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Depletion of serotonin in the basolateral amygdala elevates
glutamate receptors and facilitates fear-potentiated startle
L Tran1, BK Lasher2, KA Young3,4 and NB Keele1,2

Our previous experiments demonstrated that systemic depletion of serotonin (5-hydroxytryptamine, 5-HT), similar to levels
reported in patients with emotional disorders, enhanced glutamateric activity in the lateral nucleus of the amygdala (LA) and
potentiated fear behaviors. However, the effects of isolated depletion of 5-HT in the LA, and the molecular mechanisms underlying
enhanced glutamatergic activity are unknown. In the present study, we tested the hypothesis that depletion of 5-HT in the LA
induces increased fear behavior, and concomitantly enhances glutamate receptor (GluR) expression. Bilateral infusions of
5,7-dihydroxytryptamine (4mg per side) into the LA produced a regional reduction of serotonergic fibers, resulting in decreased
5-HT concentrations. The induction of low 5-HT in the LA elevated fear-potentiated startle, with a parallel increase in GluR1
mRNA and GluR1 protein expression. These findings suggest that low 5-HT concentrations in the LA may facilitate fear behavior
through enhanced GluR-mediated mechanisms. Moreover, our data support a relationship between 5-HT and glutamate in
psychopathologies.
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INTRODUCTION
Despite the growing prevalence of emotional disorders in modern
society, the underlying pathophysiology is still unknown. How-
ever, clinical and preclinical evidence implicate neuronal hyper-
excitability in the amygdala as a pivotal factor contributing to
emotional disturbances, such as pathological fear, aggression and
anxiety.1–3 When epileptic foci, characterized by hyperexcitable
neurons, are located in the amygdala, patients often report
comorbid emotional disturbances during the interictal period.
Experiments in animal models also show that kindling-induced
hyperecitability in the amygdala can potentiate abnormal
emotional behaviors.4 This evidence supports the possibility that
emotional disorders involve neuronal hyperexcitability in the
amygdala.

Many phenotypes can facilitate neuronal hyperexcitability such
as low serotonin (5-hydroxytryptamine; 5-HT), a hallmark char-
acteristic of patients with emotional disorders.5 Previous studies in
rodent models demonstrate that systemic depletion of 5-HT can
induce functional changes in the amygdala, including increased
excitatory post-synaptic potentials and burst firing.6,7 Moreover,
animals with lower 5-HT levels exhibit increased aggressive
behaviors and enhanced fear-potentiated startle (FPS).1,8 These
studies suggest that low 5-HT facilitates abnormal emotional
behavior through an induction of neuronal hyperexcitability in the
amygdala.

Excitability in the amygdala is mediated by glutamatergic
signaling, and is enhanced under various conditions.9–11

Glutamatergic signaling can be strengthened by increased
glutamate receptor (GluR) expression, which has been observed
in kindled animals.12–14 Importantly, when GluRs are over-
expressed in the amygdala of animals, there is an elevation of

abnormal behaviors,15 suggesting that an upregulation of GluRs
may mediate low 5-HT-induced abnormal behaviors. In support,
our preliminary experiments show that systemic depletion of 5-HT
can enhance expression of GluR in the amygdala.16

An important determinant that remains to be investigated is
whether depletion of 5-HT acts directly in the amygdala, or
indirectly through connecting brain regions that input onto the
amygdala such as the hippocampus or sensory cortex. Therefore,
the aim of the present study was to investigate whether selective
depletion of 5-HT in the amygdala would elevate fear responses,
anxiety-like behavior and expression of GluRs in the amygdala.

MATERIALS AND METHODS
Animals
All experimental animal procedures were conducted in accor-
dance with the Guide for the Care and Use of Laboratory Animals
and conformed to a protocol approved by Baylor University
Institutional Animal Care and Use Committee. Male Sprague–
Dawley rats, approximately 150 g upon arrival (n¼ 60; Harlan,
Houston, TX, USA) were group-housed in a light-controlled, 12-h
light/dark cycle and temperature-controlled (23 1C) room. Com-
mercial rodent pellets and water were provided ad libitum. All
animals were allowed to acclimate to the facility at least 1 week
before experimentation.

Stereotaxic lesion of 5-HTergic fibers
507-Dihydroxytryptamine (5,7-DHT) selectively lesions local
serotonergic fibers when combined with systemic treatment
with desipramine.17,18 Animals received pre-surgical intraperi-
toneal (i.p.) injections of desipramine (30 mg/kg) 30 min before
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anesthesia to protect norepinephrine transporters. Animals were
then anesthetized with i.p. injections of equithesin (25 mg kg� 1

pentobarbital, 150 mg kg� 1 chloral hydrate). Using a stereotaxis
device (Kopf Instruments, Tujunga, CA, USA) and aseptic
technique, a midline incision was made and 1.5 mm holes were
drilled in the skull � 2.7 mm posterior to bregma and ±4.7 mm
lateral from the midline. The tip of a 1-ml 22-G Hamilton
microsyringe (Hamilton Co., Reno, NV, USA) was lowered 6.5 mm
from the skull surface into the lateral amygdala (LA). Rats receive
bilateral infusions of either 5,7-DHT (8 mg/ml) or vehicle (VEH) (1%
ascorbic acid/saline) at a rate of 0.5 ml over 2.5 min as previously
described.19 The needle remained in place for an additional 5 min
following infusion. Animals were individually housed following
surgery to prevent post-surgical complications, and allowed to
recover for 1 week before experiment initiation.

FPS
The FPS protocol was conducted as previously described.20,21 On
days 1 and 2, the rats were acclimated to the testing chambers
(Acoustic Startle Reflex System, Med Associates Inc., St Albans, VT,
USA) for 30 min followed by habituation. Habituation sessions
consisted of 30 pseudo-random exposures to 90, 95 or 105 dB
white noise bursts (30–50 ms duration) with an interstimulus
interval of 30 s. On day 3, rats received fear-conditioning training.
In the same startle chambers, the animals received 10 pairings (CS-
US) of an 80-lux fluorescent light (3.2 s) with a rapid onset of 15 ms,
immediately followed by a 0.6-mA foot shock (50 ms) with a
variable 2–4 min interstimulus interval. FPS testing occurred on
day 4. Rats initially received five exposures of each dB startle in
pseudo-random order (NA1). During the next block, 50% of the
startles were paired with the light cue (CSþ ). Finally, a second
block of startle stimuli was delivered identical to NA1 (NA2). There
was an interstimulus interval of 30 s between each NA1, CSþ and
NA2 presentations. The startle response was measured by an
accelerometer and quantified as the baseline-subtracted ampli-
tude of the first peak (deflection) within 50 ms of the startle noise
burst. Measurements were recorded by a computer and stored for
later analysis (Startle-FPS Pro Series, Med Associates Inc.). FPS was
calculated as the increase in startle amplitude during the presence
of a light (CSþ ) normalized to the startle amplitude obtained
from the average of the noise alone NA1 and NA2 trials (CS� ) and
expressed as a percentage. Only amplitudes in response to 95 dB
white noise bursts were analyzed to limit ceiling effects.

Elevated-plus maze (EPM)
Anxiety-like behavior was assessed on the EPM as previously
described.22 The procedure room was approximately 23 1C and
was dimly lit. Animals were allowed to acclimate to the room for
30 min and then placed in the center of the EPM facing an open
arm. Each rat was allowed to explore for 5 min while being
recorded by a ceiling-mounted camera, and the video footage was
analyzed by an investigator blind to treatment. The percentage of
time spent in the open arms and the number of open arm entries
were used to quantify anxiety-like behavior, with decreased open
arm exploration and entries indicating higher anxiety.

Sample collection
Rats were euthanized by rapid decapitation with an animal
guillotine. Brains were washed in cold phosphate-buffered saline
(2–4 1C) and 2 mm slices containing the amygdala at 2.5 mm
posterior to Bregma were dissected. Bilateral tissue-punches of
1 mm diameter were isolated from the amygdala, dorsal
hippocampus and overlying cortex using a 1.0-mm diameter core
sampler. The samples were weighed, flash frozen with dry ice/
EtOH and stored at � 80 1C for subsequent analysis. Rats used for
histology were anesthetized with equithesin (35 mg kg� 1 sodium

pentobarbital; 145 mg kg� 1 chloral hydrate) followed by transcar-
dial perfusion of phosphate-buffered saline and 4% paraformal-
dehyde in phosphate-buffered saline for 5 min each. Whole brains
were extracted and post-fixed overnight in 4% paraformaldehyde
at 4 1C. The brains were then incubated overnight in Dulbecco’s
phosphate-buffered salineþ sodium azide followed by cyropro-
tection in 10% sucrose, 20% sucrose and finally 30% sucrose. The
brains were sectioned at 20 mm on a cryostat sliding microtome
and mounted on slides.

Immunohistochemistry
The tissue slices were hydrated with tris-buffered saline (TBS).
Endogenous peroxidases were blocked (30% H2O2/MetOH) and
the tissue was permeablized (100 mM lysine, 0.1% Triton X and
10% goat serum). The slides were washed in TBS and incubated in
mouse anti-serotonin transporter (SERT) (Chemicon, Temecula, CA,
USA) in 10% goat serum overnight. The following day, the slides
were incubated with goat anti-mouse conjugated with HRP
(Millipore, Bellerica, MA, USA) followed by TBS washes. The slides
were processed with 3,30-diaminobenzidine/Ni/H2O2 and dehy-
drated through graded EtOH, cleared with xylene and cover-
slipped with permount.

High-performance liquid chromatography (HPLC)
HPLC was performed as previously described.23 Tissue samples
were first protonized with 0.4 M HClO4 and 2 mM 2,3-dihydrox-
ybenzoic was added as an internal standard. The samples were
homogenized and centrifuged at 14 000 g for 15 min at 4 1C. The
supernatants were collected and analyzed by HPLC coupled with
electrochemical detection using a ESA CoulArray system (Thermo
Scientific, Sunnyvale, CA, USA) containing two pumps with a flow
of 0.420 ml min� 1. The mobile phase contained 0.05 mM potas-
sium phosphate, 8.5 mg/50 ml octylsulfate and 14% methanol (pH
2.65). A C18 reverse-phase column was used to separate
neurotransmitters. Standards prepared were 100 mM of 3,4-
dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenethylamine
(dopamine), 5-hydroxyindoleacetic acid and 5-HT.

Western blot analysis
Tissue samples were homogenized in 20 volumes of homogeniz-
ing buffer (50 mM Tris-HCl (pH 7.4), 1 mM EDTA), supplemented
with a protease inhibitor cocktail containing 104 mM 4-(2-
aminoethyl) benzenesulfonyl fluoride hydrochloride, 0.08 mM

aprotinin, 2.1 mM leupeptin, 3.6 mM bestatin, 1.5 mM pepstatin A
and 1.4 mM E-64 (Sigma, St Louis, MO, USA). Samples were
centrifuged at 5000 g for 5 min. The membrane fractions were
reconstituted with 20 volumes of lysis buffer (50 mM Tris-HCl, pH
7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM

EDTA, 1 mM phenylmethylsulfonyl fluoride, 1 mM Na3VO4 and 1 mM

NaF) with protease cocktail and incubated on ice for 30 min
followed by centrifugation at 14 000 g for 20 min. The supernatant
was collected and the protein concentration was determined by
Bradford assay (Millipore). Approximately 30 mg of protein was
separated on a 4–20% gradient polyacrylamide gel (Bio-Rad,
Hercules, CA, USA) and transferred to poly(vinylidene fluoride)
membrane (Millipore) using a wet transfer system (Bio-Rad). The
membranes were blocked with 3% nonfat milk in TBS for 1 h
followed by incubation with rabbit anti-GluR1-4 (Chemicon) over-
night at 4 1C. Membranes were washed with TBS and incubated
with HRP-conjugated goat anti-rabbit antibody (Millipore) for
30 min. Following the washes, bands were developed using an
ECL Western Blot Detection Kit (Amersham, Piscataway, NJ, USA).

Quantitative reverse transcriptase-PCR (qRT-PCR)
Quantification of mRNA expression was performed as previously
described.16 Whole-cell RNA was extracted using TRI Reagent
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(Molecular Research Center, Cincinnati, OH, USA) and
concentration of total RNA was determined by spectro-
photometry (l¼ 260 nm). Extraction was followed by cDNA
synthesis and real-time PCR using Dynamo SYBR Green 2-step
qRT-PCR kit (NEB, Ipswich, MA, USA) in a total reaction volume of
25ml. Primers for GluR analysis were obtained from integrated
DNA Technologies (Corraville, IA, USA). A common primer that
recognizes all GluR subunits and a specific primer for GluR1 were
used. The common GluR primer was fwd: 5’-TCGTACCACCATT
TGTTTTTCA-3’ and the GluR1 primer was rev: 5’-AAGAGGGA
CGAGACCAGACAAC-3’. Primers for 18S (Maxim Biotech, San
Francisco, CA, USA), used for normalization, were sense:
50-CCGCAGCTAGGAATAATGGAATAGGAC-30 and antisense: 50-GTT
AGCATGCCGAGAGTCTCGTTC-30 (Maxim Biotech). The reaction
was performed on a Corbett Rotor-Gene 6000 (Qiagen, Valencia,
CA, USA) with the initial denaturation at 95 1C for 15 min, followed
by 40 cycles of denaturing at 94 1C for 10 s, annealing at 59.4 1C for
30 s and extension 72 1C for 30 s, and a final extension at 72 1C for
10 min. Changes in GluR1 transcripts were quantified using the
comparative DDC(T) method.

Experimental design
Rats were assigned to one of two treatment groups, 5,7-DHT or
VEH, and received stereotaxic infusions accordingly. Rats were
further subdivided into three separate groups that were either
subjected to fear-conditioning protocol, anxiety assay or eutha-
nized for biochemical and molecular assays. Because of the
influence of FPS on GluR1 expression,24 animals used for
molecular assays were not exposed to behavioral assays. The
brains of animals subjected to behavioral testing were used for
SERT immunohistochemistry. An amygdala tissue sample was

isolated from each brain hemisphere of the remaining animals
that did not undergo behavioral testing. One sample was used for
qRT-PCR, and the other sample was used for HPLC and western
blotting. The assay assignment for each sample was randomized
to control for possible lateralization effects.

Statistical analysis
A Student’s unpaired t-test was used to analyze biochemical and
molecular experiments for significance. A one-way analysis of
variance (ANOVA) was used to analyze behavioral data followed
by a Tukey-Kramer’s post-hoc test to compare the means. Grubbs’
test was used to detect significant outliers, which were removed
from further data analysis. A Pearson product-moment correlation
coefficient was calculated followed by regression analysis, to
determine strength of the relationship between 5-HT concentra-
tion and GluR1 mRNA and protein levels. The means and SEM are
reported and significance was analyzed using GraphPad Prism
Software (Ver 4.3, LaJolla, CA, USA), where significance was
defined as Po0.05.

RESULTS
5,7-DHT treatment decreased 5-HTergic fiber density and reduced
5-HT levels
The serotonergic fibers were visualized by 5-HT transporter (SERT)
immunostaining. As shown in the photomicrograph (Figure 1a),
animals treated with VEH had robust positive SERT staining in the
LA. Following 5,7-DHT treatment, there was a qualitative decrease
in 5-HTergic fibers, which was constrained to the infusion area at
coordinates posterior � 2.7 mm and lateral 4.8 mm from bregma,
and depth 6.7 mm measured from the skull (Figure 1b). The size of

Figure 1. 5,7-Dihydroxytryptamine (5,7-DHT) infusion decrease serotonergic fibers innervating the lateral amygdala (LA). (a) Visualization of
serotonin transporter (SERT) immunoreactivity (� 2.5 magnification) highlights serotonergic fibers innervating the amygdala. The LA is
demarcated (top). At � 40 magnification, individual 5-HTergic fibers are clearly discernable (bottom). (b) SERT immunoreactivity was greatly
reduced in 5,7-DHT-infused animals. Fibers are still intact in the basal nucleus of the amygdala, amygdalostriatal transition area and central
nucleus of the amygdala (top). Within the diffusion radius, there is a clear reduction in the number of fibers (bottom). (c) A summary of the
diffusion radius is shown. CC, central nucleus of the amygdala, capsular division; CL, central amygdala nucleus, lateral division; CM, central
nucleus of the amygdala, medial division.
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the 5-HTergic fiber reduction was approximately 1 mm in diameter
and extended slightly beyond the LA to include adjacent areas of
the central amygdala, basal amygdala and portions of the dorsal
striatum.

Microinjections of 5,7-DHT into the LA decreased 5-HT
Depletion of 5-HT in the LA was verified by HPLC analysis. Analysis
of monoamines and metabolites showed that 5,7-DHT infusions
selectively reduced 5-HT by an average of 43.4±6.7% (P¼ 0.0004)
and its primary metabolite 5-hydroxyindoleacetic acid by an
average of 27.9±9.8% (P¼ 0.03) in comparison to VEH-infused
animals (Table 1). There was no significant treatment effect on
dopamine (P¼ 0.34) or its metabolite DOPAC in the amygdala
(P¼ 0.09). There were no significant changes in analyzed
monoamines or metabolites in the hippocampus or cortex
(P40.10), confirming region specificity.

5,7-DHT treatment increases FPS
Treatment with 5,7-DHT did not have a significant effect on
baseline startle, and the startle amplitudes for 5,7-DHT animals to
95 dB startle stimuli during habituation was 104±9% compared
with VEH controls at 100±36% (Figure 2a); P40.05. On test day,
5,7-DHT had startle amplitudes of 96±11% normalized in

comparison to VEH-treated animals at 100±10% (Figure 2b);
P40.05. Following FPS training, both 5,7-DHT-infused and VEH-
infused rats showed FPS (Figure 2c), but there was a significant
effect of 5,7-DHT treatment on startle amplitudes (F(1, 31)¼ 4.522,
Po0.05). FPS amplitude was increase to 198±18% in rats treated
with intra-amygdala infusions of 5,7-DHT in comparison to VEH-
infused control rats (152±9%).

5,7-DHT treatment does not influence anxiety-like behavior
Because the amygdala is also involved in unconditioned fear, we
evaluated the behavioral effects of low 5-HT on anxiety-like
behavior on the EPM (Supplementary Figure 1). When exposed to
the EPM, animals treated with 5,7-DHT averaged 4.5±1.5 open
arm entries compared with VEH-treated animals (4.0±0.8;
P¼ 0.79). There was no difference in percent time spent in the
open arms between 5,7-DHT-treated animals (20.8±9.5%) com-
pared with VEH controls (16.7±5.2%; P¼ 0.64), indicating no
difference in anxiety-like behavior.

5,7-DHT treatment increases GluR1 mRNA
In order to quantify the levels of GluR1 mRNA, the primary subunit
comprising GluRs, samples collected from the amygdala were
analyzed by qRT-PCR. Following 5,7-DHT treatment, there was an

Table 1. 5,7-DHT treatment decreases 5-HT levels in the LA

Amygdala Hippocampus Cortex

VEH 5,7-DHT VEH 5,7-DHT VEH 5,7-DHT

5-HT 3.96±0.26 2.24±0.25*** 1.39±0.12 1.25±0.21 1.23±0.24 0.99±0.09
5-HIAA 4.77±0.44 3.44±0.43* 2.49±0.16 2.32±0.24 1.85±0.34 1.41±0.16
DA 6.50±1.76 4.41±1.29 0.85±0.24 0.74±0.26 0.45±0.03 0.78±0.18
DOPAC 3.50±1.18 1.82±0.37 0.24±0.03 0.27±0.08 0.30±0.06 0.17±0.02

Abbreviations: 5,7-DHT, 5,7-dihydroxytryptamine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine; DA, dopamine; DOPAC, 3,4-dihydroxyphe-
nylacetic acid.
Amino levels are expressed as the mean concentration (nmol g� 1 of tissue)±s.e.m. *Po0.05; ***Po0.001 by Student’s unpaired t-test.

Figure 2. 5,7-Dihydroxytryptamine (5,7-DHT) infusions into the amygdala increase fear-potentiated startle (FPS). (a) During habituation,
acoustic startle reflex to noise alone was unchanged by amygdala 5,7-DHT treatments. (b) The startle response to 95 dB noise alone recorded
during training was also unchanged by intra-amygdala infusion of 5,7-DHT. (c) In VEH-infused rats (n¼ 15), the FPS reflex was lower than
animals treated with 5,7-DHT infusions (n¼ 18). Data represents mean±s.e.m., and *Po0.05 by one-way analysis of variance.
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average 97.9-fold increase in GluR1 mRNA in the amygdala
(Figure 3a). The normalized number of PCR cycles (relative to 18S
rRNA) to detection threshold (DC(T)) for GluR1 transcripts in the
amygdala was decreased from 3.98±2.40 cycles in samples from
control to � 2.64±2.02 in samples from 5,7-DHT-treated animals
(P¼ 0.03). There were no significant differences in DC(T) values for
hippocampus (VEH: 0.87±2.49, 5,7-DHT: 0.28±3.65; P¼ 0.91) or
cortex (VEH: 1.74±3.39, 5,7-DHT: 2.49±2.67; P¼ 0.88).

5,7-DHT treatments increase GluR1 protein expression
To confirm changes in mRNA translate to protein expression,
protein extracts from the amygdala were analyzed by western blot
analysis. Results showed a 5,7-DHT treatment-associated increase
in GluR1 protein expression in the amygdala (Figure 3b; left). In
the hippocampus, 5,7-DHT treatments did not appear to affect the
protein expression of GluR1 (right). Immunoreactive bands were

further quantified and normalized to levels of b-actin. Results
indicated an overall 58.8±0.26% increase in GluR1 expression in
the amygdala of 5,7-DHT-treated animals compared with VEH
controls (P¼ 0.04). Although the mean of hippocampus GluR1
expression was higher in 5,7-DHT-infused animals, there was also
an increase in variance, and the difference was not statistically
significant (VEH: 0.04±0.02, 5,7-DHT: 0.11±0.06; P¼ 0.24).

Concentrations of 5-HT level negatively correlate with GluR1
expression
Concentrations of 5-HT were compared with both GluR1 mRNA
expression and protein expression. The results indicated a
negative correlation between 5-HT and GluR1 mRNA (r¼ � 0.70;
P¼ 0.004) as well as protein levels (r¼ � 0.91; Po0.001).
Correlations are shown in Figure 3c, and curves were fitted using
a nonlinear log-3 parametric function (Y¼ � 4.967� 4.967/

Figure 3. 5,7-Dihydroxytryptamine (5,7-DHT) treatments increase glutamate receptor 1 (GluR1) expression in the amygdala. (a) There was a
significant increase in GluR1 transcripts in 5,7-DHT-treated animals (n¼ 10) compared with VEH-treated control animals (n¼ 8) in the
amygdala. No differences were seen in the hippocampus or cortex. Log transformed fold-changes in mRNA levels are expressed as
mean±s.e.m., and *Po0.05 by unpaired Student’s t-test. (b) Western blot analysis of tissue samples obtained from (left) the amygdala and
(right) hippocampus of VEH-treated controls (n¼ 5) and 5,7-DHT-treated animals (n¼ 4) reveals positive GluR1 bands at B105 kDa.
Representative blots are shown (bottom). GluR1 expression from each sample was normalized to b-actin bands at B43 kDa (GluR1/b-actin).
Data represent mean±s.e.m., and *Po0.05 by unpaired Student’s t-test. (c) A Pearson product-moment correlation coefficient was calculated
to determine the relationship between 5-HT and GluR1 mRNA expression (r¼ � 0.70; P¼ 0.004) as well as protein expression (r¼ � 0.91;
Po0.001). Scatter plots are shown for (left) GluR1 mRNA and (right) GluR1 protein, and best-fit lines were calculated using nonlinear and linear
regression, respectively.
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1þ 10(Xþ 2.62); R2¼ 0.96) for GluR1 mRNA and linear regression
(Y¼ � 0.004Xþ 0.02; R2¼ 0.83; F(1,8)¼ 38.64; P¼ 0.003) for protein
expression.

There was no effect of 5,7-DHT treatments on GluR2-4 protein
expression
Treatment with 5,7-DHT did not influence expression levels of
GluR2 in either the amygdala or hippocampus in comparison to
VEH controls (Figure 4a). Quantification of the optical densities
confirmed levels of GluR2 in the amygdala were not significantly
elevated (VEH: 0.02±0.01, 5,7-DHT: 0.03±0.01; P¼ 0.36). Ratios of
GluR1/GluR2 were calculated (Figure 4b), and results indicate an
increase in ratio in the amygdala (P¼ 0.04) following 5,7-DHT
treatments (0.49±0.08) when compared with VEH-treated animals
(0.29±0.05). In contrast, there was a trend for an increase in GluR2
subunits in the hippocampus (VEH: 0.01±0.002, 5,7-DHT:
0.05±0.02; P¼ 0.09). Power analysis suggested that adding an
additional two animals per group would improve the power to
detect a significant difference with this effect size. When ratios
between GluR1/GluR2 were calculated, there was no significant
difference between treatment groups (VEH: 3.60±1.53; 5,7-DHT:
2.27±1.31; P¼ 0.26). Analysis of GluR3 showed no significant
differences between groups (VEH: 6.52±2.38; 5,7-DHT: 2.25±0.86;
P¼ 0.11), and analysis of GluR4 revealed similar results (VEH:
0.37±0.07; 5,7-DHT: 0.66±0.16; P¼ 0.06).

DISCUSSION
The purpose of the present investigation was to examine the
effects of isolated depletion of 5-HT in the LA on fear- and anxiety-
like behavior, and to delineate the biological correlates involved.

Using 5,7-DHT infusions into the LA, we selectively lowered 5-HT
in the LA and observed enhanced FPS, but not anxiety-like
behaviors. Depletion of 5-HT in the LA correlated with increased
GluR1 mRNA and protein expression, indicating that low 5-HT may
induce amygdala hyperexcitability by enhancing GluR expression.
Overall, our results showed that reducing levels of 5-HT in the
amygdala could potentiate amygdala glutamatergic neurotrans-
mission and promote fear behaviors.

Inducing low 5-HT in the LA
Previously, our lab demonstrated that systemic depletion of 5-HT
facilitated fear learning, elevated amygdala excitatory post-
synaptic potential and increased amygdala GluR1 transcrip-
tion.1,6,16,21 These and other findings support a pivotal role for
perturbed amygdala 5-HT and enhanced glutamatergic
mechanisms in the pathophysiology of emotional disorders.
In the present study, we investigated the specific effect of
depleting 5-HT in the LA on fear- and anxiety-like behaviors. Using
5,7-DHT microinjections into the LA, there was a robust reduction
in amygdala serotonin, consistent with similar studies.25–28 The
5-HT levels in the hippocampus and cortex were unaffected,
and there was no change in dopamine or DOPAC in any
brain region examined. Although our histological data showed
that 5-HT depletion was most prominent in the LA, other areas
were also affected including the CeA, which can influence
startle and anxiety spectrum behaviors.29 Thus, although 5-HT
depletion was effectively constrained to the LA, the interpretation
of intra-amygdala localization of the observed effects is limited.
However, as unconditioned startle amplitudes and anxiety
observed on the EPM were not changed, the potential of

Figure 4. Glutamate receptor 2 (GluR2) protein expression is unchanged in the amygdala and the hippocampus following intra-lateral
amygdala (LA) 5,7-dihydroxytryptamine (5,7-DHT) administrations. (a) Western blot analysis of tissue samples obtained from (left)
the amygdala and (right) hippocampus of VEH-treated controls (n¼ 5) and 5,7-DHT-treated animals (n¼ 4) reveals positive GluR2
bands at B106 kDa. Representative blots show are shown (top). GluR2 expression from each sample was normalized to b-actin bands
at B43 kDa (GluR2/b-actin). Data represent mean±s.e.m., and P40.05 by unpaired Student’s t-test. (b) Ratios between GluR1/GluR2
expression were calculated for the (left) amygdala and (right) hippocampus. Data represent mean±s.e.m. and *Po0.05 by unpaired Student’s
t-test.
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5,7-DHT influencing regions associated with unconditioned fear
can be eliminated.

The effect of decreasing 5-HT in the LA on fear and anxiety
Having established a reduction in 5-HT with 5,7-DHT treatments,
our next goal was to examine the effects of low 5-HT in the LA on
the cardinal behaviors regulated by the amygdala including fear
and anxiety. Activation of 5-HT receptors in the LA inhibits the
output because of the specific localization of the different
subtypes.7,30 A reduction in 5-HT decreases 5-HT2A and 5-HT3-
mediated excitation of inhibitory interneurons, and concomitantly
attenuate 5-HT1A and 5-HT1B-mediated inhibition of excitatory
projection neurons. In result, we found that treatment with
5,7-DHT induced exaggerated fear responses measured in the FPS
paradigm, which is consistent with our previous study that
reported low systemic 5-HT could enhance fear learning.21 An
important caveat to note is that our experiments do not fully
distinguish whether the effects of low 5-HT influence mechanisms
associated with acquisition or expression of fear. As the rats are
infused before fear conditioning, the treatment could potentially
influence mechanisms associated with acquisition and/or
expression. However, previous studies investigating the role of
GluR1 in fear conditioning have demonstrated that GluR1
regulation occurs predominantly at acquisition of fear
memory.31 Together with our results, this suggests that low
5-HT-induced increase in fear learning is a result of increased GluR1
during the acquisition of fear memory. However, we cannot
preclude the possibility of 5,7-DHT-induced changes in the
expression of fear. In addition to conditioned fear behaviors,
clinical data have implicated 5-HT involvement in anxiety spectrum
behaviors.32 Furthermore, previous studies in animal models have
reported a facilitation of anxiety-like behavior following systemic
depletion of 5-HT.33 However, in contrast to the FPS effects
resulting from a decrease in amygdala 5-HT, we observed no
influences on anxiety-like behavior, which supports previous studies
using similar 5,7-DHT infusions into the LA.18 Thus, the evidence
from present study suggests that a decrease in 5-HT levels in the LA
selectively facilitates abnormally heightened conditioned fear
learning, but not unconditioned anxiety-like behaviors.

The potential role of GluRs in facilitating low 5-HT-induced
behaviors
The next aim was to examine potential biological correlates that
may be responsible for the low 5-HT-enhanced fear behaviors
observed. Specifically, we investigated GluR expression in the LA
by quantifying changes of individual subunits in response to 5,7-
DHT treatments. We observed an upregulation of GluR1 mRNA
and protein expression in 5,7-DHT-infused animals, similar to our
previous findings in the LA of animals with systemic depletion of
5-HT.16 The GluR1 expression levels correlated with the
concentration of 5-HT in the LA, suggesting a significant
relationship between 5-HT levels and GluR expression. In
contrast to GluR1 subunits, we discovered that the expression
level of GluR2 subunits, which decreases calcium permeability and
attenuates excitability, were unchanged in the LA. The increase in
GluR1 in the absence of an increase in GluR2 indicates an overall
enhancement of neuronal excitability in the LA because of low 5-
HT. We have suggested previously that including low 5-HT may
enhance the degree of rectification of glutamatergic synaptic
currents in the LA, and reflect a decrease in the relative
contribution of GluR2-containing GluRs.1 Thus, our data suggest
that low levels of 5-HT in the amygdala may facilitate neuronal
hyperexcitability at least in part by upregulating GluR expression.
Although the specific 5-HT receptor subtype(s) in the LA-
mediating changes in GluR1 expression and exaggerated FPS
are of interest, we did not attempt to delineate the role of 5-HT
receptors in the present study. However, our previous

investigation suggests that increased GluR1 and enhanced FPS
following a decrease in 5-HT may be mediated by deficient 5-HT2A

signaling,20 and future experiments beyond the scope of the
present study will test this hypothesis.

Clinical implications
The present findings have important implications for the role of
glutamate in regulating emotions. Studies in patients have
suggested that GluR antagonist, such as ketamine, can be
effective in treating mood disorders.34 Animal studies have also
found the effects of ketamine to be comparable to traditional
mood stabilizers,35 and similar results were observed with other
GluR antagonists, including NPC 17742 and phencyclidine.36 In
addition, 5,5-diphenylhydantoin (phenytoin), which can block
GluR responses,37,38 has been shown to be effective at treating
anxiety,37 and dose-dependently reduces FPS in animals.21

Although the precise mechanism of these drugs in regulating
emotions is not fully understood, in light of the data from the
present study, it is possible that they block hyperexcitabilty at
synapses that have been sensitized because of upregulation of
GluR receptors. Moreover, the amygdala may be an area of the
brain where these drugs can be expected to attenuate the effects
of elevated GluR activity and restore normal circuit activity within
the limbic system.

Conclusions
Overall, our data increase the understanding of the molecular
mechanisms of neuronal excitability in the amygdala, and identi-
fies cellular changes that may contribute to fear-related behavioral
alterations associated with reduced serotonergic signaling. We
also provide evidence bridging the relationship between 5-HT and
glutamate in regulating emotional behaviors. Furthermore, the
identification of amygdala GluRs as a pivotal component contri-
buting to amygdala hyperactivity after 5-HT depletion provides
novel insight into the therapeutic efficacy of glutamateric agents
that have shown potential in treating emotional disorders.
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