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Hysteresis of Finite Arrays of Magnetic Nano Dots.

M. Amin Kayali and Wayne M. Saslow
Department of Physics, Texas A & M University, College Station, Texas 77843-4242, USA.

Hysteresis curves for finite arrays of N ×N ferromagnetic nano dots subject to the dipole-dipole
interaction are investigated for N = 2 . . . 13. Spin arrangements up to N = 6 are presented, which
indicate the onset of bulk-like behavior associated with odd (N = 5) and even (N = 6) systems.
The effect of field misalignment on the hysteresis loops is also studied for N = 3 · · · 6. The area AN

of the hysteresis loop is studied as a function of N . We find that AN −A∞ approximately scales as

N−
3

2 for N odd and as N−2 for N even.

PACS numbers: 75.40.Mg; 75.60.Ej; 75.60.Jk; 75.70.Kw

INTRODUCTION

A ferromagnetic particle goes into a monodomain state
if its size D is below a critical value Dc = 10 ∼ 100 nm.
This is due to the competition between the exchange and
dipolar energies. Therefore, a nanoparticle in a mon-
odomain state may be viewed as a giant magnetic dipole
with magnetic moment of thousands of Bohr magnetons.
For an N ×N array of well-separated nanoparticles the
exchange energy is usually negligible in comparison with
the dipolar and anisotropy and Zeeman energies. The
study of such systems is of increasing importance be-
cause of their technological applications in data storage
devices and magnetic field sensors. As the technology of
these devices moves towards higher densities of stored in-
formation, it requires smaller particles of magnetic media
[1], [2], for which finite size effects become relevant. In
finite arrays of such large dipole moment particles, the
dipolar field of the array becomes comparable with the
bulk anisotropy field. Dipolar effects in such systems af-
fect the static and dynamics properties of the array; and
thus must be taken into account.

Recently, Camley and Stamps in [3], [4], [5] investi-
gated the dynamics and magnetization processes of a fi-
nite planar array of N ×N ferromagnetic nano dots, for
N = 3, 4, 5, 6. The nano-dots were taken to interact only
via the dipole-dipole interaction, and they were subject
to an external field applied either along one side of the
array or along its diagonal. They found rather compli-
cated hysteresis loops with the magnetization reversal
controlled by the shape anisotropy induced by the array
itself. We have considered the same model, and have ex-
tended their results, for N = 2 · · · 13. Our results for
N = 3 qualitatively agree with those of [3]. We find
that the behavior of these systems is surprisingly com-
plex, both for small and for larger values of N , and we
have studied the approach of these systems to N → ∞
behavior.

In the present work each dot is taken to have a ra-
dius Rd, thickness d and a single degree of freedom cor-
responding to the orientation of a magnet of saturation
magnetization M0. We consider only the case of zero

temperature. The dots are arranged on a square lattice
with lattice spacing a > 2Rd, and the dots interact only
via the dipole-dipole interaction. The equation of motion
for the magnetic moment of each dot is governed by the
Landau-Lifshitz-Gilbert equation (LLG), [6] which reads

dM

dt
= γM×Heff − α

M× (M ×Heff )

Ms

(1)

where γ is the gyromagnetic ratio, α is the damping
coefficient, M is the magnetic moment of the dot and
Ms = |M| is the saturation magnetization, Heff is the
average effective magnetic field acting on the dot. The
average effective magnetic field acting on the i-th dot is
due to the applied external field, the dipolar fields, and
the anisotropy field

H
i
eff = H0 cos θx̂+H0 sin θŷ −H

i
dip + 2K1

mi
z

M2
ẑ. (2)

Here the dipole field acting on the i-th dot due to all
other dots in the array is given by

H
i
dip =

∑

j 6=i

Mj

r3ij
− 3

(Mj · rij)rij
r5ij

(3)

The choice of anisotropy field is determined by the
shape of the dot, which in our problem is directed along
the symmetry axis of the (cylindrical) dots. We divide
both sides of Eq.(1) by (γM2

s ) and define a dimensionless
time variable τ = γMst. The LLG in these reduced units
becomes

dm

dτ
= m× heff −

α

γ
m× (m × heff ) (4)

wherem = M

Ms
and heff =

Heff

Ms
. We employ a system of

units where magnetic fields are given in units of Ms and
distances are given in units of the array’s lattice spacing
a. The strength of the dipole field is characterized by

hdip =
πR2

dd

a3 , which is the ratio of the dot volume to the
volume of a cubic cell with side a. For all arrays studied
in this work, we take hdip = 0.5.
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This article is organized as follows. Section II presents
the numerical techniques and method of time integration.
Section III presents an extensive discussion of magneti-
zation processes and hysteresis for arrays of N ×N nano
dots (N = 2, 3, · · · , 13) when the external field is applied
along one side of the array. Section IV considers the
effects on the hysteresis loop of misalignment of the ex-
ternal field. Section V considers the relationship between
the area of the hysteresis loop and N . A brief summary
is given in section VI.

NUMERICAL TECHNIQUES

We have employed two different approaches to study
the magnetization processes of our N×N arrays of nano-
dots. The first approach uses the second rank Runge-
Kutta (RK) algorithm with fixed time step to integrate
the LLG equation in reduced units. The second approach
uses the “greedy algorithm“ to find the stable final state
of the array. In both approaches the calculations were
done using FORTRAN and Mathematica languages [7].
The two approaches yielded similar results.
In the RK approach, the integration is done using a

fixed time step ∆τ = 5× 10−3 and a damping coefficient
α
γ

= 0.6, with an initial state in which the magnetic
moment of the dot is randomly generated. The time
integration proceeds until a stable final state is reached.
The stability of the final state is checked by changes in the
total energy of the system. Iterations are stopped when
the difference between the total energy of the system from
the (n+1)-th iteration and that of the n-th iteration is of
the order of ∆En = 10−5 in units ofM2

s a
3. Our solutions

converged after almost 103 iterations.
The greedy algorithm approach assumes the dots to

be aligned along the direction of their total local field.
In the initial state each dot is chosen to point randomly.
Next, all components of the total local field are calcu-
lated for each dot. Finally each component of the field
is normalized by the magnitude of the total local field to
yield the new dot magnetization orientation. The final
state of the n-th iteration is used as an initial one for the
next iteration until the solution is converged. The con-
vergence of the final state is checked in manner similar
to that used in the first approach. Note that the greedy
algorithm can be obtained from the LLG equation in the
limit where the damping coefficient is very large. We find
that the LLG approach converges faster than the greedy
algorithm. This is probably related to a phenomenon
known in RLC circuits, where a critically-damped cir-
cuit approaches equilibrium faster than a circuit with a
larger amount of damping.
Calculation of the dipolar field at the i-th dot is the

most computationally time-consuming aspect of both ap-
proaches since it requires summation of the dipole fields
from all other dots in the array. However, due to the

relatively small sizes of our dot arrays this calculation is
performed rather quickly.

HYSTERESIS LOOP AND EXTERNAL FIELD

ORIENTATION EFFECT

Hysteresis loops M(H) for N ×N arrays of nano dots
subject to an external magnetic field applied along one
side have been calculated. Initially, a strong external field
H0 is applied to the array until saturation. Then the field
is decreased to −H0, and then is increased again up to
H0. We have taken H0 = 2Ms, and a fixed field-step
of ∆H = 2 × 10−3Ms is used to simulate the sweeping
process. For each value of the external field the system
was iterated until a stable final state is reached. As seen
in Fig. 1, where M(H) is plotted (both in units of Ms),
the odd and even N arrays have somewhat different be-
haviors, especially for small N . One aspect of this is that
the odd-N systems display magnetization jumps as the
field changes. The odd-N and even-N behavior becomes
similar for larger values of N , something we study in a
later section.
In Fig. 1, the angle of the field to one of the sides (the

y-axis) is taken to be θ = 0. Experimentally, however,
field misalignment is almost inevitable, so that we have
also studied this phenomenon.
Fig. 2 shows results for N = 3 . . . 6 and angles θ = 5◦,

30◦, and 45◦. (We present only some of the more repre-
sentative results; angles between 0 and 45◦ were studied
in 5◦ increments.)
Comparison of Fig. 1 with Fig. 2 for θ = 5◦ shows that

a small misalignment of the applied field can change the
hysteresis loop drastically.
For N = 3, Fig.2 shows that the central part of the

hysteresis loop shrinks as θ increases. For θ = 45◦, the
central part almost disappears completely, and new small
loops start to develop away from the center of the hys-
teresis loop. Our results for N = 3 agree with those given
in [3], which studied the cases θ = 0◦ and 45◦.
For N = 4, at θ = 0◦ there is no central loop, but there

is a prominent loop at finite field. On the other hand,
at θ = 5◦, there is a central loop, and the finite field
structure becomes rather complex. Further increase of θ
leads to a filling out and connecting of various subloops.
Also, note the appearance of jumps for non-zero θ.
For N = 5, a small field misalignment has an enormous

effect, at θ = 5◦ shrinking the loop to a relatively small
central region. As θ increases, the central loop grows, but
the loop for θ = 45◦ pinches off to yield three subloops,
as for N = 3.
For N = 6, again a small field misalignment has an

enormous effect, at θ = 5◦ shrinking the loop to a rel-
atively small central region. As θ increases, the central
loop grows, but in contrast to N = 5, the loop for θ = 45◦

does not pinch off, and closely resembles the loop for
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FIG. 1: Hysteresis loops M(H), both in units of Ms, for
weakly coupled arrays of N × N ferromagnetic nano dots.
The external field is applied along the y-axis, which coincides
with one side of the array. The top two rows are for N even
and the lower two are for N odd.

N = 4.
These different types of behavior indicates that these

are complex systems, for which it is difficult to make
generalizations.

HYSTERESIS AND EVEN-ODD SIGNATURE IN

FINITE ARRAY OF NANO-DOTS

In the absence of an external magnetic field the array
of N × N nano-dots favors antiferromagnetic ordering,
thus minimizing its magnetostatic energy. A large exter-
nal magnetic field applied to the array tends to orient the
magnetic moments along the field, thus minimizing the
Zeeman field energy. However, the spins at the array cor-
ners tip by a small angle, as shown in Fig. 3-Fig. 6, form-
ing a two-dimensional “flower“ state [8], [9]. The flower
state persists until the applied field falls toH0 = Ms. For
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FIG. 2: Hysteresis loops M(H), both in units of Ms, for
N = 3 · · · 6 arrays for the field at θ = 5◦, 30◦ and 45◦ going
from left to right.

lower values of the applied field, the competition between
the dipole-dipole interaction and the Zeeman energy be-
comes significant, and changes the array ordering.

For N = 2, Fig. 3 shows that below H0 = Ms and
for H0 6= 0 the spins form a snake-like domain structure
winding clockwise or counterclockwise. At H0 = 0, the
array has zero net per-dot magnetization, due to a vortex-
like structure that persists for −3Ms ≤ H0 ≤ 0.3Ms.

The N = 3 array was analysed by Camley and Stamps
in [3]. This array also shows snake-like arrangements be-
low H0 = Ms. At zero field the final state of the array
shows what we call a ”barrel” state in which the spins at
the left and right columns are oriented opposite to the
central column with a slight tipping of the corner spins,
as shown in Fig. 4. This agrees with Ref. 3 except for the
tipping of the corner spins. We have made a small angle
expansion of the energy for the spins being nearly aligned,
and indeed we find that the tipped corner spin state is
more energy favorable. The tipping angle was determined
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H=2.0 H=0.8 H=0.5

H=0.3 H=0.0 H=-0.3

H=-0.5 H=-0.8 H=-2.0

FIG. 3: Spin arrangements for an array of 2×2 ferromagnetic
nano dots in external magnetic field.

H=2.0 H=0.8 H=0.5

H=0.3 H=0.0 H=-0.3

H=-0.5 H=-0.8 H=-2.0

FIG. 4: Spin arrangements for an array of 3×3 ferromagnetic
nano dots in an external magnetic field.

by both iteration and analytical calculations, and agree-
ment is found between the two values. The numerical
value of the corner spin tipping angle, found both by it-
eration and small tipping angle analysis, is |α| = 9.1115◦,
with numerical error of order 10−5. The spin snapshots
in Fig. 4 and hysteresis loop analysis show that the bar-
rel state switches to an inverted barrel state when the

H=2.0 H=0.8 H=0.5

H=0.3 H=0.0 H=-0.3

H=-0.5 H=-0.8 H=-2.0

FIG. 5: Spin arrangements for an array of 4×4 ferromagnetic
nano dots in external magnetic field.

H=2.0 H=0.8 H=0.5

H=0.3 H=0.0 H=-0.3

H=-0.5 H=-0.8 H=-2.0

FIG. 6: Spin arrangements for an array of 5×5 ferromagnetic
nano dots in external magnetic field.

applied field changes sign.

Fig.5 shows that the N = 4 array also features snake-
like arrangements of the spins, for intermediate values of
the applied field. However, in zero field the total per-
dot magnetization is zero, which can be attributed to
the formation of a vortex in the array’s central 2 × 2
block. The magnetic moments of the rest of the dots



5

H=2.0 H=0.8 H=0.5

H=0.3 H=0.0 H=-0.3

H=-0.5 H=-0.8 H=-2.0

FIG. 7: Spin arrangements for an array of 6×6 ferromagnetic
nano dots in external magnetic field.

in the array form a ring that surrounds the vortex with
opposite circulation. This state is stable for applied fields
H0 satisfying −0.2Ms ≤ H0 ≤ 0.2Ms.

For all N , the flower state appear at high fields (here,
|H0| = 2.0Ms). The hysteresis loops shown in Fig. 1
show a subtle difference in shape between arrays with
odd N and arrays with even N . For odd N the loops
show well-defined jumps whereas for even N this behav-
ior is absent. This behavior is due to unpaired spins
with uncompensated dipole fields. The jumps become
less apparent as N grows, and will eventually disappear
for large N , where the distinction between even and odd
N becomes unimportant.

Note that, when an array was placed in zero exter-
nal field and given random initial conditions, the solu-
tions converged to the same states as obtained in the
hysteresis-cycle calculations, up to the degeneracy of the
system. Thus, for N = 2, 4 there are two degenerate
metastable states of opposite chirality (winding) with
zero net magnetization in zero field, each of which has
a four-fold rotational symmetry. For N = 6 there are
two degenerate states of opposite chirality, with non-
vanishing net magnetization, each of these state has no
apparent rotational symmetry. For N = 3 there are two
degenerate barrel states, with no rotational symmetry,
and N = 5 is similar to N = 6. The hysteresis loop area
AN will produce further evidence that large system be-
havior commences with N = 5 and N = 6. Metastable
states with vanishing net magnetization may appear for
arrays with even N . However, our simulations showed
that these states could appear only for N = 2, 4. For

arrays with odd N the unpaired dipoles prevent the for-
mation of such states.

HYSTERESIS LOOP AREA AN VS. PARTICLE

NUMBER N

Although the area of the hysteresis loop AN tends to
zero for the N = 2 array, it clearly is nonzero for all other
arrays. We present the hysteresis loop areas in Fig. 8 as
circles and squares. From Fig. 8, we see that the area
of the hysteresis loop decreases with increasing N except
for N = 3 for N odd and N = 2, 4 for N even. The
N = 5 and N = 6 arrays, the first to show something
like bulk behavior, have maximum AN for odd and even
respectively; their spin arrangements are given in Fig. 6
and Fig. 7. We have fitted our data to the asymptotic
form

AN = A∞ +
C

Np
(5)

where A∞, C and p are constants to be determined. If
larger values of N had been computationally feasible, we
would have considered only large values of N for the fit.
The fit is not as good when N = 5 is included, so we do
not show this case. In practice, for N odd the data are fit
starting from N = 7 and for N even from N = 6. Both
fits are shown as solid lines in Fig. 8, where the values of
A∞, C, and p are given in the table.

FIG. 8: The area of the hysteresis loop as a function of the
number of particles N .

The associated values of χ2 are both less than 10−5.
For odd N , AN varies approximately as AN ∼ N− 3

2

whereas for even N it varies approximately as N−2. We
attribute no fundamental significance to these values.
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TABLE I: Fitting parameters for data given in Fig. 8, using
Eq. 5.

N A∞ C p

even 0.278 6.31 ± 0.42 1.95± 0.03

odd 0.278 6.92 ± 0.86 1.61± 0.06

SUMMARY

We have studied the hysteresis and magnetization pro-
cesses for N × N arrays (with N = 2 . . . 13) of uniaxial
ferromagnetic nano dots interacting via the dipole-dipole
interaction. For an external magnetic field aligned or
misaligned with one side of the array, the hysteresis loops
are surprisingly complex. For arrays with odd N the hys-
teresis loops possess jumps, whereas for even N they do
not. As N increases, the area AN of the hysteresis loop
begins to saturate, approaching a non-zero finite value
determined from a data fit. The area of the hysteresis
loop scales with N approximately as N− 3

2 for N odd,
and approximately as N−2 for even.
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