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Ordinary intelligent states (OIS) hold equality in the Heisenberg uncertainty relation involving
two noncommuting observables {A, B}, whereas generalized intelligent states (GIS) do so in the
more generalized uncertainty relation, the Schrödinger-Robertson inequality. In general, OISs form
a subset of GISs. However, if there exists a unitary evolution U that transforms the operators {A,
B} to a new pair of operators in a rotation form, it is shown that an arbitrary GIS can be generated
by applying the rotation operator U to a certain OIS. In this sense, the set of OISs is unitarily
equivalent to the set of GISs. It is the case, for example, with the su(2) and the su(1,1) algebra that
have been extensively studied particularly in quantum optics. When these algebras are represented
by two bosonic operators (nondegenerate case), or by a single bosonic operator (degenerate case), the
rotation, or pseudo-rotation, operator U corresponds to phase shift, beam splitting, or parametric
amplification, depending on two observables {A, B}.

PACS numbers: 03.65.Ta, 42.50.Dv

I. INTRODUCTION

For a general quantum state, the uncertainties of two
noncommuting observables {A, B} cannot be made arbi-
trarily small at the same time, and the product of them,
〈(∆A)2〉〈(∆B)2〉, has a certain lower bound. The Heisen-
berg uncertainty relation (HUR) [1], which is most widely
used, provides the bound as

〈(∆A)2〉〈(∆B)2〉 ≥
1

4
|〈[A,B]〉|2. (1)

The quantum states that satisfy equality in (1) are usu-
ally referred to as minimum-uncertainty states. The
lower bound, however, does not always exhibit a true
local minimum, e.g., when the commutator [A,B] is not
a constant multiple of identity operator. From this per-
spective, the states holding equality in (1) are generally
termed ordinary intelligent states (OISs) [2, 3].
On the other hand, the Schrödinger-Robertson relation

(SRR) generally provides a stronger bound than the HUR
[4, 5] as

〈(∆A)2〉〈(∆B)2〉 ≥
1

4
|〈[A,B]〉|2 + 〈∆A∆B〉2S , (2)

where the covariance 〈∆A∆B〉S is defined in a symmetric
form as

〈∆A∆B〉S ≡
1

2
〈∆A∆B +∆B∆A〉. (3)

The HUR is a special form of the SRR under the condi-
tion 〈∆A∆B〉S = 0, which is of course not always true.
The states holding equality in the SRR are termed gen-

eralized intelligent states (GISs) as an analogy to OISs
[6]. The OISs and GISs have been extensively stud-
ied for many decades and they have attracted a great
deal of interest particularly in the context of squeezing
[7, 8, 9, 10, 11, 12, 13]. More specifically, the intelli-
gent states for the su(2) and su(1,1) algebras were pro-
posed to employ for quantum optical interferometry to

achieve the quantum-limited precision in phase measure-
ment [14, 15, 16].

Furthermore, the su(2) and the su(1,1) algebras have
recently attracted some renewed interest from the per-
spective of quantum information theory particularly for
the treatment of continuous variables. Specifically, the
entanglement criteria applicable to non-Gaussian en-
tangled states were derived from those two algebras
[17, 18, 19]. Very recently, it was also shown that the
SRR, in conjunction with partial transposition, can gen-
erally provide a stronger inequality than the HUR to de-
tect entanglement [20]. As an illustration, the entangle-
ment condition derived from the su(2) and su(1,1) alge-
bra was refined to a form invariant with respect to local
phase shift in Ref. [20]. On an application side, the in-
telligent states for the su(2) and su(1,1) algebras can be
potentially useful for quantum information processing be-
cause they all form the class of non-Gaussian entangled
states when expressed in terms of two boson operators
[19].

Quite obviously, an arbitrary OIS, which has the van-
ishing covariance 〈∆A∆B〉S = 0, is also a GIS, but the
converse is not always true. Thus, the proposition fol-
lows that OISs form a subset of GISs in general [12]. In
the previous literature, there have been a number of at-
tempts to separately obtain the OISs and the GISs for
certain algebras, most prominently, for the su(2) and the
su(1,1) algebras. In this paper, we aim at clarifying to
some extent the connection between the OISs and the
GISs. In particular, we consider the case in which there
exists a unitary operator U that transforms two opera-
tors {A, B} to another pair of operators in a rotation

form. In this case, it is shown that an arbitrary GIS, |Ψ〉,
can be generated from a certain OIS, |Φ〉, by applying
the rotation operator U as |Ψ〉 = U |Φ〉. In this sense,
it can be said that the set of OISs is unitarily equiva-
lent to the set of GISs. This is particularly the case with
the su(2) and the su(1,1) algebra, of which operators can
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be represented in terms of boson operators. The unitary
operator U is then realized by phase shifter, beam split-
ter, or parametric amplifier, depending on the pair of two
operators {A, B}.
This paper is organized as follows. In Sec. II, the intel-

ligent states are briefly introduced with their statistical
properties. In Sec. III, the equivalence between the set of
OISs and that of GISs is demonstrated under the condi-
tion that there exists a unitary operation that transform
the two observables {A, B} to {A′, B′} in a form of rota-
tion. This finding is more concretized for the cases of the
su(2) and the su(1,1) algebras in Sec. IV, and the main
results are summarized in Sec. V.

II. INTELLIGENT STATES

First, let us briefly introduce the intelligent states with
their statistical characteristics. The SRR in Eq. (2) can
be derived from the Cauchy-Schwartz inequality

〈f |f〉〈g|g〉 ≥ |〈f |g〉|2, (4)

where the state vectors |f〉 and |g〉 are given by |f〉 =
∆A|Ψ〉 and |g〉 = ∆B|Ψ〉, respectively, for a general state
|Ψ〉[21]. The variance operator ∆O is defined as ∆O ≡
O− 〈O〉, where 〈O〉 is the quantum average for the state
|Ψ〉 (O = A,B).
Clearly, the equality holds in Eq. (4) when the two vec-

tors are linearly dependent, i.e., |f〉 = −iλ|g〉, where the
parameter λ = λx + iλy is complex in general. In other
words, the GISs, |Ψ〉, satisfy the characteristic eigenvalue
equation

(A+ iλB)|Ψ〉 = β|Ψ〉, (5)

where β = 〈A〉+ iλ〈B〉.
From Eq. (5), the equality in the SRR follows along

with the condition 〈(∆A)2〉 = |λ|2〈(∆B)2〉 for a gen-
eral λ. In light of the SRR [Eq. (2)], coherent states
may be defined as those ones for which the two vari-
ances, 〈(∆A)2〉 and 〈(∆B)2, are all equal to Vc ≡
√

1

4
|〈[A,B]〉|2 + 〈∆A∆B〉2S ( case of |λ| = 1). On the

other hand, squeezing may be defined as one of the two
variances reduced below the critical value Vc [9]. In other
words, if |λ| is smaller (larger) than unity, the observable
A (B) is squeezed, and the degree of squeezing is param-
eterized by |λ|.
Special cases:
(i) if the squeezing parameter λ is real (λy = 0), the

condition 〈∆A∆B〉S = 0 follows from Eq. (5), hence the
equality in Eq. (1). In other words, the OISs are obtained
by solving the eigenvalue equation, Eq. (5), for real values
of λ.
(ii) On the other hand, if λ is pure imaginary (λx = 0),

it follows that 〈[A,B]〉 = 0, and the ordinary Heisenberg
uncertainty relation only provides a trivial lower bound,
zero [9].

III. EQUIVALENCE BETWEEN ORDINARY
INTELLIGENT STATES AND GENERALIZED

INTELLIGENT STATES

In this section, we consider the connection between the
set of OISs and the set of GISs on the condition that the
two operators {A,B} can be transformed by a certain
unitary operator U to new operators {A′, B′} in a form
of rotation. That is,

(

A′

B′

)

= U

(

A
B

)

U † =

(

cosφ − sinφ
sinφ cosφ

)(

A
B

)

. (6)

(i) First, let the state |Φ〉 be an OIS satisfying the
eigenvalue equation

(A+ iλB)|Φ〉 = β|Φ〉, (7)

where λ is real [22]. On applying the unitary operator U
on both sides of Eq. (7), we obtain the eigenvalue equa-
tion as

(A+ iΛB)|Ψ〉 = β′|Ψ〉, (8)

where |Ψ〉 is defined as |Ψ〉 ≡ U |Φ〉. The new parameters
Λ and β′ are given by

Λ ≡
λ cosφ+ i sinφ

cosφ+ iλ sinφ
,

β′ ≡
β

(cosφ+ iλ sinφ)
, (9)

respectively.
Note that Λ can take any arbitrary complex values in

Eq. (9), and the transformed state |Ψ〉 = U |Φ〉 is thus
none other than a certain GIS. In other words, for an
arbitrarily fixed value of Λ ≡ Λx + iΛy, one can choose
the real squeezing parameter λ and the rotation angle φ
as

tan 2φ =
2Λy

1− Λ2
x − Λ2

y

,
(

−
π

4
< φ ≤

π

4

)

λ =
Λx

1 + Λy tanφ
. (10)

In short, if their exists a certain unitary operator U that
implements the rotation as in Eq. (6), an arbitrary GIS
can be generated from a certain OIS by applying the
unitary operator U , as prescribed in Eq. (10).
(ii) The converse is of course true, and in fact, an OIS

is by definition a GIS. Furthermore, an arbitrary GIS
can be transformed to an OIS under the same unitary
operator U . To more deeply understand how it works,
let us take a different perspective as follows. Consider a
2× 2 covariance matrix C of which elements are defined
as

Cij ≡
1

2
〈∆Oi∆Oj +∆Oj∆Oi〉, (i, j = 1, 2), (11)
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where O1 ≡ A and O2 ≡ B. Namely,

C =

(

〈(∆A)2〉 〈∆A∆B〉S
〈∆A∆B〉S 〈(∆B)2〉

)

. (12)

Then, the determinant of the matrix C is given by

Det{C} = 〈(∆A)2〉〈(∆B)2〉 − 〈∆A∆B〉2S , (13)

which is invariant under rotation in Eq. (6). The char-
acteristic equation satisfied by the GISs in Eq. (2) now
reads as

Det{C} =
1

4
|〈[A,B]〉|2. (14)

Suppose that the state |Ψ〉 satisfies Eq. (14). Then, due
to the relation [A,B] = [A′, B′] and the invariance under
rotation, the inversely transformed state |Φ〉 = U †|Ψ〉
must also satisfy Eq. (14). More importantly, the off-
diagonal covariance for |Φ〉 becomes

〈∆A∆B〉S,|Φ〉 =
1

2
sin 2φ

[

〈(∆B)2〉 − 〈(∆A)2〉
]

+cos 2φ〈∆A∆B〉S , (15)

by the relation in Eq. (6). Note that the quantum aver-
ages on the right side of Eq. (15) refer to the ones for the
state |Ψ〉. Thus, if one chooses the rotation angle φ as

tan 2φ =
2〈∆A∆B〉S

〈(∆A)2〉 − 〈(∆B)2〉
, (16)

the off-diagonal covariance 〈∆A∆B〉S,|Φ〉 vanishes in the
rotated frame. That is, the GIS, |Ψ〉, is transformed to
an OIS, |Φ〉, satisfying

Det{C} = 〈(∆A)2〉〈(∆B)2〉 =
1

4
|〈[A,B]〉|2, (17)

under the rotation by the unitary operation U †.
By (i) and (ii), the set of OISs is unitarily equivalent

to the set of GISs.

IV. SU(2)- AND SU(1,1)-INTELLIGENT STATES

In this section, we show that the preceding argument
can be generally applied to the su(2) and the su(1,1)
algebras along with their intelligent states.

A. su(2)-intelligent states

The su(2) algebra describes the angular momentum
operators, as characterized by the commutation relations,

[Ji, Jj ] = iǫijkJk, (i, j, k = 1, 2, 3), (18)

where Ji’s denote the Cartesian components of the an-
gular momentum. For the choice of A = J1 and B = J2,

the relation in (6) can be implemented by the unitary
operator U = eiφJ3 . Therefore, a generalized intelligent
state |Ψ〉 can be written in a form as |Ψ〉 = eiφJ3 |Φ〉,
where |Φ〉 is an ordinary intelligent state satisfying the
eigenvalue equation

(J1 + iλJ2)|Φ〉 = β|Φ〉, (19)

for a real λ.
As a specific example, let us consider the GISs for

which the condition 〈[J1, J2]〉 = i〈J3〉 = 0 holds, i.e.,
the case that the squeezing parameter Λ is pure imag-
inary in Eq. (8). (See the last paragraph of Sec. II.)
Then, with Λx = 0 in Eq. (10), one has the prescription
λ = 0 and tanφ = Λy. In other words, we start with
the ordinary intelligent state satisfying J1|Φ〉 = β|Φ〉
in Eq. (19), which is none other than the J1-eigenstate.
Since a general J1-eigenstate can be obtained by apply-
ing the rotation e−iπ

2
J2 to the J3- eigenstates |J,m〉, a

generalized intelligent state |Ψ〉 is expressed as |Ψ〉 =
eiφJ3e−iπ

2
J2 |J,m〉. This class of intelligent states was in

fact studied by R. Puri, and the expression for those
states given in Ref. [9] exactly coincides with that ob-
tained here.
Note that the above argument equally applies to other

pairs of observables due to the permutation symmetry in
the su(2) algebra. For example, for the pair of observ-
ables {J2, J3}, the GISs can be obtained by applying the
rotation U = eiφJ1 to the OISs.
In the case that the angular momentum operators are

represented by two boson operators a and b [23], as

J1 =
1

2

(

a†b+ ab†
)

,

J2 =
1

2i

(

a†b− ab†
)

,

J3 =
1

2

(

a†a− b†b
)

, (20)

the unitary operator eiφJ3 simply denotes a local phase
shift for the two modes a and b. In fact, only one lo-
cal phase shift can implement the necessary rotation by
a proper choice of phase angle. On the other hand, the
unitary operators eiφJ1 and eiφJ2 correspond to the ac-
tion of the beam splitter [24].

B. su(1,1)-intelligent states

In the su(1,1) algebra, the operators Kx,Ky and
Kz satisfy the commutation relations, [K1,K2] =
−iK3, [K2,K3] = iK1, and [K3,K1] = iK2. In spite that
the commutators in the su(1,1) algebra differ in sign from
those in the su(2) algebra, the rotation of the operators
K1 and K2 can be realized by the unitary operator eiφK3 ,
similar to the case in su(2) algebra. That is, the relation
|Ψ〉 = eiφK3 |Φ〉 holds between GISs and OISs.
Of course, a significant difference can arise in the

su(1,1) algebra due to the lack of permutation symme-
try. For instance, for a different choice of two observables
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{K1,K3}, the unitary operator eiφK2 does not effect ro-
tation, but gives the transformation as

(

K ′
1

K ′
3

)

=

(

coshφ − sinhφ
− sinhφ coshφ

)(

K1

K3

)

. (21)

Nonetheless, the equivalence of GIS and OIS is similarly
deduced along with the lines in Sec. III. More concretely,
the relations in Eq. (10) now become

tanh 2φ =
2Λy

1 + Λ2
x + Λ2

y

,

λ =
Λx

1− Λy tanhφ
, (22)

so that the prescriptions for φ and λ exists for any values
of Λx and Λy to produce an arbitrary GIS from an OIS.
Conversely, in a similar method used to derive

Eqs. (15) and (16) in Sec. III, the off-diagonal covari-
ance 〈∆A∆B〉S,|Φ〉 can be made vanish by choosing the
transformation as

tanh 2φ =
2〈∆A∆B〉S

〈(∆A)2〉+ 〈(∆B)2〉
, (23)

to transform a GIS to an OIS.
The su(1,1) operators can be represented by two

bosonic operators as

K1 =
1

2

(

a†b† + ab
)

,

K2 =
1

2i

(

a†b† − ab
)

,

K3 =
1

2

(

a†a+ b†b + 1
)

, (24)

or by a single bosonic operator as

K1 =
1

4

(

a†2 + a2
)

,

K2 =
1

4i

(

a†2 − a2
)

,

K3 =
1

4

(

2a†a+ 1
)

. (25)

The unitary operation eiφK3 can also be implemented by
a local phase shift in both representations. On the other
hand, eiφK1 and eiφK2 are realized by the nondegenerate
parametric amplification for two-mode case or by the de-
generate parametric amplification for single-mode case.

V. SUMMARY

In this paper, the connection of the OISs and the GISs
holding equality in the uncertainty relations has been
studied and made clarified to some degree. In particular,
it has been shown that there exists a unitary equivalence
between the set of OISs and that of GISs for two noncom-
muting observables {A, B} in the case that there exists
a rotational unitary operator U for those observables in
view of Eq. (6). This is particularly true for the su(2)
and the su(1,1) algebras, and in the latter case, although
only a pseudo-rotation is effected for a particular choice
of two observables, it was shown that the unitary equiva-
lence still holds good. In the case that these algebras are
represented by bosonic operators, the unitary operation
corresponds to phase shift, beam splitting, or parametric
amplification depending on the choice of the observables.

[1] W. Heisenberg, Z. Phys. 43, 122 (1927).
[2] C. Aragone, G. Guerri, S. Salamo, and J. L. Tani,

J. Phys. A 7, L149 (1974); C. Aragone, E. Chalbaud,
and S. Salamo, J. Math. Phys. 17, 1963 (1976).

[3] K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2,
458 (1985).

[4] E. Schrödinger, Sitzunsber. Preuss. Akad. Wiss. p. 296
(Berlin,1930).

[5] H. R. Robertson, Phys. Rev. 46 794 (1934).
[6] D. A. Trifonov, J. Math. Phys. 35, 2297 (1994).
[7] J. A. Bergou, M. Hillery and D. Yu, Phys. Rev. A 43,

515 (1991); D. Yu and M. Hillery, Quantum Opt. 6, 37
(1994).

[8] G. S. Agarwal and R. R. Puri, Phys. Rev. A 41, 3782
(1990).

[9] R. R. Puri, Phys. Rev. A 49, 2178 (1994).
[10] C. C. Gerry and R. Grobe, Phys. Rev. A 51, 4123 (1995).
[11] A. Luis and J. Perina, Phys. Rev. A 53, 1886 (1996).
[12] C. Brif, Int. J. Theor. Phys. 36, 1651 (1997).
[13] R. A. Campos and C. G. Gerry, Phys. Rev. A 60, 1572

(1999).
[14] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A

33, 4033 (1986).
[15] M. Hillery and L. Mlodinow, Phys. Rev. A 48, 1548

(1993).
[16] C. Brif and A. Mann, Phys. Rev. A 54, 4505 (1996).
[17] M. Hillery and M. Zubairy, Phys. Rev. Lett. 96, 050503

(2006); M. Hillery and M. Zubairy, Phys. Rev. A 74,
032333 (2006).

[18] G. S. Agarwal and A. Biswas, New J. Phys. 7, 211 (2005).
[19] H. Nha and J. Kim, Phys. Rev. A 74, 012317 (2006).
[20] H. Nha, Phys. Rev. A 76, 014305 (2007).
[21] V. V. Dodonov, E. V. Kurmyshev, and V. I. Man’ko,

Phys. Lett. 79A, 150 (1980); B. Nagel, eprint
quant-ph/9711028.

[22] Throughout this paper, the notation |Ψ〉 represents a
GIS, whereas |Φ〉 an OIS.

[23] J. Schwinger, inQuantum Theory of Angular Momentum,
edited by L. C. Biedenharn and H. van Dam (Academic,
New York, 1965).

[24] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys.
Rev. A 40, 1371 (1989).

http://arxiv.org/abs/quant-ph/9711028

