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ABSTRACT

We construct N = 1 supersymmetrisations of some recently-proposed theories of critical

gravity, conformal gravity, and extensions of critical gravity in four dimensions. The total

action consists of the sum of three separately off-shell supersymmetric actions containing

Einstein gravity, a cosmological term and the square of the Weyl tensor. For generic choices

of the coefficients for these terms, the excitations of the resulting theory around an AdS4

background describe massive spin-2 and massless spin-2 modes coming from the metric;

massive spin-1 modes coming from a vector field in the theory; and massless and massive

spin-32 modes (with two unequal masses) coming from the gravitino. These assemble into a

massless and a massive N = 1 spin-2 multiplet. In critical supergravity, the coefficients are

tuned so that the spin-2 mode in the massive multiplet becomes massless. In the supersym-

metrised extensions of critical gravity, the coefficients are chosen so that the massive modes

lie in a “window” of lowest energies E0 such that these ghostlike fields can be truncated

by imposing appropriate boundary conditions at infinity, thus leaving just positive-norm

massless supergravity modes.
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1 Introduction

It was shown in [1, 2] that four-dimensional Einstein gravity with additional curvature-

squared terms is perturbatively renormalisable. The renormalisability comes at a price,

namely that the excitations around a Minkowski background contain states of negative

norm as well as states of positive norm. Specifically, the excitations comprise massive spin-

0 and massless spin-2 modes with positive norm, and massive spin-2 modes with negative

norm. By choosing the curvature-squared terms to be of the form of the square of the Weyl

tensor, the spin-0 modes can be eliminated. It was recently observed that if a cosmological

constant is added as well, the coefficient of Weyl-squared can be adjusted so that the massive

spin-2 modes become massless [3]. This theory of “critical” gravity thus describes regular

massless spin-2 excitations and logarithmic spin-2 excitations around an AdS4 background.

The energies of the massless spin-2 modes are zero, whilst those of the logarithmic modes

are in general nonvanishing [3]. However, as discussed in [4, 5], the energies of the general

excitations can have either sign, and so one would have to truncate out the logarithmic

modes in order to avoid ghostlike modes. This, unfortunately, leaves a rather empty theory

with only zero-norm massless spin-2 states.

Maldacena recently considered the conformally-invariant theory with a pureWeyl-squared

action, in which the massive spin-2 field in an AdS4 background is truncated by imposing

an appropriate boundary condition [6]. This is possible because the massive spin-2 mode

actually has a negative mass-squared in this case, meaning that it carries a non-unitary

representation of SO(2, 3), but it is not sufficiently negative to imply that it is tachyonic.

This massive mode has a slower fall-off than the massless spin-2 mode, and so it can be

eliminated, while retaining the massless mode, by imposing a suitable AdS fall-off condition

at infinity.

It was subsequently observed in [7] that there exists a natural generalisation of critical

gravity, in which the coefficient of Weyl-squared that is added to cosmological Einstein

gravity is chosen to lie anywhere in the range where the massive spin-2 mode has negative,

but not tachyonic, mass-squared. This gives a one-parameter family of theories where

one can truncate out the ghostlike massive spin-2 modes by the imposition of boundary

conditions, while retaining the (positive norm) massless spin-2 modes. One end of the

parameter range corresponds to the pure Weyl-squared theory considered by Maldacena.

In this paper, we study an N = 1 supersymmetric extension of cosmological gravity

with the Weyl-squared term. We do this by starting from known results for an off-shell

chiral superfield formulation, and then re-expressing the Lagrangian in a component field
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expansion. We shall work with off-shell D = 4,N = 1 supergravity with the so-called old

minimal set of auxiliary fields [8, 9]1. Prior to adding in the Weyl-squared multiplet, the

off-shell theory of Einstein supergravity plus cosmological constant contains an auxiliary

vector field and an auxiliary complex scalar field. After adding in the Weyl-squared terms

the auxiliary vector becomes dynamical, with propagating massive spin-1 modes. However,

the complex scalar remains non-dynamical.

In section 2, we perform a component expansion of the chiral superfield expressions for

the N = 1 off-shell supersymmetric actions whose bosonic sectors correspond to Einstein

gravity, the cosmological term, and the square of the Weyl tensor. These are exactly the

ingredients in critical gravity and its extensions. For simplicity, we restrict attention to those

terms that will contribute when computing the linearised fluctuation equations around the

AdS4 vacuum. In section 3, we derive the relevant equations of motion, and the linearised

equations for the fluctuations. These give a fourth-order equation for spin-2 fluctuations,

a third-order equation for spin-32 fluctuations, and a second-order equation for the spin-

1 fluctuations. In section 4, we analyse the multiplet structure for the fluctuation fields,

showing how, in general, they comprise a massless N = 1 spin-2 multiplet, and a massive

N = 1 spin-2 multiplet. We also analyse the action of the supersymmetry transformations

on the various fields.

In section 5, we examine possible ways to obtain ghost-free theories. This can be achieved

by choosing the coefficient of the Weyl-squared term so that the undesirable negative-norm

massive fields can be truncated from the spectrum by the imposition of appropriate bound-

ary conditions, while still retaining the fields in the massless multiplet. We consider two

cases; critical supergravity, where the massive multiplet becomes massless, giving rise to

logarithmic modes that can be truncated from the spectrum; and a 1-parameter family of

non-critical theories where the massive spin-2 fields are all in non-unitary representations

of the AdS algebra, and which therefore have slower fall-off than the massless modes, al-

lowing them again to be truncated by a suitable boundary condition. The paper ends with

conclusions in section 6. In a set of three appendices we present some of our notation and

conventions; a detailed discussion of the N = 1 superspace constraints; and an explicit

construction of the transformations, using Killing spinors, that relate the spinor and tensor

harmonics in AdS4 for all spins s ≤ 2.

1For higher derivative off-shell D = 4, N = 1 supergravity in the new minimal formulation, see [10, 11,

12, 13].
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2 Off-Shell Supersymmetrisation of Cosmological Einstein

plus Weyl-squared Gravity

There is a standard recipe for constructing a supersymmetric action from any chiral super-

field r. The Lagrangian is given by [14]

e−1L =
(
1
2D

αDα + i(ψ̄aσ
a)αDα + M̄+ ψ̄aσ̄

abψ̄b

)
r|+ h.c. , (2.1)

where the notation X| denotes the lowest component (θ independent) in the θ expansion of

the superfield X. The standard supergravity action is obtained by taking r = −3R, where

R is a chiral superfield whose lowest component is R| = 1
6M, where M is a complex scalar

auxiliary field (see Appendix B).2 The resulting Lagrangian is [8, 9]

e−1L1 =
1
2R+ 1

3 (A
µAµ − M̄M) + 1

2 ψ̄µγ
µνρψνρ , (2.2)

where Dµ is the Lorentz-covariant derivative, Aµ is a real auxiliary vector field that also

comes from R, and

ψµν = 2D[µψν] . (2.3)

(See appendices A and B for further notation and conventions.) The Ricci scalar R in

(2.2) is constructed from a spin-connection with added quadratic fermion torsion. These

additional terms will not concern us here, since they will not contribute to the linearised

equations in an AdS4 background.

Taking instead r = 1, equation (2.1) gives

e−1L2 = M+ M̄ − ψ̄µγ
µνψν . (2.4)

In backgrounds where M is constant, this is the supersymmetrisation of a cosmological

constant term.

Finally the Weyl-squared invariant is obtained by taking r = −1
4W

αβγWαβγ , where

Wαβγ is a chiral superfield whose lowest component is proportional to the gravitino curvature

(see Appendix B):

e−1L3 = CµνρσCµνρσ −
2
3F

µνFµν −
4
3 ψ̄

µν /Dψµν +
4
3 ψ̄µλγ

µνρDρψν
λ + · · · , (2.5)

where

Fµν = 2∂[µAν] , (2.6)

2We use R rather than the conventional R to denote the superfield, to avoid confusion with the Ricci

scalar.
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and the ellipses denote terms of the form ψ2×∇(bosonic fields) and quartic fermion terms.

(These terms will vanish when we study the excitations around an AdS4 background, and

so we shall not need to consider them in this paper.) Note that the square of the Weyl

tensor can be written in terms of the Riemann and Ricci curvature as

CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3R

2 . (2.7)

There exists just one more independent curvature-squared invariant, modulo total deriva-

tives, for which the superfield r is given by

r =
(
D̄α̇D̄α̇ − 4R

)
RR

† . (2.8)

In components, this gives rise to an R2 term as well as a kinetic term for the real part of

the auxiliary field M. We shall not consider this invariant further, in this paper, so that

the scalar fields remain non-dynamical.

The off-shell supersymmetry transformation rules are

δeµ
a = ǭγaψµ ,

δψµ = −Dµǫ−
i

6
(2Aµ + γρµA

ρ)γ5ǫ−
1
6γµ(S + iγ5P )ǫ ,

δS = ǭγµν ψ̂µν ,

δP = iǭγµνγ5ψ̂µν ,

δAµ = i
8 ǭ(γµγ

νρ − 3γνργµ)γ5ψ̂νρ , (2.9)

where

ψ̂µν = ψµν +
i

3
γ5

(
2A[µ +Aργρ[µ

)
ψν] +

1
3γ[µ(S + iγ5P )ψν] , (2.10)

and M is written in terms of real scalar and pseudoscalar fields as M = S + iP .

Here we shall consider a linear combination of the supersymmetric Lagrangians discussed

above,

L = L1 + aL2 + bL3 . (2.11)

Thus the total bosonic Lagrangian is

LB = 1
2R+ 1

3(A
µAµ − S2 − P 2) + 2aS + bCµνρσCµνρσ −

2b

3
FµνFµν , (2.12)

and the total fermionic Lagrangian (modulo terms that will vanish in the AdS4 background

we shall consider) is

LF = 1
2 ψ̄µγ

µνρψνρ − a ψ̄µγ
µνψν −

4b

3
ψ̄µν /Dψµν +

4b

3
ψ̄µλγ

µνρDρψν
λ . (2.13)
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3 Equations of Motion and Linearisation around AdS4

3.1 Bosonic fields

The bosonic equations of motion, following from (2.12), are

S = 3a , P = 0 , (3.1)

∇µFµν +
1

4b
Aν = 0 , (3.2)

Rµν −
1
2Rgµν +

1
3(S

2 + P 2 − 6aS)gµν +
2
3(AµAν −

1
2A

ρAρgµν)

−
8b

3
(Fµ

ρ Fνρ −
1
4F

ρσFρσgµν) + Eµν = 0 , (3.3)

where Eµν , the contribution to the Einstein equation from the Weyl-squared term, is given

by

Eµν = 8b(Rµρ Rν
ρ − 1

4R
ρσRρσ gµν)−

4b

3

[
R (Rµν −

1
4Rgµν) + gµν �R−∇µ∇νR

]

+4b
[
�Rµν +

1
2�Rgµν − 2∇ρ∇(µRν)

ρ
]
. (3.4)

The maximally-symmetric vacuum solution of the bosonic equations of motion is given by

setting Aµ = 0, and taking gµν to be the metric on AdS4, satisfying

Rµνρσ = −a2(gµρgνσ − gµσgνρ) , Rµν = −3a2gµν , R = −12a2 . (3.5)

We may then consider the equations for linearised bosonic fluctuations around this

background. For the metric, we consider δgµν = hµν , and define3

GLµν = RLµν −
1
2R

L gµν + 3a2 hµν , (3.6)

RLµν = ∇λ∇(µhν) λ −
1
2�hµν −

1
2∇µ∇νh , (3.7)

RL = ∇µ∇νhµν −�h+ 3a2h , (3.8)

where h ≡ gµνhµν . The linearised equation for hµν is then given by [3]

(4b� + 1 + 16a2b)GLµν −
4b

3
(∇µ∇ν − gµν�− 3a2gµν)R

L = 0 . (3.9)

Noting that gµνGLµν = −RL, we find that the trace of (3.9) gives simply

RL = 0 . (3.10)

We may consider a 1-parameter family of possible gauge choices for hµν , of the form

∇µhµν = c∇νh , (3.11)

3All covariant derivatives in the expressions expanded around AdS4 are understood to be covariant with

respect to the AdS4 background connection.
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where c is a constant. (de Donder gauge corresponds to c = 1
2 .) The trace equation (3.10)

then implies

(c− 1)�h+ 3a2h = 0 . (3.12)

If we choose c = 1 in the gauge condition (3.11) then we immediately deduce that h = 0,

as in [3]. If we instead take c 6= 1, then we can make residual coordinate transformations

δxµ = ξµ with ξµ = ∂µξ, which will therefore preserve the gauge condition (3.11) provided

that ξ satisfies

(c− 1)�ξ + 3a2ξ = 0 . (3.13)

Since the transformation of h is given by h→ h+ 2�ξ, and since h and ξ satisfy the same

equation, it follows that ξ can be used in order to set h to zero. Thus for any value of c,

whether equal to 1 or not, the trace mode h can be eliminated by the gauge choice. We

shall assume from now on that this has been done, and so hµν is in transverse traceless

gauge,

∇µhµν = 0 , h = 0 . (3.14)

The full linearised equation (3.9) for hµν then becomes [3]

(�+ 2a2)

(
�+ 4a2 +

1

4b

)
hµν = 0 . (3.15)

Provided that the constant terms in the two factors are unequal, the general solution to

the fourth-order equation (3.15) is just a linear combination of solutions to the two second-

order equations. To see this, suppose we have (�+λ1)(�+λ2)hµν = 0. This can be written

as

(�+ λ1)h
(1)
µν = 0 , where (�+ λ2)hµν = h(1)µν . (3.16)

Defining

hµν = h(2)µν +
1

λ2 − λ1
h(1)µν , (3.17)

we see that provided λ2 6= λ1, the general solution to the fourth-order equation is a linear

combination of h
(1)
µν and h

(2)
µν satisfying

(�+ λ1)h
(1)
µν = 0 , (�+ λ2)h

(2)
µν = 0 . (3.18)

Thus, equation (3.15) implies that generically there are massless spin-2 modes satisfying

(�+ 2a2)hµν = 0 , (3.19)

and additional massive spin-2 modes satisfying

(� + 4a2 +
1

4b
)hµν = 0 . (3.20)
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The degenerate case where 2a2 = 4a2+1/(4b), i.e. b = −1/(8a2), which in fact corresponds

to critical gravity, will be discussed in detail later, in section 5.

For the vector Aµ, which vanishes in the AdS4 background, the fluctuation equation is

just given by the Proca equation (3.2). Taking the divergence, one therefore finds

∇µAµ = 0 , (� + 3a2 +
1

4b
)Aµ = 0 . (3.21)

3.2 The gravitino equation

The gravitino equation of motion in the AdS4 background follows from (2.13):

γµνρψνρ − 2aγµνψν −
8b

3

[
2γρDνDρψ

µν + γν
ρσDρDσψ

µν − γµρνD
σDνψρσ

]
= 0 . (3.22)

Multiplying with γµ, and using the identity D[µψνρ] = −1
2a

2γ[µνψρ] in the AdS4 background,

we obtain

Dµψµ − ( /D − 3
2a)(γ

µψµ) = 0 . (3.23)

Imposing the gauge condition γµψµ = 0 implies also Dµψµ = 0, and the gravitino equation

of motion (3.22) gives

/D�ψµ +

(
3a2 +

1

4b

)
/Dψµ +

a

4b
ψµ = 0 . (3.24)

Using ( /D)2ψµ = �ψµ + 4a2ψµ, we can rewrite (3.24) in the factorised form

( /D + a)
(
/D − 1

2a−
1
2

√
a2 − b−1

)(
/D − 1

2a+
1
2

√
a2 − b−1

)
ψµ = 0 . (3.25)

The analysis of this third-order equation is analogous to our earlier discussion for spin

2. Provided that the three constant terms in the factorised form (3.25) are unequal, the

general solution will be a linear combination of the solutions to the three separate factors.

In other words, there will be the massless gravitino mode satisfying

( /D + a)ψµ = 0 , (3.26)

and two massive gravitino modes, satisfying, respectively,

( /D − 1
2a−

1
2

√
a2 − b−1)ψµ = 0 , (3.27)

( /D − 1
2a+

1
2

√
a2 − b−1)ψµ = 0 , (3.28)

The degenerate cases, where two eigenvalues coincide, will be treated later in our discussion

in section 5.
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3.3 The linearised supersymmetry transformations

We begin by observing that the AdS4 background given by (3.5) is supersymmetric. This

can be seen from the expression for δψµ in (2.9), which vanishes in the AdS4 background

for any Killing spinor solution ǫ− of

Dµǫ± = ±1
2aγµǫ± . (3.29)

In what follows, it will be understood when we use ǫ to denote a Killing spinor, that it will

be of the ǫ− type.

The linearised transformation rules, which will be useful for describing how supersym-

metry acts on the fluctuation modes, are given by

δhµν = 2ǭγ(µψν) ,

δψµ = 1
4∇ρhµσ γ

ρσǫ−
i

6
(2Aµ + γρµA

ρ)γ5ǫ−
1
4ahµνγ

νǫ ,

δAµ = 3
2 iǭγ5( /D + a)ψµ . (3.30)

In obtaining the expression for δAµ, we have used the gauge condition γµψµ = 0, and its

consequence that Dµψµ = 0.

4 Spectrum and Multiplet Structure of the Fluctuations

In this section, we investigate the structure of the small fluctuations around the AdS4

background, showing how the various modes assemble into N = 1 multiplets under AdS

supersymmetry.

4.1 AdS representations of the fluctuations

Subject to appropriate boundary conditions, the solutions of the linearised equations ob-

tained in the previous section form unitary irreducible representations of the SO(3, 2) AdS

group. These representations, denoted by D(E0, s), are labelled by their lowest energy E0

and their spin s. The unitary irreducible representations of N = 1 AdS supersymmetry fall

into four disjoint classes [15], namely

Class 1 : D(12 , 0)⊕D(1, 12) ,

Class 2 : D(E0, 0)⊕D(E0 +
1
2 ,

1
2)⊕D(E0 + 1, 0) , E0 >

1
2 ,

Class 3 : D(s+ 1, s)⊕D(s+ 3
2 , s+

1
2 ) , s = 1

2 , 1,
3
2 , . . . , (4.1)

Class 4 : D(E0, s)⊕D(E0+
1
2 , s+

1
2)⊕D(E0+

1
2 , s−

1
2)⊕D(E0+1, s) , E0 > s+ 1 .
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Class 1 is the singleton, supermultiplet; Class 2 is the Wess-Zumino supermultiplet; Class 3

comprises massless gauge supermultiplets; and Class 4 comprises massive supermultiplets.

The representations arising in our case can be determined from the eigenvalues of the

D’Alembertian (for bosons) or the Dirac operator (for fermions). For the fields of spins 2,

1 and 3
2 of interest to us, one has

D(E0, 2) : �hµν = a2[E0(E0 − 3)− 2]hµν ,

D(E0, 1) : �Aµ = a2[E0(E0 − 3)− 1]Aµ , (4.2)

D(E0,
3
2) : /Dψ±

µ = ±a(E0 −
3
2)ψ

∓
µ ,

where ψ±
µ = 1

2(1± γ5)ψµ.

Let us first consider the general situation, for generic values of the coefficient b associated

with the Weyl-squared term. From (3.15) we see that there are always massless spin-2 modes

satisfying (3.19), in the D(3, 2) representation, and from (3.25) there are always massless

spin-32 modes satisfying (3.26), in the (52 ,
3
2 ) representation. These bosonic and fermionic

modes form the massless supermultiplet

D(52 ,
3
2)⊕D(3, 2) , (4.3)

which is of Class 3 with s = 3
2 .

The remaining modes that we read off from (3.20) for spin-2, (3.21) for spin-1, and

(3.27) and (3.28) for spin-32 , can then be seen, respectively, to have the E0 values

Spin-2 : E0 =
3
2 ±

1
2

√
1−

1

a2b
,

Spin-1 : E0 =
3
2 ±

1
2

√
1−

1

a2b
,

Spin-32 : E0 = 2± 1
2

√
1−

1

a2b
, and E0 = 1± 1

2

√
1−

1

a2b
. (4.4)

When the plus sign is chosen in front of all the square roots, and if the parameter b is chosen

so that √
1−

1

a2b
> 3 , (4.5)

i.e so that

−
1

8a2
< b < 0 , (4.6)

then the representations in (4.4) all satisfy the bound E0 > s+ 1, and they can be seen to

form an N = 1 unitary massive supermultiplet, of the Class 4 type. If (4.5) is not satisfied,
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then the multiplet will be non-unitary. There is another massive multiplet, which is always

non-unitary, corresponding to taking the minus sign in front of all the square roots.

If the parameter b lies in the range where 1 − 1/(a2b) is negative, then the E0 values

become complex. Since, in particular, the modes have time dependence proportional to

eiE0t, this would imply that they would have real exponential growth, corresponding to

classical instability. Such modes are tachyonic, and are the higher-spin analogues of scalar

modes that violate the Breitenlohner-Freedman bound [16]. We shall always require that b

be chosen so that

1−
1

a2b
≥ 0 . (4.7)

4.2 Action of supersymmetry on the fluctuation modes

In this subsection we shall study the manner in which supersymmetry maps the solutions

of different spins into each other. There are two reasons why it is of interest to do this.

Firstly, it provides a simple way to obtain explicit expressions for the solutions for all spins

s ≤ 2, starting from those for any particular given spin. Secondly, it will give nontrivial

information about the multiplet structure, including in the critical case, which we shall

discuss in section 5, when non-standard representations with logarithmic behaviour arise.

In the present section, we shall consider just the non-critical case.

We can determine how supersymmetry acts on the fluctuations by making use of the

linearised supersymmetry transformations given in equations (3.30). Essentially, we sub-

stitute a mode of one of the fields, satisfying (3.19), (3.20), (3.21), (3.26), (3.27) or (3.28),

into the right-hand sides of the transformation rules, and thus read off the associated

supersymmetry-related modes. To be precise, it is necessary also to make appropriate

compensating gauge transformations (general coordinate, and/or local Lorentz), in order

to ensure that the supersymmetry-related modes obey the appropriate gauge conditions we

are imposing, which amount to their being divergence-free and (γ–)traceless.

To begin, we observe that if ψµ satisfies the massless gravitino equation (3.26), then the

δhµν transformation in (3.30) generates a massless spin-2 solution, since

(� + 2a2)[2ǭγ(µψν) + δξhµν ] = 0 , (4.8)

where the compensating general coordinate transformation is given by

δξhµν = 2∇(µξν) , ξµ =
1

3a
ǭψµ . (4.9)

Note that the massless ψµ mode does not generate any spin-1 solution, since the ( /D + a)

operator in the δAµ transformation in (3.30) annihilates the massless gravitino solution.
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In the reverse direction, substituting the massless spin-2 solution (3.19) into the δψµ

transformation, we find that indeed

( /D + a)[14∇ρhµσ γ
ρσǫ− 1

4ahµν γ
νǫ] = 0 , (4.10)

which shows that the δψµ generates a massless spin-3/2 solution.

By similar reasoning, we find that the solutions of the massive fluctuation equations map

into one another under the linearised supersymmetry transformations, forming the massive

supermultiplet that we discussed in the previous subsection. In this case, the required

compensating general coordinate transformation is given by

δξhµν = 2∇(µξν) , ξµ =
1

2a− λ
ǭψµ , (4.11)

where /Dψµ = λψµ with λ to be read off from (3.27) and (3.28). The singular situation where

λ = 2a arises in the critical case which will be discussed in section 5.2. The substitution of

a massive gravitino solution into the right hand side of δAµ generates the solution for the

massive vector field obeying the Proca field equation (3.21). Finally, with the substitution

of the massive graviton solution into δψµ, it solves the equation

( /D − 1
2a−

1
2

√
a2 − b−1)( /D − 1

2a+
1
2

√
a2 − b−1)[14∇ρhµσ γ

ρσǫ− 1
4ahµν γ

νǫ] = 0 , (4.12)

and thus both of the massive gravitino modes arise, as a linear combination. Substituting

the massive spin-1 solution in δψµ on the other hand, again yields a linear combination of

massive gravitino solutions, provided that we take into account compensating supersym-

metry transformation needed to ensure that δψµ is divergent-free and γ-traceless. This

compensating transformation, whose parameter we shall denote by ǫ̂ is given by

ǫ̂ =
ib

3(1 + 8a2b)
(4aAµγ

µ − Fµνγ
µν) γ5ǫ . (4.13)

Note that only terms that are linear in fluctuation fields are to be retained in δǫ̂ψµ. More-

over, the overall factor is divergent at the critical point that will be discussed further in

section 5.2.

In summary, we have shown that away from the critical point the fluctuations form a

massless and a massive supergravity multiplet, both on shell, as shown in the figure below,

where the superscripts refer to massive states whose AdS energies are given in (4.4).
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5 Ghost-free Supergravities

As is well known in the case of pure cosmological gravity with a Weyl-squared term, the

massive spin-2 excitations around the AdS4 background have energies that are opposite in

sign to those of the massless spin-2 modes (see, for example, [3]). Thus if the overall sign of

the action is chosen so that the massless graviton has positive-energy excitations, then the

massive spin-2 modes will be ghostlike. In order to achieve a ghost-free theory, one may

try to eliminate the massive excitations by imposing some appropriate boundary conditions

at infinity. The situation for the supersymmetric extensions that we are considering in

this paper is similar, and so we can again examine the circumstances under which such a

truncation of the massive multiplets may be possible.

It is useful to divide the discussion into two cases. One case arises when the critical

choice for the parameter b is taken, namely

b = bcrit = −
1

8a2
. (5.1)

In this case, the massive spin-2 modes, satisfying (3.20), become massless, resulting in

the emergence of a new type of solution to the fourth-order equation (3.15) that has a

logarithmic dependence on the radial AdS4 coordinate. An analogous phenomenon occurs

also in the spin-32 sector. We shall discuss this case in subsection 5.2 below. The logarithmic

modes have indefinite norm, and must therefore be truncated out in order to achieve a ghost-

free theory. However, the massless spin-2 modes have zero norm in this case [3], and so

after the truncation one is left with a rather trivial theory. A further feature, in this critical

case, is that the kinetic term −2
3bF

µνFµν for the spin-1 fields has the “wrong sign.”

The second case, which we shall consider first, corresponds to the situation where b

is instead chosen so that the unitarity bound (4.5) is violated, while still respecting the

condition (4.7) for avoiding tachyons. This will provide a supersymmetric generalisation of

the “extended critical gravities” considered recently in [7].

14



5.1 Extensions of critical supergravity

In order to be able to impose boundary conditions that eliminate the ghost-like massive

modes, while retaining the desired massless modes, it is necessary to choose the b parameter

to lie in a range where the massive modes have a slower fall-off at infinity than the massless

modes. The fall-off is governed by the lowest-energy eigenvalue E0, with modes having

larger E0 falling off faster than those with smaller E0. (See for example [17], where the

spin-2 modes are constructed.) Thus the desired choices for the parameter b will be those

for which the massive modes are all non-unitary, satisfying E0 < s+ 1, while, by contrast,

the massless modes satisfy E0 = s + 1. Bearing in mind that we must still require the

massive modes to be non-tachyonic, in order to avoid classical instabilities, it follows from

(4.5) and (4.7) that b should be chosen to satisfy

b ≥
1

a2
or b ≤ −

1

8a2
. (5.2)

There is a further requirement, which excludes the negative b choices in (5.2). This can

be seen from the results in [3, 7], where the energies of the spin-2 modes are calculated.

In order to have non-negative energies for the massless spin-2 modes, it is necessary that b

should satisfy b ≥ −1/(8a2). Thus we are led to consider the 1-parameter family of theories

for which

b ≥
1

a2
. (5.3)

For all values of b within this range, the modes in the massive supermultiplet will fall

off more slowly than those in the massless supermultiplet, and so they can be eliminated

by imposing appropriate boundary conditions at infinity. Included in this family is the

limit where b goes to infinity; after making an overall rescaling with a factor 1/b, this

corresponds to the conformally-invariant case that is the N = 1 generalisation of the pure

Weyl-squared gravity that was recently considered by Maldacena [6]. In the entire range

(5.3), the excitations in the massless supermultiplet will all have positive energies.

It is interesting to note that at the lower end of the range in (5.3), when b = 1/a2,

the two massive spin-32 branches in (3.27) and (3.28) become degenerate, and so there will

be spin-32 modes with logarithmic coordinate dependence in this case, even though none

of the other members of the massive supermultiplet will exhibit such behaviour. It is also

worth remarking that the kinetic term −2
3bF

µνFµν for the spin-1 field has the correct sign

throughout the range (5.3).
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5.2 Critical supergravity

At the critical point we have

bcrit = −
1

8a2
(5.4)

and the linearized equations of motion become

(
�+ 2a2

)2
hµν = 0 , (5.5)

(
�+ a2

)
Aµ = 0 , (5.6)

( /D + a)2( /D − 2a)ψµ = 0 . (5.7)

It immediately follows that the vector field describes a massive spin-1 mode with AdS energy

E0 = 3. As for the graviton and gravitino field equations, to begin with they describe modes

that follow from the factorization of their wave operators. These are the massless spin-2 and

massless spin-3/2 modes, and a massive spin-3/2 mode satisfying ( /D − 2a)ψµ = 0, thereby

having AdS energy E0 = 7/2. In addition to these, however, there will also be logarithmic

modes that satisfy the relations

(�+ 2a2)2hlogµν = 0 , (�+ 2a2)hlogµν 6= 0 ,

( /D + a)2ψlog
µ = 0 , ( /D + a)ψlog

µ 6= 0 . (5.8)

Next we discuss how supersymmetry relates the fluctuation modes to each other, to

determine the underlying multiplet structure. As in our previous discussion for the case

of a generic massive multiplet, we look at the linearised supersymmetry transformations in

(3.30), plug in the various modes at the critical point on the right–hand–side and then verify

that the result satisfies an appropriate equation. In some cases the supersymmetry trans-

formations have to be accompanied by an appropriate compensating gauge-transformation

to preserve the gauge-conditions.

As we have seen previously, when we substitute the critical massive gravitino mode

satisfying ( /D− 2a)ψµ = 0 into δhµν , the compensating gauge-transformation (4.11) that is

needed in order to preserve the gauge condition diverges. This means that supersymmetry

does not map the critical massive gravitino mode to a transverse traceless spin-2 mode.

Similarly we have seen that when the critical massive vector mode is substituted in δψµ,

the required compensating gauge transformation (4.13) again diverges, which means that the

critical massive vector mode is not mapped to a gravitino mode in the γµψµ = 0, Dµψµ = 0

gauge by supersymmetry. When substituted into δAµ, the critical massive gravitino will
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however give rise to a critical massive spin-1 mode, as follows immediately from the analysis

we gave previously.

It remains only to analyse what happens when the logarithmic modes satisfying (5.8) are

substituted into the supersymmetry transformations. Let us start with the supersymmetry

variation of the vector. It is not hard to verify that

(� + a2)
(
ǭγ5( /D + a)ψlog

µ

)
= 0 . (5.9)

This means that the gravitino log mode is mapped by supersymmetry into the critical

massive spin-1 mode. Next we consider what happens when the graviton log mode is

substituted into δψµ. Since the log modes satisfy the same gauge conditions as the regular

modes, no compensating gauge transformation is needed and one finds

( /D + a)[14∇ρh
log
µσ γ

ρσǫ− 1
4ah

log
µν γ

νǫ] = 1
4(�+ 2a2)hlogµν γ

νǫ 6= 0 , (5.10)

and

( /D + a)2( /D − 2a)[14∇ρh
log
µσ γ

ρσǫ− 1
4ah

log
µν γ

νǫ] = 0 . (5.11)

This shows that the graviton log mode is mapped by supersymmetry to a linear combination

of the gravitino log mode and the critical massive gravitino mode. Finally we need to

analyse what happens when the gravitino log mode is substituted into δhµν . In this case

a compensating general coordinate transformation will be needed to preserve the gauge

condition. With some work, one can show that

(�+ 2a2)2[2ǭγ(µψ
log
ν) + δξhµν ] = 0 , (5.12)

where the compensating general coordinate transformation takes the form

δξhµν = 2∇(µξν) , ξµ =
1

9a2
ǭ( /D + 4a)ψlog

µ . (5.13)

This shows that the gravitino log mode is mapped by supersymmetry into the graviton log

mode. This completes the analysis of the supermultiplet structure at the critical point. In

addition to the massless supergravity multiplet we have the non-standard multiplet

hlogµν

{{xx
xx

xx
xx

x

%%KKK
KK

KKK
KK

ψlog
µ

##FF
FF

FF
FF

F

;;xxxxxxxxx

ψ
(mcrit)
µ

yysssssssss

A
(mcrit)
µ
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where supersymmetry transformations are indicated by the arrows.

Note that the logarithmic modes are not eigenstates of the AdS energy generator. In-

deed, all of these modes are given as a product of a universal logarithmic dependent factor

and the solution for the massless mode as [17]

φlog = (2it+ log sinh 2ρ− log tanh ρ)φmassless , (5.14)

where φ generically denotes any field that has logarithmic mode, in a coordinate system in

which the AdS4 metric is given by

a2ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ
[
dθ2 + sin2 θ dϕ2

]
. (5.15)

We are not aware of a group theoretical analysis of the representations of AdS superalgebra

which accommodates such states. The analysis of supersymmetry transformations, nonethe-

less, seems to suggest that that if boundary conditions that exclude logarithmic modes are

to be imposed, then the full multiplet containing these modes are to be excluded. In any

event, in view of the recent developments in the study of the critical bosonic gravity dy-

namical content [6, 7], we shall not pursue further the supersymmetric version of the story

here.

6 Conclusions

In this paper, we have constructed an N = 1 supersymmetrisation of a class of four-

dimensional gravities with a quadratic curvature modification proportional to the square of

the Weyl tensor. The resulting supergravities encompass supersymmetrisations of critical

gravity [3], where the coefficient of Weyl-squared is adjusted so that the generically massive

spin-2 excitations become massless; pure conformally-invariant Weyl-squared gravity, which

was recently proposed in [6] as providing an equivalent description of ordinary gravity in the

long-wavelength regime; and a class of generalisations of critical gravity considered recently

in [7].

We showed that the excitations of the N = 1 theory around its AdS4 vacuum generically

describe a massless spin-2 multiplet and a massive spin-2 multiplet. In the critical gravity

limit, the massive spin-2 field becomes massless, leading to the emergence of spin-2 and spin-

3
2 modes with logarithmic coordinate dependence. The formerly massive multiplet becomes

a non-standard one in this limit, which lies outside the usual classification of unitary N = 1

representations described in [15].
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The extensions beyond the critical limit, which are the supersymmetric generalisation of

the theories considered in [7], arise when the coefficient of the Weyl-squared term is chosen

to lie in the range where the massive fields carry non-unitary representations of SO(2, 3).

For the bosons (spin-2 and spin-1), this means that they have mass-squared values, defined

as (�+2a2−M2
2 )hµν = 0 and (�+3a2−M2

1 )Aµ = 0, that are negative. They are, however,

not sufficiently negative to be tachyonic, meaning that their lowest energies E0, given by

E
(2)
0 =

3

2
±

√
9

4
+
M2

2

a2
, E

(1)
0 =

3

2
±

√
1

4
+
M2

1

a2
, (6.1)

are still real. Because the lowest energies of the massive fields all violate the unitarity

bounds E
(s)
0 ≥ s + 1, they have a slower fall-off at large distance than the massless fields,

and thus they can be eliminated, while retaining the massless fields, by imposing appropriate

boundary conditions. The same is true also for the logarithmic modes in the case of critical

gravity. Eliminating the massive or logarithmic modes is desirable from a physical point of

view, since they can have negative norms, and hence are ghost-like.

Although for physical reasons one would probably wish to truncate out the ghost-like

massive modes, there may be circumstances where it could be of interest to retain them.

It has, for example, been suggested that the retention of the logarithmic modes in critical

gravity could give rise to an interesting relation to a dual three-dimensional logarithmic

CFT on the AdS4 boundary [17]. A preliminary investigation of this idea has been initiated

in [20], where a toy model with a scalar field satisfying a fourth-order field equation has

been considered.

The extensions beyond critical supergravity, i.e. the theories where the parameter b

characterising the Weyl-squared action satisfies b ≥ 1/a2, may provide a family of toy

models for renormalisable supergravities without ghosts, provided that one truncates out

the negative mass-squared spin-2 modes. It would be interesting to investigate further the

properties of these theories at the quantum level.
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A Notation and Conventions

The σ-matrices satisfy

σaσ̄b + σbσ̄a = −2ηab . (A.1)

Other useful relations are

εabcdσcd = −2iσab , εabcdσ̄cd = 2iσ̄ab , σabc = iεabcdσd , σ̄abc = −iεabcdσ̄d , (A.2)

and

tr(σabσcd) = −4δa[cδ
b
d] − 2iεabcd . (A.3)

Dirac gamma-matrices satisfying

γaγb + γbγa = 2ηab (A.4)

are constructed as

γa =


 0 iσa

iσ̄a 0


 . (A.5)

We also have

γ5 = iγ0γ1γ2γ3 =


−1 0

0 1


 . (A.6)

B D = 4, N = 1 supergravity

In this Appendix we will describe the superspace constraints of D = 4, N = 1 supergravity.

To facilitate the comparison to other superspace literature we will use the notation of Wess

and Bagger [18], which differs slightly from that used in the rest of the paper. In particular,

letters from the beginning of the alphabet denote tangent space indices, lower case Latin

indices are vector indices, while lower case Greek indices are spinor indices and capital

Latin indices run over both (in the rest of the paper coordinate vector indices are denoted

µ, ν, . . .). The Bianchi identities for the torsion and curvature read

D[ATBC]
D + T[AB

ET|E|C]
D +R[ABC]

D = 0 (B.1)

D[ARBC]
DE + T[AB

FR|F |C]
DE = 0 . (B.2)

In the next section we will describe their solution up to mass dimension 3/2, with some

results that we will need also at dimension 2 and 5/2. The superspace covariant derivative

satisfies

[DA,DB ] = −TAB
CDC +

1

2
RAB

cdℓcd , (B.3)

20



where

ℓcdVa = 2ηa[cVd] ℓcdψα = −
1

2
(σcd)α

βψβ , (B.4)

on a vector and spinor respectively. This means that the spin-connection satisfies

Ωα
β = −

1

4
Ωcd(σcd)α

β (B.5)

and similarly for dotted spinor indices.

B.1 Supergravity constraints

The non-vanishing components of the torsion and curvature, organized according to mass-

dimension, are

Dimension 0

Tαβ̇
a = −iσa

αβ̇
. (B.6)

Dimension 1

Taα̇
β = i(σa)

β
α̇R , Taα

β̇ = i(σ̄a)
β̇
αR

† (B.7)

and

Taα
β = 2iδβαGa − i(σab)α

βGb , Taα̇
β̇ = 2iδβ̇α̇Ga + i(σ̄ab)

β̇
α̇G

b , (B.8)

where R is a scalar superfield and Ga is a real vector superfield whose lowest components

are the auxiliary fields of the so-called old minimal formulation. Note in particular the

constraint

Tab
c = 0 (B.9)

which determines the spin-connection.

The curvature components are

Rαβcd = −2(σcd)αβR
† , Rα̇β̇cd = −2(σ̄cd)α̇β̇R , Rαβ̇cd = −2(σbcd)αβ̇G

b . (B.10)

Dimension 3/2

At this dimension one finds that R is chiral,

Dα̇R = 0 , DαR
† = 0 , (B.11)
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as well as

DαR = −
1

6
(σcd)αγTcd

γ

Dα̇R
† =

1

6
(σ̄cd)α̇γ̇Tcd

γ̇

DαGa =
1

48
(3(σcdσa)αγ̇Tcd

γ̇ − (σaσ̄cd)αγ̇Tcd
γ̇)

Dα̇Ga =
1

48
(3(σ̄cdσ̄a)α̇γTcd

γ − (σ̄aσcd)α̇γTcd
γ) . (B.12)

The curvature components of this dimension are

Rαbcd =
i

2
(σb)αγ̇Tcd

γ̇ −
i

2
(σd)αγ̇Tbc

γ̇ −
i

2
(σc)αγ̇Tdb

γ̇

Rα̇bcd = −
i

2
(σ̄b)α̇γTcd

γ +
i

2
(σ̄d)α̇γTbc

γ +
i

2
(σ̄c)α̇γTdb

γ . (B.13)

Dimension 2

One finds

DαTbc
γ = −2iδγαGbc + 2i(σd[b)α

γDc]G
d + 2(σbc)α

γG2 + 4(σd[b)α
γGc]G

d + 2(σbc)α
γ
RR

†

+
1

4
Rbc

de(σde)α
γ (B.14)

Dα̇Tbc
γ = 2i(σ[b)

γ
α̇Dc]R+ 16(σ[b)

γ
α̇Gc]R+ 4(σbcσ

e)γα̇GeR , (B.15)

where Gab = 2D[aGb] is the field strength of Ga and similar expressions for Tbc
γ̇ .

In terms of the superfield

Wαβγ = (σbc)(αβTbc
γ) (B.16)

this implies

DαW
βγδ = −3iδ(δα (σbc)βγ)Gbc +

1

4
Rbc

de(σde)α
(δ(σbc)βγ) (B.17)

Dα̇W
αβγ = 0 , (B.18)

in particular Wαβγ is a chiral superfield. Similar relations hold for W̄ α̇β̇γ̇ .

Using the equation for DαR as well as that for DαTbc
γ one finds

DαDαR = −
1

6
(Rab

ab − 12iDaG
a + 24G2 + 48RR

†) . (B.19)

Similarly one can compute two spinor derivatives on R
† and Ga but we will not do this here

as we will not need them.
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Dimension 5/2

From the Bianchi identities one finds that

DαRbc
de = −2D[bRc]α

de − 2iG[bRc]α
de + 2i(σ[bσ̄

f )α
βRc]β

deGf + 2i(σ[b)α
β̇Rc]β̇

de
R

†

+ 2(σde)αβTbc
β
R

† − 2(σdef )αβ̇Tbc
β̇Gf . (B.20)

Using the expression for the dimension 3/2 curvatures this implies that

(σbc)(βγ(σde)
δ)αDαRbc

de = 40W βγδ
R

† + 10(σbc)(βγ(σd)δ)β̇(iDbTcd
β̇ − Tcd

β̇Gb + 2Tbc
β̇Gd)

(B.21)

Using this expression one computes

DαDαW
βγδ = −10W βγδ

R
† + 2(σbc)(βγ(σd)δ)β̇(iDdTbc

β̇ − 4Tcd
β̇Gb − 7Tbc

β̇Gd) .(B.22)

One could also derive other relations from the Bianchi identities but we will not need more

than these here.

In order to compute the Weyl-squared invariant we need two spinor derivatives of W 2 =

W βγδWβγδ. With a bit of work one finds

DαDα(W
2) = −

2

3
(Rab

cdRabcd + 2Rab
abRcd

cd + 5Rab
cdRcd

ab − 12Rab
acRcd

bd) + 96GabGab

− 20W 2
R

† + 4(σab)(αβ(σc)γ)β̇(iDcTab
β̇ − 4Tbc

β̇Ga − 7Tab
β̇Gc)Wαβγ

−
i

3
εabcd(Ref abRefcd +Rab

efRcdef + 4Rab
efRefcd − 8Rea

efRfbcd − 144GabGcd) .

(B.23)

Note that the terms in the last line are imaginary an will therefore not contribute to the

action.

B.2 Components

Here we collect some component results which we need. The lowest component of the

superfields R and Ga are the auxiliary fields of the old minimal formulation of D = 4

supergravity,

R| =
1

6
M , Ga| =

1

6
Aa . (B.24)

(The vector field Aa is customarily called ba in the superspace literature.) The gravitino is

defined as the lowest component of the spinorial supervielbein

Em
α| = ψm

α . (B.25)
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Using this fact, the gravitino field-strength ψab = 2D[aψb] can be written

ψab
γ ≡ eb

nea
mTmn

γ | = Tab
γ | − iψγ[aAb] +

i

3
(σ[aσ

cψb])
γ Ac −

i

3
(σ[aψ̄b])

γ M (B.26)

ψ̄ab
γ̇ ≡ eb

nea
mTmn

γ̇ | = Tab
γ̇ |+ iψ̄γ̇[aAb] −

i

3
(σ̄[aσ

cψ̄b])
γ̇ Ac −

i

3
(σ̄[aψb])

γ̇ M̄ , (B.27)

which defines the ’covariantized’ gravitino field strength

ψab
(cov)γ ≡ Tab

γ | = ψab
γ + iψγ[aAb] −

i

3
(σ[aσ̄

cψb])
γ Ac +

i

3
(σ[aψ̄b])

γ M

ψ̄ab
(cov)γ̇ ≡ Tab

γ̇ | = ψ̄ab
γ̇ − iψ̄γ̇[aAb] +

i

3
(σ̄[aσ

cψ̄b])
γ̇ Ac +

i

3
(σ̄[aψb])

γ̇ M̄ . (B.28)

For the Riemann tensor, Rab
cd which is computed in the standard way from the spin–

connection ωcd, we find4

Rab
cd ≡ eb

nea
mRmn

cd| = Rab
cd|+ iψ[aσb]ψ̄

(cov)
cd − iψ[aσ

dψ̄
(cov)
b]c + iψ[aσ

cψ̄
(cov)
b]d

+ iψ̄[aσ̄b]ψ
(cov)
cd − iψ̄[aσ̄

dψ
(cov)
b]c + iψ̄[aσ̄

cψ
(cov)
b]d −

1

3
ψaσcdψb M̄ −

1

3
ψ̄aσ̄cdψ̄bM

−
2

3
ψ[aσ

cdeψ̄b]Ae , (B.29)

which gives

Rab
ab| = R− 2iψaσbψ̄

(cov)
ab − 2iψ̄aσ̄bψ

(cov)
ab +

1

3
ψ̄aσ̄

abψ̄bM+
1

3
ψaσ

abψb M̄+
2

3
ψaσ

abcψ̄bAc .

(B.30)

B.3 Supersymmetry transformations

For completeness we give also the supersymmetry transformations of the component fields.

They are given by

δem
a = −ǫβTβm

a|+ ǭβ̇Tβ̇m
a|

δψm
α = −Dmǫ

α − ǫβTβm
α|+ ǭβ̇Tβ̇m

α|

δψ̄m
α̇ = −Dmǭ

α̇ − ǫβTβm
α̇|+ ǭβ̇Tβ̇m

α̇|

δM = −6ǫαDαR|

δM̄ = 6ǭα̇Dα̇R
†|

δAa = −6(ǫαDα − ǭα̇Dα̇)Ga| . (B.31)

4The form of ωcd can be found from the constraint Tab
c = 0 but we will not need its explicit form. Note

that it will contain ψ2-terms but these will not contribute to the equations of motion in our case.
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Using the superspace constraints in section B.1 and the component results in section B.2

we find

δem
a = −iψ̄mσ̄

aǫ− iψmσ
aǭ

δψm
α = −Dmǫ

α +
i

3
ǫαAm +

i

6
(σmb ǫ)αA

b −
i

6
(σm ǭ)

αM

δψ̄m
α̇ = −Dmǭ

α̇ −
i

3
ǭα̇Am −

i

6
(σ̄mb ǭ)

α̇Ab −
i

6
(σ̄m ǫ)

α̇ M̄

δM = −ǫ σcdψ
(cov)
cd

δM̄ = −ǭ σ̄cdψ̄
(cov)
cd

δAa =
1

8
(3ǭ σ̄cdσ̄aψ

(cov)
cd − ǭ σ̄aσcdψ

(cov)
cd − 3ǫ σcdσaψ̄

(cov)
cd + ǫ σaσ̄cdψ̄

(cov)
cd ) . (B.32)

B.4 Quadratic gravitino terms from Weyl2 invariant in AdS4

Supersymmetric Lagrangians can be constructed as

e−1L =
(
1
2D

αDα + i(ψ̄aσ
a)αDα + M̄+ ψ̄aσ̄

abψ̄b

)
r|+ h.c. , (B.33)

where r is a chiral superfield. Taking r = −1
4W

αβγWαβγ gives the Weyl-squared invariant.

In this section we shall compute the terms quadratic in the gravitino in the AdS4 background

given by M = 3a and Rab
cd given in (3.5).

Using these expressions it is not hard to see that the curvature terms in (B.23) do not

give any contribution to the quadratic gravitino terms in the action in this background.

Similarly the term GabG
ab| can not give any quadratic gravitino contribution. Using (B.23)

and (B.17) we find that the quadratic gravitino terms in the AdS4 background are

e−1Lψ =
a

2
W 2| −

i

2
(σab)(αβ(σc)γ)β̇DcTab

β̇|Wαβγ |+ h.c. . (B.34)

Using the fact that

DaTbc
γ̇ | = Daψ̄bc

γ̇ +
i

3
(σ̄[bD|a|ψc])

γ̇M̄+ . . . , (B.35)

together with

Wαβγ | = (σde)(αβψ
γ)
de + . . . , (B.36)

where . . . denotes terms that vanish in the AdS4 background when expanded to linear order

the two W 2-terms cancel and we find

e−1Lψ =
i

2
(σab)αβ(Dcψ̄abσ̄

c)γ (σde)(αβψdeγ) + h.c. . (B.37)

Simplifying and dropping total derivatives we finally arrive at the Lagrangian

e−1Lψ =
4

3

(
iDdψ̄

abσ̄dψab − iψ̄abσ̄dDdψab + iDdψ̄a
cσ̄abdψbc + iψ̄b

cσ̄abdDdψac

)
.(B.38)
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C Relations between regular modes in AdS4

AdS4 admits four Killing spinors ǫ+ and four Killing spinors ǫ−, satisfying

∇µǫ+ = 1
2a γµ ǫ+ , ∇µǫ− = −1

2a γµ ǫ− . (C.1)

These can be used in order to map between modes of different spins. We begin by defining

the second-order operators, and eigenvalues, for each spin:

Spin 0 : ∆0 φ ≡ −�φ = λ0 φ ,

Spin 1
2 : /Dψ ≡ γµ∇µψ = λ1/2 ψ ,

Spin 1 : ∆1Vµ ≡ −�Vµ +Rµν V
ν = λ1 Vµ ,

Spin 3
2 : /Dψµ ≡ γν∇νψµ = λ3/2 ψµ ,

Spin 2 : ∆Lhµν ≡ −�hµν − 2Rµρνσ h
ρσ +Rµρ h

ρ
ν +Rνρ hµ

ρ = λL hµν . (C.2)

Note that we assume transverse and traceless conditions for the modes of spins 1, 3
2 and 2,

and so

∇µVµ = 0, ∇µψµ = 0 , γµψµ = 0 , ∇µhµν = 0 , hµµ = 0 . (C.3)

In the AdS4 background, and setting a = 1 for convenience, we have

Rµνρσ = −gµρ gνσ + gµσ gνρ , Rµν = −3gµν , (C.4)

and so the spin 1 and spin 2 operators become

∆1 = −�− 3 , ∆L = −�− 8 . (C.5)

By default, we shall consider the case where the Killing spinors ǫ+ are used for relating

the various modes, and for brevity we shall just denote these by ǫ. We find that the relations

between the modes are implemented as follows:

ψ = φ ǫ+
1

λ1/2 + 1
∇µφγ

µǫ ,

Vµ = ǭγµψ −
1

λ1/2 +
3
2

ǭ∇µ ψ ,

ψµ = Vµ ǫ+
1
4c(1− 2λ3/2 − 2λ23/2) γµν V

ν ǫ+ c(1 + λ3/2)∇νVµ γ
ν ǫ− c∇µVν γ

ν ǫ

−
1

2λ3/2
γµνρ∇

νV ρ ǫ+ 1
2c∇(µ∇ν)Vρ γ

νρ ǫ ,

hµν = ǭγ(µ ψν) −
2

2λ3/2 + 5
ǭ∇(µ ψν) , (C.6)
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where c−1 = λ3/2 (2+λ3/2). (The relative coefficients between the terms in each expression

are uniquely determined by requiring that the irreducibility conditions in (C.3) hold, and

that the constructions should map eigenfunctions into eigenfunctions.) These formulae

furnish a systematic way of constructing the spin 1/2, 1, 3/2 and 2 solutions, starting from

the spin 0 solution, and the knowledge of the Killing spinor. The spin 0 solution has been

studied in great detail in [19]. Alternatively, starting from the spin 2 solution, we can obtain

from it the spin 3/2, 1, 1/2 and 0 solutions by employing the formulae

ψµ = hµν γ
ν ǫ−

1

λ3/2
∇ρhµν γ

νρ ǫ ,

Vµ = ǭψµ ,

ψ = Vµ γ
µ ǫ+

1

λ1/2
∇µVν γ

µν ǫ ,

φ = ǭψ . (C.7)

The corresponding relations between the eigenvalues are

λ0 = −λ21/2 + λ1/2 + 2 ,

λ1 = −λ21/2 − λ1/2 ,

λ1 = −λ23/2 + λ3/2 ,

λL = −λ23/2 − λ3/2 − 4 . (C.8)

(If ǫ− is used instead of ǫ+, the effect is to reverse the signs of the fermion eigenvalues in

these expressions.)
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