
Ju

J . (15)

The goal is to extract from here a necessary condition
that is dependent on the choice of the Kahler geometry
of M, but independent of specific choices of the super-
potential. The correct choice of uI turns out to be

uI = (FΨ, FΨ)/(
√
2|F |) , (16)

that is, the normalized SUSY breaking direction.
Evaluating the relevant covariant derivatives, the

bound turns out to be

η ≤ ηmax ≡ 2

3γ
+

1 + γ

γ
H[Ψ] +O(

√
ǫ) , (17)

where

γ =
1

3

V

m2

3/2

∼ H2

m2

3/2

. (18)

Here, H[Ψ] is the holomorphic sectional curvature
along the SUSY breaking plane defined by (Ψ,Ψ). It
has been defined in terms of the curvature tensor on the
Kahler manifold in Eq. 6.
We drop all terms involving ǫ, since

√
ǫ < O(10−3).

Now, the spectral index is given by

ns = 1 + 2η ⇒ ηobserved ∼ −0.01 . (19)

Therefore, ηmax ≥ −0.01.
This yields the following necessary bound on the holo-

morphic sectional curvature along the SUSY breaking di-
rection

H[Ψ] > −2

3

1

1 + γ
. (20)

While this bound depends on the ratio of the inflation-
ary scale and the value of m3/2, there is a hard bound
[5]

Condition III.1. Inflation is only possible on manifolds
M where the holomorphic sectional curvature along the
SUSY breaking direction satisfies

H[Ψ] > −2

3
. (21)

This is a necessary (but not sufficient) condition.

Clearly, the condition is not sufficient - obtaining the
correct slow-roll parameters required for inflation needs
other non-trivial conditions, including a full understand-
ing of the superpotential, and there is no guarantee that
inflation is even possible on a given manifold. For exam-
ple, flat manifolds with canonical Kahler potential, which
form the setting of many studies of inflation, trivially sat-
isfy the above bound, but nonetheless setting up inflation
requires non-trivial fine-tuning.

IV. HOLOMORPHIC BISECTIONAL

CURVATURES AND SOFT MASSES

In this section, we recall the expression for the soft
masses for chiral superfields in supergravity, in partic-
ular writing them in terms of holomorphic bisectional
curvatures. These are general expressions with no as-
sumption about the supersymmetry breaking sector. For
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us, this means that the supersymmetry breaking consid-
ered in this section does not necessarily have anything to
do with inflation, although we will continue to use the
same notation as before.
Masses are most easily obtained from the Hessian ma-

trix in Eq. (13). In particular, one obtains

∇i∇jV = (m2

3/2 + V0)gij −RijklF
kF l

+ (terms proportional to Fi, Fj ,∇iFk,∇jFl) (22)

We will consider masses for a chiral superfield (i, i) ≡
(Q,Q), which does not participate in supersymmetry
breaking. Supersymmetry breaking is dominated by a
field (Ψ,Ψ). The terms in the second line all vanish (co-
variant derivatives like ∇QFΨ vanish by extremising V
with respect to Q). We normalise the fields Q such that
gQQ = 1. Moreover, we use the fact that

FΨFΨg
ΨΨ

= V0 + 3m2

3/2 . (23)

Using Eq. (22) and Eq. (23), we therefore have

m2

QQ
= V0(1 +H[Q,Ψ]) + 3m2

3/2(
1

3
+H[Q,Ψ]) . (24)

Eq. (24) represents the most transparent expression
of soft masses in terms of the holomorphic bisectional
curvature.
At this point, we can distinguish between two scenar-

ios.
First: during a period of vacuum energy domination

such as inflation, supersymmetry breaking is dominated
by a field Ψ1, which continues to be the dominant source
of supersymmetry breaking responsible for mass split-
tings in the visible sector, in the final vacuum of the the-
ory with negligible vacuum energy. We denote the soft
mass of Q induced by supersymmetry breaking during
inflation as msoft,inf , and the soft mass induced by super-
symmetry breaking in the final vacuum by msoft,final.

During inflation :

m2

soft,inf = V0(1 +H[Q,Ψ1]) + 3m2

3/2(
1

3
+H[Q,Ψ1])

Final vacuum :

m2

soft,final = 3m2

3/2(
1

3
+H[Q,Ψ1]) (25)

Second: the field Ψ1 dominates the supersymmetry
breaking during inflation, but contributes negligibly to
supersymmetry breaking in the final vacuum where the
vacuum energy is negligible. Another field Ψ2 dominates
supersymmetry breaking in the final vacuum. It is typical
to assume in this case that the scale of inflation is much
larger than m3/2.

During inflation :

m2

soft,inf = V0(1 +H[Q,Ψ1])

Final vacuum :

m2

soft,final = 3m2

3/2(
1

3
+H[Q,Ψ2]) (26)

We distinguish between these two scenarios because of
the applications we have in mind. In the next Section,
we discuss Affleck-Dine baryogenesis, in which we will
assume that the second scenario is operational. Subse-
quently, we will study the former scenario, which assumes
a matching of inflationary and supersymmetry breaking
scales.

V. AFFLECK-DINE BARYOGENESIS

Affleck-Dine baryogenesis [2] relies on the vacuum en-
ergy during an inflationary era to produce coherent os-
cillations along a supersymmetric flat direction. The in-
teraction between the inflationary sector and the flat di-
rection occurs through Planck-suppressed operators.
The normalized scalar component of a composite gauge

invariant product of chiral superfields with non-zero net
baryon or lepton number constitutes a suitable flat direc-
tion. For example, for HuL, the flat direction Q is given
by

Hu =
1√
2

(

0
Q

)

, L =
1√
2

(

Q
0

)

(27)

If the flat direction Q is initially displaced from its true
minimum at the origin during inflation, it subsequently
oscillates when V0 becomes smaller than the effective
mass which is ∼ m3/2. The energy of the oscillations
corresponds to a condensate of non-relativistic particles.
A net baryon asymmetry may be produced during oscil-
lation depending on the magnitude of baryon number-
violating terms in V (Q).
Schematically, one has the following. Supposing that

flat directions are lifted by non-renormalizable terms in
the superpotential

W =
λ

nMn−3

P

φn , (28)

the potential along Q, taking into account supersymme-
try breaking terms due to the finite energy during infla-
tion, is written as

V (Q) = (m2

soft,inf +m2

soft,final)|Q|2 +
(

(A+ ainf)λQ
n

nMn−3

P

+ h.c.

)

+ |λ|2 |Q|2n−2

M2n−6

P

. (29)

Here, m2

soft,inf and ainf denote soft parameters induced by
supersymmetry breaking during inflation, whilemsoft,final

and A arise from supersymmetry breaking sector at the
end of inflation, in the final vacuum of the theory.
Clearly, if msoft,inf is tachyonic, the field Q acquires

a non-zero vacuum expectation value during inflation.
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It thereafter remains critically damped, and tracks an
instantaneous minimum as long as m2

soft,inf ≫ m2

soft,final,

which is roughly equivalent to H ≫ m3/2, from Eq. (26).
The minimum lies at

|Q| ∼
(√−cHMn−3

P

(n− 1)λ

)

1

n−2

(30)

and the field tracks this minimum until H ∼ m3/2. The
inclusion of the Hubble-induced A-term aHH results in
n discrete vacua in the phase of Q, and the field set-
tles into one of them. When H ∼ m3/2 the field begins
to oscillate around the new minimum Q = 0; thereafter
the soft A-term becomes important and the field obtains
a motion in the angular direction to settle into a new
phase. The baryon number violation thus becomes max-
imal during this time and imparts asymmetry to the con-
densate. The final baryon to entropy ratio depends on
the resulting baryon number per condensate particle, the
total energy density in the condensate, and the inflaton
reheat temperature.
We will take the mass relation Eq. (26) as a starting

point, thereby assuming that the inflationary supersym-
metry breaking at high scale is due to Ψ1, and the final
supersymmetry breaking is due to Ψ2.
From

m2

soft,inf = V0(1 +H[Q,Ψ]) < 0 , (31)

we thus obtain

Condition V.1. Affleck-Dine baryogenesis is thus only
possible for

H[Q,Ψ] < −1 . (32)

We note that the fact that conditions on soft masses
can be expressed succinctly in terms of the holomorphic
bisectional curvature was pointed out in [8], [9], where
the formalism was applied to Affleck-Dine baryogenesis.
Taking the scale of inflation to be high, the conditions

for inflation and baryogenesis are

H[Ψ] > 0

H[Ψ, Q] . −1 . (33)

For situations where Eq. (10) holds, we have a clear
contradiction and thus

No-Go V.1. Affleck-Dine baryogenesis is intractable if
the holomorphic sectional curvature at a given point of
the Kahler manifold is constant for all choices of planes
in the tangent space. In particular, this rules out Kahler
manifolds with constant holomorphic sectional curvatures
(in the above sense), and as a special case, maximally
symmetric coset space.

There is no reason in principle for Affleck-Dine baryo-
genesis to be disallowed as long as Condition V.1 is met.
However, for manifolds of the type mentioned above, the

vacuum energy during A-D baryogenesis could not possi-
bly also be driving slow-roll inflation. Also, as mentioned
in the Introduction, these conclusions hold for F−term
inflation; the case of D−term inflation is reserved for fu-
ture work.
It is possible to reduce the condition for Affleck-Dine

baryogenesis to a set of conditions on holomorphic sec-
tional curvatures. Using Eq. (33) and Eq. (8), it is clear
that one requires

Condition V.2. In terms of holomorphic sectional cur-
vatures, the necessary condition for Affleck-Dine baryo-
genesis is

4
∑

a=1

H[λa]−H[Q] . −4 , (34)

assuming that H[Ψ] ∼ 0. We will not apply this more
general condition to any scenarios in this paper, leaving
a more detailed exploration for a future publication.

A. Examples

As we have mentioned before, all spaces of constant
holomorphic sectional curvature (in the sense that the
holomorphic sectional curvature is isotropic in tangent
space at all points in the manifold) are eliminated for
viable Affleck-Dine baryogenesis, and in particular maxi-
mally coset manifolds are forbidden. This includes spaces
with canonical Kahler potential

K =
∑

ΦiΦi (35)

and maximally symmetric coset spaces that appear in
many string-inspired contexts

K = −n log(Ψ + Ψ+QQ) ∀n . (36)

Note that the constant holomorphic sectional curvature
is given by −2/n and thus Affleck-Dine baryogenesis is
by itself possible for n ≤ 2, but that leaves inflation un-
viable.

VI. INFLATION AND SUPERSYMMETRY

BREAKING

In this Section, we discuss the case when the super-
symmetry breaking during inflation persists as the su-
persymmetry breaking responsible for mass splitting in
the visible sector. This scenario, shown in Eq. (25), is
interesting for a variety of reasons mentioned in the In-
troduction.
Many things can be said about scenarios where the

scales of inflation and supersymmetry breaking match,
but perhaps the most far-reaching is that if both Nature
prefers low-scale supersymmetry (∼ O(1)) TeV, this ne-
cessitates models of low-scale inflation (for example [11],
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[12]). The main challenge then is to produce sufficient
density perturbations, and this would typically require
higher degrees of fine-tuning (in ǫ) or extensions of the
paradigm like the curvaton mechanism [13]. It is interest-
ing to ask if either of these options, that are typical only
to low-scale inflation, can leave footprints on the mass
splittings in the visible sector. For example, the extra
fine-tuning of ǫ might introduce ingredients which affect
the mediation mechanism of supersymmetry breaking.
This was the avenue pursued in [12], where the Kahler
modulus in a racetrack scenario in type IIB was taken as
the inflaton, and the fine-tuning of ǫ affected the ratio of
modulus to anomaly mediation.
One can go the other way, and ask what kinds of things

the pattern of soft masses in the visible sector (apart from
the overall scale) can tell us about the inflationary sector.
Our focus in this work is on the geometry of the Kahler
manifold in D = 4, N = 1 supergravity; one of the most
important conditions on the geometry imposed by the
soft masses is that of sequestering [14].
The condition on the Kahler geometry for sequestering

the soft masses amounts to

H[Ψ, Q] = −1

3
, (37)

which sets the tree-level contribution to zero. This is
evident from Eq. 25.
The condition for inflation is easily found by setting

γ = 1 in Eq. 20, corresponding to the fact thatH ∼ m3/2.
One findsH[Ψ] > −1/3, and thus from Eq. (10), it is clear
that

Condition VI.1. If inflationary supersymmetry break-
ing and particle physics supersymmetry breaking are
matched, sequestering is impossible on manifolds of con-
stant holomorphic sectional curvature.

In fact, for manifolds of constant holomorphic sec-
tional curvature, the scalar masses satisfy a non-zero
lower bound

m2

ij
≥ gij m

2

3/2

γ

1 + γ
. (38)

Of course, this does not exclude sequestering in such
situations completely, but rather excludes only the most
well-studied Kahler manifolds. For sequestering, Kahler
potentials of the following form are studied

K = −3 logY

Y = Y (Ψ) + Y (Q) , (39)

where Y is separated between the supersymmetry break-
ing sector Ψ and the visible sector field Q. Kahler po-
tentials of this type always satisfy Eq. (37), as may be
checked by direct computation. Only a subset of such
manifolds are coset spaces, such as the Kahler potential
in Eq. (36), and these are excluded.

Moreover, other simple forms of Y , such as

Y = 1−
∑

ΦiΦi or

Y = 1− 2
∑

ΦiΦi +
∑

ij

(ΦiΦj)
2 (40)

are excluded, since they also correspond to maximally
symmetric coset spaces.
One could consider the next simplest forms of Y , which

still satisfy the separability condition and hence the se-
questering condition of Eq. (37), but do not correspond
to maximally symmetric coset manifolds. For example,
considering

Y = (Ψ +Ψ)p −QQ (41)

we obtain (as expected H[Ψ, Q] = −1/3) and

H[Ψ] =
2

3
− 1

3p
(p− 1){(p− 2)(p− 3) +

+(p− 1)(p− 2)2 + p(p− 1)2 − 2p(p− 1)(p− 2)} . (42)

Clearly, even for p = 2, we obtain H[Ψ] = −1/3, which
satisfies the necessary condition for inflation.

VII. CONCLUSION

Supersymmetry, if it is a symmetry of Nature, is likely
to have played a crucial role in the history of the very
early universe. There are two features of supersymmetry
that are especially important: the fact that the positive
vacuum energy of the early universe breaks supersym-
metry, and the fact that supersymmetric theories often
contain flat directions.
Both these features are relevant in Affleck-Dine baryo-

genesis. In this paper, we have probed the viability of
Affleck-Dine baryogenesis from the point of view of the
Kahler geometry of D = 4, N = 1 effective supergrav-
ity. In particular, we have looked at the initial condition
problem of Affleck-Dine baryogenesis (the requirement
that a flat direction acquire tachyonic soft mass due to
inflationary supersymmetry breaking).
Moreover, and in a separate direction, it is interest-

ing to pursue the idea that inflationary supersymmetry
breaking and the breaking responsible for mass splittings
in the visible sector are identified with each other. We
have studied the question of sequestering in this context.
Our preferred tools for this study are the holomor-

phic sectional and bisectional curvatures of the Kahler
manifold at a given point. The former is important be-
cause the requirement of small enough η during inflation
places a condition on the holomorphic sectional curvature
of the supersymmetry breaking direction. The latter is
important because the supersymmetry breaking-induced
soft masses are most illuminatingly written in terms of
the holomorphic bisectional curvature between the field
breaking supersymmetry and the relevant visible sector
field.
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Relations between holomorphic sectional and bisec-
tional curvatures can constrain the above physical sce-
narios. We have especially probed the simplest case when
the holomorphic sectional curvature is isotropic in tan-
gent space at a given point, resulting in a No-Go result
for Affleck-Dine baryogenesis. The No-Go result extends
to manifolds where such isotropy holds at all points, and
in particular to maximally symmetric coset spaces.
It would be very interesting to probe the conditions

on more general classes of manifolds, which we leave for
future work.
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Appendix A: Sectional and Bisectional Curvatures

The holomorphic bisectional curvature was first intro-
duced by Goldberg and Kobayashi [6]. In this Appendix,
we give careful definitions of the various quantities used
in the paper, and also derive the relations between sec-
tional and bisectional curvatures that were used.
Let M be a Kahler manifold, and R its Riemannian

curvature tensor. At each point x of M, R is a quadri-
linear mapping

R : Tx(M)× Tx(M)× Tx(M)× Tx(M) −→ R . (A1)

A plane σ in Tx(M) is said to be holomorphic if it
is invariant by the almost complex structure J . Choos-
ing an orthonormal basis (X, JX) in σ, the holomorphic
sectional curvature B(σ) of σ is defined as

H[σ] = R(X, JX,X, JX) . (A2)

Note that throughout the Appendix, we will use vec-
tors in the uncomplexified basis, while in the text we used
vectors in the complexified basis.
For two J−invariant planes σ and σ′ in Tx(M), and

two unit vectors X and Y respectively on the planes, the
holomorphic bisectional curvature is defined as

H[σ, σ′] = R(X, JX, Y, JY ) . (A3)

We now show the bound in Eq. 10 for the case of mani-
folds of constant holomorphic sectional curvature, follow-
ing an alternative route from Eq. 8.
For a Kahler metric g of constant holomorphic sec-

tional curvature c, the Riemann curvature is given by

R (X,Y, Z,W ) =
c

4
[g(X,Z)g(Y,W )− g(X,W )g(Y, Z) +

+ g(X, JZ)g(Y, JW )− g(X, JW )g(Y, JZ)

+ 2g(X, JY )g(Z, JW )] . (A4)

Then, considering two holomorphic planes (X, JX) and
(Y, JY ), using the Hermitian property of the metric, and
the Bianchi identity

R(X, JX, Y, JY ) = R(X,Y,X, Y ) +R(X, JY,X, JY ) ,
(A5)

one obtains

R(X, JX, Y, JY ) =
c

2
[g(X,X)g(Y, Y ) + g(X,Y )2

+ g(X, JY )2] . (A6)

Clearly,

c

2
≤ H[σ, σ′] ≤ c . (A7)

The lower limit is obtained when (X, JX) and (Y, JY )
are orthogonal. This gives the required bound, in a man-
ner alternative from Eq. 8.

1. General Relations

On general manifolds, the holomorphic bisectional cur-
vature can be expressed in terms of the holomorphic
sectional curvatures of certain holomorphic and anti-
holomorphic sections associated with the section spanned
by the pair (X,Y ) at any given point x ∈ M.

R(X, JX, Y, JY ) =
1

4
(H[X + Y ] +H[X − Y ]

+H[X + JY ] + H[X − JY ]−H[X ]−H[Y ]) . (A8)

The proof follows from the relation

H[X + Y ] +H[X − Y ] =
1

2
(H[X ]

+H[Y ] + 6H[X,Y ]− 4K(X,Y )) (A9)

and the corresponding relation with Y replaced by JY ,
and then the use of the first Bianchi identity.

The relation Eq. A8 holds for X and JY orthonor-
mal. In more general cases, < X, JY >= cosθ appears
in the expression. The equation is particularly useful if
the holomorphic sectional curvatures of a manifold M
can be bounded, as happens in holomorphically pinched
manifolds where λ ≤ H[X ] ≤ 1. On such manifolds, the
bisectional curvature becomes bounded as well.
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