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Gökhan Alkaç,a Luca Basanisi,a Eric A. Bergshoeff,a Mehmet Ozkana and

Ergin Sezginb

aVan Swinderen Institute for Particle Physics and Gravity, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
bGeorge and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,

Texas A&M University,

College Station, TX 77843, U.S.A.

E-mail: g.alkac@rug.nl, l.basanisi@rug.nl, e.a.bergshoeff@rug.nl,

m.ozkan@rug.nl, sezgin@tamu.edu

Abstract: There exists two distinct off-shell N = 2 supergravities in three dimensions.

They are also referred to as N = (1, 1) and N = (2, 0) supergravities, and they arise

from the coupling of the Weyl multiplet to a compensating scalar or vector multiplet,

respectively, followed by fixing of conformal symmetries. The N = (p, q) terminology

refers to the underlying anti-de Sitter superalgebras OSp(2, p)⊕OSp(2, q) with R-symmetry

group SO(p)×SO(q). We construct off-shell invariants of these theories up to fourth order

in derivatives. As an application of these results, we determine the special combinations

of the N = (1, 1) invariants that admit anti-de Sitter vacuum solution about which there

is a ghost-free massive spin-2 multiplet of propagating modes. We also show that the

N = (2, 0) invariants do not allow such possibility.

Keywords: Supergravity Models, Extended Supersymmetry

ArXiv ePrint: 1412.3118

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231872446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:g.alkac@rug.nl
mailto:l.basanisi@rug.nl
mailto:e.a.bergshoeff@rug.nl
mailto:m.ozkan@rug.nl
mailto:sezgin@tamu.edu
http://arxiv.org/abs/1412.3118
http://dx.doi.org/10.1007/JHEP02(2015)125


J
H
E
P
0
2
(
2
0
1
5
)
1
2
5

Contents

1 Introduction 1

2 Superconformal tensor calculus 3

2.1 The Weyl and compensating multiplets 3

2.2 Combination of local supermultiplets 7

2.3 Action formulae 10

3 N = (1, 1) supergravity models 12

3.1 N = (1, 1) cosmological Poincaré supergravity 12
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1 Introduction

The time-honored motivation for studying three dimensional gravity theories is the

prospects of their teaching us lessons about much harder problem of gravity in four dimen-

sions, at the classical as well as quantum level. That the black hole physics is nontrivial in

three dimensions and one can extract valuable information from their study has been long

recognized. It is also well known that the important problem of massive gravity is much

simpler to study and yet very rich in three dimensions. Furthermore, the quantization

problem is more amenable as well in three dimensions though by no means trivial. In all

these areas to explore, the role of higher derivative extensions is highly pertinent question.

The usual dictum that more symmetries give us more control over the theory moti-

vates us to construct higher derivative supergravity theories with extended supersymmetry

in three dimensions. In doing so, the role of off-shell versus on-shell nature of local su-

persymmetry brings in interesting new ingredients. Focusing our attention to supergravity
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theories which admit anti-de Sitter space as a vacuum solution, their underlying supersym-

metry algebra is OSp(p, q) whose bosonic part is O(2, 2) ⊕ SO(p) × SO(q) [1–3]. Off-shell

supergravity invariants up to and including four derivatives are known for N = (1, 0) su-

pergravity in three dimensions [4]. A particular combinations of these invariants constitute

the supersymmetric generalization of the so-called “New Massive Gravity” which has the

virtue of being ghost-free [5]. Some of their properties, such as their supersymmetric vacua

and spectrum about AdS3 vacuum, have also been studied [4, 6, 7].

Our aim here is to generalize the construction of higher derivative supergravity invari-

ants to those with underlying N = (1, 1) and N = (2, 0) superalgebras and to look for

their ghost free combinations. The conformal N = 2 supergravity, and the two-derivative

invariants were considered in [8–11]. Off-shell matter-coupled suprgravity theories were

investigated in the superspace framework in [12–15]. The on-shell construction and the

matter couplings of the three dimensional N = 2 supergravity were studied in [16–18]. Here

we shall provide all the four derivative off-shell invariants of the 3D, N = 2 supergravity.

The method we shall employ is the superconformal tensor calculus. The N = (1, 1) and

N = (2, 0) supergravities arise from the coupling of Weyl multiplet to a compensating scalar

or vector multiplets, respectively, followed by fixing of conformal symmetries. In the case of

N = (2, 0) supersymmetry, we shall employ a map between the Yang-Mills and the super-

gravity multiplet to construct the supersymmetric completion of the Ricci-squared term.

Taking into account the new invariants we construct here, we end up with seven pa-

rameter action with N = (1, 1) supersymmetry and a six parameter action with N = (2, 0)

supersymmetry. We find that the former admits a four parameter subfamily which admits

AdS vacuum solution around which the spectrum of small fluctuations is ghost-free. In

the latter case, however, we find that such a scenario is not possible. This turns out to

be due to the fact that a particular type of dimension four invariant that exists for the

N = (1, 1) model does not seem to exist for the N = (2, 0) model. The existence of the

supersymmetric cosmological extension of the (2, 0) supergravity, which does not exist in

the parent N = 1 new minimal supergravity in 4D, is not sufficient for the existence of a

ghost-free supersymmetric AdS3 vacuum.

This paper is organized as follows. In section 2, we give a brief introduction to super-

conformal formalism, and introduce the Weyl multiplet, the scalar and the vector multiplet

of the D = 3, N = 2 theory in the context of conformal supergravity. We then provide a

multiplication rule for scalar multiplets, and construct composite scalar and vector multi-

plets. Subsequently, we proceed to construct various superconformal actions for these mat-

ter multiplets. In section 3, we consider the scalar multiplet actions constructed in section 2

and gauge fix the superconformal symmetries to obtain N = (1, 1) cosmological Poincaré

supergravity as well as the supersymmetric completion of the R2
µν , R

2 and the off-diagonal

(RSn + h.c), where S is the auxiliary scalar of the N = (1, 1) Poincaré multiplet. We then

present the N = (1, 1) generalized massive supergravity, and analyze the bosonic spectrum

around a maximally supersymmetric AdS3 vacuum. In section 4, we repeat the same analy-

sis for the vector multiplet, and construct theN = (2, 0) cosmological Poincaré supergravity

and the supersymmetric R2 and off-diagonal RD invariants, where D is the auxiliary scalar

of theN = (2, 0) Poincaré multiplet. This section contains an observation which states that
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certain fields in theN = (2, 0) Poincaré multiplet transform in the same manner as the fields

of a Yang-Mills multiplet with G = SO(2, 1). By use of that explicit correspondence, we

construct the supersymmetric R2
µν invariant. Subsequently, we discuss the ghost-free N =

(2, 0) generalized massive gravity, and analyze the spectrum around a maximally supersym-

metric Minkowski background. In section 5, we give conclusion and discussions. Finally,

the details of the complex spinor conventions and Fierz identities are given in the appendix.

2 Superconformal tensor calculus

In this section we shall describe the Weyl multiplet based on the superconformal algebra

OSp(4|2) in three dimensions. We will then present the off-shell scalar and vector multiples

which will be used in the subsequent sections as compensators. The rules for combining

these multiplets to obtain new (composite) multiplets and action formula will follow. The

action formula will be used in the following sections together with the composite multiplet

formula to obtain several off-shell supergravity invariants. Finally, we shall also record

for completeness the Chern-Simons invariant which does not require any compensating

multiplet coupling since it is superconformal invariant by itself [8].

2.1 The Weyl and compensating multiplets

Weyl multiplet. The N = 2 Weyl multiplet in three dimensions is based on the the

conformal superalgebra OSp(4|2) and consists of the fields

(eµ
a, ψµ, Vµ, bµ, ωµ

ab, fµ
a, φµ) , (2.1)

where eµ
a is the dreibein, ψµ is the gravitino represented by a Dirac vector-spinor, Vµ is the

U(1) R-symmetry gauge field, bµ is the dilatation gauge field, ωµ
ab is the spin connection,

fµ
a is the conformal boost gauge field and φµ is the special supersymmetry gauge field

represented by a Dirac vector-spinor. The corresponding gauge parameters are

(ξa, ǫ,Λ,ΛD,Λ
ab,Λa

K , η) . (2.2)

The gauge fields ωµ
ab, φµ, fµ

a can be expressed in terms of the remaining fields by imposing

the constraints [8]

R̂a
µν(P ) = 0 , R̂µν

ab(M) = 0 , R̂µν(Q) = 0 , (2.3)

where the supercovariant curvatures associated with translations, Lorentz rotations and

supersymmetry are defined as

R̂µν
a(P ) = 2(∂[µ + b[µ) eν]

a + 2ω[µ
abeν]b −

1

2
(ψ̄[µγ

aψν] + h.c.) ,

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
ac ων]c

b + 8f[µ
[aeν]

b] −
1

2
ψ̄µγ

abφν −
1

2
φ̄µγ

abψν + h.c

R̂µv(Q) = 2∂[µψν] +
1

2
ω[µ

abγab ψν] + b[µψν] − 2 γ[µφν] − 2iV[µψν] . (2.4)
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These constraints together with the Bianchi identity for R̂µν(P ) also imply that the

curvature associated with dilatation also vanishes, viz. R̂µν(D) = 0. Solving the

constraints (2.3) gives

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νeσ
c + 2eµ

[abb] +
1

2
ψ̄µγ

[aψb]

+
1

2
ψ̄[aγb]ψµ +

1

2
ψ̄[aγµψ

b] ,

φµ = −γaR̂
′

µa(Q) +
1

4
γµγ

abR̂
′

ab(Q) ,

faµ = −
1

2
R̂′

µ
a(M) +

1

8
eµ

aR̂
′

(M) , (2.5)

where the prime in the curvatures used in (2.5) means that the term including the field we

are solving for is excluded. The transformation rules for the independent fields are given by

δeµ
a = −Λa

b eµ
b − ΛDeµ

a +
1

2
ǭ γaψµ + h.c. ,

δψµ = −
1

4
Λabγabψµ −

1

2
ΛDψµ +Dµǫ− γµη + iΛψµ ,

δbµ = ∂µΛD + 2ΛKµ +
1

2
ǭ φµ −

1

2
η̄ ψµ + h.c ,

δVµ = ∂µΛ +
1

2
iǭ φµ +

1

2
iη̄ ψµ + h.c. , (2.6)

where

Dµǫ =

(
∂µ +

1

2
bµ +

1

4
ωµ

abγab − iVµ

)
ǫ . (2.7)

Finally, we give the transformation rule for φµ for later convenience

δφµ = · · ·+ iγνF̂µνǫ−
1

4
iγµγ · F̂µνǫ , (2.8)

where we have displayed the supercovariant terms and the ellipses refer to the remaining

terms implied by the OSp(4|2) algebra, and F̂µν is given by

F̂µν = 2∂[µVν] − iψ̄[µφν] − iφ̄[µψν] . (2.9)

Scalar multiplet. The off-shell N = 2 scalar multiplet with 4+4 degrees of freedom

consists of a physical complex scalar A, a Dirac fermion χ and an auxiliary complex scalar F

with the following transformation rules1

δA =
1

2
ǭχ+ wΛDA− iwΛA ,

δχ = /DAǫ−
1

2
F (Bǫ)∗ + 2wAη +

(
w +

1

2

)
ΛDχ+ i(−w + 1)Λχ ,

δF = −ǫ̃ /Dχ+ 2

(
w −

1

2

)
η̃ χ+ (w + 1)ΛDF + i(−w + 2)ΛF , (2.10)

1See appendix A for the definition of η̃ and the constant matrix B.
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where the supercovariant derivatives are given by

DµA = (∂µ − w bµ + iwVµ)A−
1

2
ψ̄µχ ,

Dµχ =

(
∂µ −

(
w +

1

2

)
bµ +

1

4
ωµ

ab γab + i(w − 1)Vµ

)
χ− /DAψµ

+
1

2
F(Bψµ)

∗ − 2wAφµ . (2.11)

Note that the lowest component has Weyl weight w and U(1)R weight −w. Another

multiplet with its lowest component having Weyl weight w and U(1)R weight w can be

obtained by charge conjugation

δA∗ =
1

2
ǫ̃ (Bχ)∗ + wΛDA

∗ + iwΛA∗ ,

δ (Bχ)∗ = /DA∗ (Bǫ)∗ −
1

2
F ∗ǫ+ 2wA∗ (Bη)∗ +

(
w +

1

2

)
ΛD (Bχ)∗

+i (w − 1)Λ (Bχ)∗ ,

δF∗ = −ǭ /D (Bχ)∗ + 2

(
w −

1

2

)
η̄(Bχ)∗ + (w + 1)ΛDF

∗

+i(w − 2)ΛF∗ , (2.12)

where the supercovariant derivatives are

DµA
∗ = (∂µ − wbµ − iwVµ)A

∗ −
1

2
ψ̃µ(Bχ)

∗ ,

Dµ(Bχ)
∗ =

(
∂µ −

(
w +

1

2

)
bµ +

1

4
ωµ

abγab − i(w − 1)Vµ

)
(Bχ)∗

− /DA∗(Bψµ)
∗ +

1

2
F∗ψµ − 2wA∗(Bφµ)

∗ ,

DµP
∗ =

(
∂µ −

1

2
bµ − (w − 2)iVµ

)
P ∗ + ψ̄µ /D(Bχ)

∗

−2

(
w −

1

2

)
φ̄µ(Bχ)

∗ . (2.13)

Vector multiplet. The off-shell vector N = 2 vector multiplet with 4 + 4 degrees of

freedom consists of a gauge field Cµ, a scalar ρ, a spinor λ and an auxiliary scalar D. Their

transformation rules are given by

δCµ =
1

2
ǭ γµλ−

1

4
i ρ ǭ ψµ + h.c. ,

δρ = (iǭ λ+ h.c.) + ΛDρ ,

δλ = −
1

4
γµνĜµν ǫ+

1

2
iDǫ−

1

4
i /Dρ ǫ−

1

2
iρ η + iΛλ+

3

2
ΛDλ ,

δD =

(
−

1

2
iǭ /Dλ+

1

2
iη̄λ+ h.c.

)
+ 2ΛDD , (2.14)
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Multiplet Field Type Off-shell w q

Weyl eµ
a dreibein 2 -1 0

ψµ gravitino 4 −1
2 1

Vµ U(1)R gauge field 2 0 0

Scalar A complex scalar 2 wA −wA

χ Dirac spinor 4 wA + 1
2 −wA + 1

F complex auxiliary 2 wA + 1 −wA + 2

Vector ρ real scalar 1 1 0

Cµ gauge field 2 0 0

λ Dirac spinor 4 3
2 1

D real auxiliary 1 2 0

Table 1. Properties of the 3D,N = 2 Weyl and compensating multiplets where (w, q) label the

dilatation weight and the U(1)R charge, respectively.

Components w q

(ξ, ϕ,M) 5
2 −5

2

(Z,Ω, F ) 2 -2

(φ, ζ, S) 1
2 −1

2

(σ, ψ,N) 0 0

(Φ,Ψ, P ) −1
2

1
2

Table 2. Compensating scalar multiplets with (w, q) denoting the Weyl weight and U(1)R charge

of the lowest component scalar field.

where

Dµρ = (∂µ − bµ) ρ+
(
−iψ̄µλ+ h.c.

)
,

Dµλ =

(
∂µ −

3

2
bµ +

1

4
ωµ

abγab − iVµ

)
λ+

1

4
γρσĜρσ ψµ

−
1

2
iDψµ +

1

4
i /Dρψµ +

1

2
iρ φµ ,

Ĝµν = 2∂[µCν] +

(
− ψ̄[µγν]λ+

1

2
iρ ψ̄µψν + h.c.

)
. (2.15)

As we shall discuss in the subsection 4.3, the nonabelian versions of (2.14) and (2.15) can

be obtained by taking the fields of the vector multiplet in adjoint representation of a Lie

group G, and imposing the closure of the algebra accordingly.

– 6 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
5

2.2 Combination of local supermultiplets

To provide a supersymmetric completion of the Poincaré supergravity and of the higher

dimensional invariants, we need to produce multiplets with different weights. We thus give

now general rules to do so and we introduce all composite multiplets that will be needed

to construct invariant actions.

Scalar multiplets. We will construct composite scalar multiplets using the multipli-

cation rules for scalar multiplets. One can start with two scalar multiplets (Ai, χi, Fi),

i = 1, 2 and obtain a multiplet whose lowest component having Weyl weight w = w1 + w2

and U(1)R weight q = q1 + q2 as follows

A = A1A2 ,

χ = A1χ2 +A2χ1,

F = A1F2 +A2F1 + χ̃1χ2 . (2.16)

It is also possible to use the inverse of the multiplication rule (2.16) to obtain a multiplet

with Weyl weight w = w1 − w2 and U(1)R weight q = q1 − q2

A = A1A
−1
2 ,

χ = A−1
2 χ1 −A1A

−2
2 χ2 ,

F = A−1
2 F1 −A1A

−2
2 F2 −A

−2
2 χ̃2χ1 +A1A

−3
2 χ̃2χ2 . (2.17)

Given the scalar multiplet (see table 1),

Σ = (φ, ζ, S) , (2.18)

the associated inverse multiplet has the components

Σ−1 ≡ (Φ,Ψ, P ) =
(
φ−1 , −φ−2ζ, −φ−2S + φ−3ζ̃ζ

)
. (2.19)

as can be seen by considering the multiplication of the unit multiplet (A1, χ1, F1) = (1, 0, 0),

which has weights (ω, c) = (0, 0), with the multiplet (A2, χ2, F2) = Σ, by means of the

formula (2.17).

Next, we note that a scalar multiplet (φ, ζ, S) with weights (w, q) = (12 ,−
1
2) has the

corresponding kinetic multiplet with weights (w, q) = (32 ,−
3
2) given by

K =
(
S∗,−2/D(Bζ)∗, 4�Cφ∗

)
, (2.20)

where

�
Cφ∗ =

(
∂a −

3

2
ba −

i

2
V a

)
Daφ

∗ + ωa
abDbφ

∗ + faaφ
∗

+
1

2
φ̃aγ

a(Bζ)∗ −
1

2
ψ̃aDa(Bζ)

∗ . (2.21)
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Using the above multiplets as building blocks and using the product formula (2.16) we can

construct a number of multiplets which will be useful in building actions. To begin with,

we consider the four-fold product of Σ obtaining

Σ4 : (Z,Ω, F ) =
(
φ4, 4φ3ζ, 4φ3S + 6φ2ζ̃ζ

)
. (2.22)

Note that Z has the weights (w, q) = (2,−2) and will be useful to construct a cosmological

constant invariant. Another multiplet with the same weights (2,−2) is

Σ×K : Z ′ = φS∗ ,

Ω′ = ζS∗ − 2φ/D(Bζ) ,

F ′ = 4φ�Cφ∗ + |S|2 − 2ζ̃ /D(Bζ)∗ . (2.23)

We will use this multiplet to construct the Einstein-Hilbert action. A composite neutral

multiplet with (w, q) = (0, 0) can be obtained as follows

K × Σ−3 :

σ = φ−1S∗ ,

ψ = −2φ−3 /D (Bζ)∗ − 3φ−4S∗ζ ,

N = 4φ−3
�

Cφ− 3φ−4 |S|2 + 6φ−4ζ̃ /D (Bζ)∗ + 6φ−5S∗λ̃ζ , (2.24)

which can be used to produce new scalar multiplets without changing the weights of the

original multiplets

(σ, ψ,N)n × (Z,Ω, F ) :

Z(n) = σnZ ,

Ω(n) = nσn−1Zψ + σnΩ ,

F (n) = σnF + nσn−1ZN + n(n− 1)σn−2Zψ̃ψ

+nσn−1ψ̃Ω . (2.25)

(σ, ψ,N)× Σ : (φ′, ζ ′, S′) =
(
σφ , σζ + φψ , σS + φN + ζ̃ψ

)
. (2.26)

Finally, we construct the multiplet (ξ, ϕ,M), with weights (52 ,−
5
2), in terms of the elements

of the multiplet (Φ,Ψ, P ) as

ξ = �
cP ∗ ,

ϕ = −2�c /D(BΨ)∗ − 2iγνDµF̂µν(Bλ)
∗ + 2iγνF̂µνD

ν(Bλ)∗

+iγµν /DF̂µν(Bλ)
∗ +

5

2
iγµνF̂µν /D(Bλ)

∗ ,

M = 4�c
�

cΦ∗ − 8iDaF̂abD
bΦ∗ − 2F̂abF̂

abΦ∗ + fermions , (2.27)

where we have omitted the complicated fermionic expressions in the composite formula

for M as we shall be interested in the bosonic part of an action formula for which this

multiplet will be used. With this multiplet we will produce a Ricci tensor squared invariant.
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Vector multiplets. For the construction of the n vector multiplet action, we first intro-

duce a real function CIJ(ρ), which is a function of the vector multiplet scalars ρI , and the

n vector multiplets are labeled by I, J, . . . = 1, 2, . . . , n. The lowest component of a vector

multiplet can then be composed as

ρI = CIJD
J + CIJK λ̄JλK . (2.28)

The label I is fixed, and it differs from the indices that are being summed over. We also

define

CIJK =
∂CIJ

∂ρK
, CIJKL =

∂2CIJ

∂ρK ∂ρL
, CIJKLM =

∂3CIJ

∂ρK ∂ρL ∂ρM
. (2.29)

In order to ensure that the ρI is the scalar of a superconformal vector multiplet, we impose

that the conformal weight of CIJ is ω(CIJ) = −1, and following constraints are satisfied

CIJK = CI(JK) , CIJK ρK = −CIJ . (2.30)

Furthermore, additional constraints are needed to ensure that λI , DI and ĜµνI are also the

elements of a superconformal vector multiplet

CIJKL ρ
L = −2CIJK , CIJKLM ρM = −3CIJKL . (2.31)

Therefore, applying a sequence of Q- and S-transformations, we find the elements of the

composite vector multiplet as

ρI = CIJ D
J + CIJK λ̄JλK ,

λI =
1

2
CIJK DJλK −

1

2
CIJ /Dλ

J −
1

4
iCIJK γµνĜJ

µνλ
K

−
1

4
CIJK /DρJλK + CIJKL λ

Lλ̄JλK

DI =
1

2
CIJK DJDK +

1

4
CIJ �

CρJ −
1

4
CIJK ĜJ

µν Ĝ
µνK

+
1

8
CIJK Dµρ

JDµρK −
1

2
CIJK λ̄J /DλK +

1

2
CIJK DµλJγ

µλK ,

−
1

2
iCIJKL λ̄

LγµνĜJ
µνλ

K + CIJKLD
J λ̄KλL + CIJKLM λ̄JλK λ̄LλM ,

ĜµνI =
1

2
Dσ

(
ǫλµν CIJ Ĝ

σλJ
)
+ 2iD[µ

(
CIJK λ̄Jγν]λ

K
)
−

1

4
CIJ ρ

J F̂µν , (2.32)

where the superconformal d’Alambertian for ρI is given by

�
CρI =

(
∂a − 2ba + ωb

ba
)
Daρ

I + 2faaρ
I +

(
−iψ̄aDaλ

I + iφ̄aγ
aλI + h.c.

)
. (2.33)

Note that ĜµνI satisfies the Bianchi identity due to the constraints (2.30).

The composition formula (2.32) can be truncated to a map between two vector multi-

plets by choosing C21 = ρ−1, in which case one obtains, for the bosonic fields,

ρ′ = ρ−1D − ρ−2λ̄λ ,

D′ = −
1

2
ρ−2D2 +

1

4
ρ−1

�
Cρ+

1

4
ρ−2Ĝµν Ĝ

µν −
1

8
ρ−2DµρD

µρ

Ĝ′
µν =

1

2
Dσ

(
ǫλµνρ

−1Ĝσλ
)
−

1

4
F̂µν , (2.34)
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where 1 labels the multiplet (ρ, Cµ, λ,D), and 2 labels the multiplet (ρ′, C ′
µ, λ

′, D′). Another

composite multiplet is obtained by choosing C31 = −ρ
−2ρ′ and C32 = ρ−1 in the composi-

tion formula (2.32). The bosonic components of the composite multiplet (ρ′′, λ′′, C ′′
µ, D

′′),

labeled by 3, can then be written as

ρ′′ = −ρ−2ρ′D + ρ−1D′ ,

D′′ = ρ−3ρ′D2 − ρ−2DD′ −
1

4
ρ−2ρ′�Cρ+

1

4
ρ−1

�
Cρ′

−
1

2
ρ−3ρ′Ĝµν Ĝ

µν +
1

2
ρ−2Ĝ′

µνĜ
µν +

1

4
ρ−3ρ′DµρD

µρ

−
1

4
ρ−2Dµρ

′Dµρ ,

Ĝ′′
µν =

1

2
ǫλµνDσ

(
−ρ−2ρ′Ĝσλ + ρ−1Ĝ′σλ

)
. (2.35)

2.3 Action formulae

In this section, we collect the action formulae for scalar and vector multiplets that we shall

use in the subsequent sections when constructing supergravity models. The construction

of the supergravity invariants require coupling the Weyl multiplet to at least one com-

pensating multiplet. We, therefore, consider two classes of supersymmetric invariants in

accordance with the compensating multiplet under consideration. Finally, we also present

the superconformal completion of the Chern-Simons action [8], which does not require a

compensating multiplet.

Scalar multiplet actions. We start with the action for a scalar multiplet (Z,Ω, F )

e−1LF = Re
(
F − ψ̃µγ

µΩ− Zψ̃µγ
µνψν

)
, (2.36)

which is invariant under dilatations and U(1)R transformations since the highest component

field F has the weight (w, q) = (3, 0).

The composite multiplet given in (2.25) can be used in the action formula (2.36) to

produce

e−1LF (n) = Re
(
σnF + nσn−1ZN + n(n− 1)σn−2Zψ̃ ψ + nσn−1ψ̃Ω

−nσn−1Z ψ̃µγ
µψ − σnψ̃µγ

µΩ− σnZ ψ̃µγ
µνψν

)
, (2.37)

which we shall use below to obtain an action providing a supersymmetric completion

of RSn.

Next, we use the components of the composite scalar multiplet multiplet (2.23) in the

action formula (2.36) which yields the following action that will be used to construct the

supersymmetric completions of the Einstein-Hilbert term as well as the R2 term

e−1LK = 4φ�Cφ∗ + |S|2 − 2 ζ̃ /D (Bζ)∗ + 2φ ψ̃µγ
µ /D (Bζ)∗

−S∗ψ̃µγ
µζ − φS∗ψ̃µγ

µνψν . (2.38)
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We next consider the scalar multiplets (ξ, ϕ,M) and (Φ,Ψ, P ). Using the multiplication

rule (2.16), the action describing the coupling of these multiplets can be given by

e−1LξΦ = Re
(
ξP +ΦM + Ψ̃ϕ− Φ ψ̃µγ

µϕ− ξψ̃µγ
µΨ− Φ ξ ψ̃µγ

µνψν

)
. (2.39)

Using the composite expressions (2.27), the bosonic part of the action that gives rise to

the R2
µν invariant is given by

e−1LΦ = Re
(
4Φ�

C
�

CΦ∗ + P�CP ∗ − 8iΦDaF̂abD
bΦ∗ − 2F̂ab F̂

abΦΦ∗
)
. (2.40)

Vector multiplet actions. Supersymmetric Lagrangians for vector multiplet can be

constructed starting from an action formula which describes coupling of two vector multi-

plets as

e−1LDD′ = ρD′ + ρ′D + 2
(
λ̄λ′ + h.c.

)
− 2ǫµνρCµ∂νC

′
ρ

−
1

2
i
(
ρ ψ̄µγ

µλ′ + ρ′ψ̄µγ
µλ+ h.c.

)
−

1

8

(
ρρ′ψ̄µγ

µνψν + h.c.
)
. (2.41)

As a special case, one can set the primed and the un-primed multiplet equal to each other,

obtaining [14]

e−1LD = 2ρD − ǫµνρCµGνρ + 4λ̄ λ− i
(
ρ ψ̄µγ

µλ+ h.c.
)

−
1

4
(ρ2ψ̄µγ

µνψν + h.c) . (2.42)

Using the composite multiplets (2.34) in this action formula, we also obtain the con-

formal vector multiplet action

e−1LV =
1

4
�

Cρ+
1

2
ρ−1D2 −

1

8
ρ−1∂µρ ∂

µρ−
1

4
ρ−1Gµν G

µν +
1

2
ǫµνρCµ ∂νVρ , (2.43)

up to fermionic terms.

Considering the coupling of a primed and double-primed multiplets in accordance

with the action formula (2.41), and employing the composite expressions (2.35) result in

an action that will be used in the construction of a supersymmetric completion of R2 term,

e−1LV V ′ = ρ−3(ρ′)2D2 − 2ρ−2ρ′DD′ + ρ−1(D′)2 +
1

4
ρ−1ρ′�cρ′

−
1

4
ρ−2ρ′2�cρ+

1

4
ρ−3ρ′2DµρD

µρ−
1

4
ρ′ρ−2Dµρ

′Dµρ

−
1

2
ρ−3(ρ′)2Ĝµν Ĝ

µν + ρ′ρ−2Ĝ′
µν Ĝ

µν −
1

2
ρ−1Ĝ′

µν Ĝ
′µν , (2.44)

where we have provided the terms that contributes to the bosonic part of the action. More

generally, we obtain the most general 2−derivative vector multiplet coupling, by using the

action formula (2.41), as

e−1LVI
=

1

4
CIJ ρ

I
�

cρJ +
1

8
CIJK ρIDµρ

JDµρK −
1

2
CIJ Ĝ

I
µνĜ

µνJ

−
1

4
CIJK ρIĜJ

µνĜ
µνK + CIJ D

IDJ +
1

2
CIJK ρIDJDK

+
1

4
CIJ ρ

JǫµνρCI
µ Fνρ . (2.45)
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Note that the index I is fixed to represent a certain multiplet by construction due to (2.32),

and summing over I indices correspond to summing different off-shell invariants.

Finally, there also exists an action that constitutes the superconformal completion of

the Lorentz Chern-Simons term. It is given by [8]

LCS = −
1

4
εµνρ

[
Rµν

ab(ω)ωρab +
2

3
ωµ

ab ωνb
c ωρca

]
+ εµνρFµνVρ − R̄µ γνγµR

ν , (2.46)

where the Hodge dual of the gravitino curvature is defined by

Rµ = εµνρ(Dν(ω)− iVν)ψρ . (2.47)

The supersymmetric Chern-Simons action is invariant under the Weyl multiplet trans-

formation rules (2.6). Therefore, it can be used for both N = (1, 1) and N = (2, 0)

supergravities.

3 N = (1, 1) supergravity models

The off-shell N = (1, 1) Poincaré supergravity and the supersymmetric completion of the

cosmological term are already given in the literature, and they are also referred to as Type

I minimal supergravity or three dimensional old minimal supergravity [8–10, 12]. Here we

shall derive them from the superconformal tensor calculus point of view, which will also

serve to establish our notation and conventions. Again using the superconformal tensor

calculus we shall construct three new invariants, namely the supersymmetric completion

of the R2 and R2
µν terms and of (RS2 + h.c.), where S is the complex auxiliary field. The

last invariant is key to the construction of ghost-free massive supergravity with N = (1, 1)

supersymmetry.

3.1 N = (1, 1) cosmological Poincaré supergravity

The off-shell Poincaré supergravity action is readily obtained from the action formula (2.38)

by fixing the dilatation, conformal boost and special supersymmetry transformation by

imposing

φ = 1 , ζ = 0 , bµ = 0 . (3.1)

The first one fixes dilatation and U(1)R transformation, the second fixes the S-

supersymmetry and the last one fixes the special conformal transformations. Maintaining

these gauge conditions imply that

ΛD = iΛ = 0 ,

ΛKµ =
1

4
η̄ ψµ −

1

4
ǭ φµ + h.c. ,

η = −
1

2
iγνVνǫ+

1

2
S (Bǫ)∗ . (3.2)

These imply the super supersymmetry transformation rules

δeµ
a =

1

2
ǭγaψµ + h.c.

δψµ = Dµ(ω) ǫ−
1

2
iVν γ

νγµ ǫ−
1

2
Sγµ (Bǫ)

∗
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δVµ =
1

8
iǭ γνργµ (ψνρ − iVσγ

σγν ψρ − Sγν (Bψρ)
∗) + h.c.

δS = −
1

4
ǫ̃ γµν (ψµν − iVσ γ

σγµψν − Sγµ (Bψν)
∗) , (3.3)

where

Dµ(ω)ǫ =

(
∂µ +

1

4
ωµ

ab γab

)
ǫ , ψµν = 2D[µ(ω)ψν] . (3.4)

Using the gauge fixing conditions (3.1) in the action (2.38) gives the the action of Poincaré

supergravity

e−1LEH = R+ 2V 2 − 2 |S|2 −
(
ψ̄µ γ

µνρDν(ω)ψρ + h.c.
)
. (3.5)

where V 2 := VµV
µ. Next, we construct the supersymmetric cosmological term by using

the multiplet (Z,Ω, F ) given in (2.22) in the action formula (2.36), imposing the gauge

fixing conditions (3.1), and multiplying the action by 1/2, arriving at the result

e−1LC = S −
1

4
ψ̃µ γ

µν ψν + h.c. (3.6)

3.2 N = (1, 1) higher dimensional invariants

We begin with the construction of the R2 invariant. To this end, we employ the composite

scalar multiplet Σ′ from (2.26) in the action formula (2.38). In the resulting action we

use the composite neutral multiplet from (2.24). Subsequently we fix the extra gauge

symmetries as in (3.1). These are straightforward manipulations which give the full R2

invariant whose bosonic part is given by

e−1LR2 = R2 + 16 |S|4 + 4(V 2)2 + 6R |S|2 + 4RV 2 + 12 |S|2 V 2

−16∂µS ∂
µS∗ − 8iV µS∗←→∂µS + 16 (∇µV

µ)2 , (3.7)

where S∗←→∂µS = S∗∂µS − S∂µS
∗.

To construct the supersymmetric R2
µν invariant, we employ the action formula (2.40).

Substituting for the components of the multiplet (Φ,Ψ, P ) given in (2.19), and impos-

ing gauge-fixing conditions (3.1), give the supersymmetric completion of the Ricci tensor

squared as follows

e−1LR2
µν+R2 = RµνR

µν −
23

64
R2 −

1

32
R |S|2 −RµνV

µV ν +
5

16
RV 2 +

1

16
(V 2)2 (3.8)

−
25

16
V 2 |S|2 −

1

4
∂µ S∂

µS∗ −
5

8
iV µS∗←→∂µS +

1

4
(∇µV

µ)2 − FµνF
µν ,

where we have exhibited the bosonic part of the Lagrangian. The R2 dependent part can

be removed by adding 23
64LR2 to this Lagrangian, obtaining

e−1LR2
µν

= RµνR
µν −RµνV

µV ν +
7

4
RV 2 +

17

8
R |S|2 +

23

4
|S|4 − FµνF

µν

+6 (∇µV
µ)2 +

3

2
(V 2)2 +

11

4
V 2 |S|2 − 6∂µS∂

µS∗ −
7

2
iV µS∗←→∂µS . (3.9)
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Next, we construct the supersymmetric completion of the RSn term. To this end,

we employ the action formula (2.37), in which we substitute for the components of the

multiplets (σ, ψ,N) and (Z ′,Ω′, F ′) given in (2.24) and (2.23), respectively. Imposing

the gauge fixing conditions (3.1) in the resulting Lagrangian, and dividing by an overall

constant factor of −(n+ 1), we obtain

e−1L(n) =
1

2

[
R+

2(3n− 1)

n+ 1
|S|2 + 2V 2 − 4i∇µV

µ

]
Sn + h.c. , (3.10)

where we have given the bosonic part of the result. Note that the n = 0 case agrees with

the Poincaré supergravity action (3.5) which we obtained by an alternative procedure.

3.3 N = (1, 1) generalized massive supergravity

We now consider a combination of the invariants up to dimension four, namely,

I =
1

κ2

∫
d3x

[
1

2
MLC + σLEH +

1

µ
LCS +

1

ν
LRS +

1

m2
LR2

µν
+ c1LR2 + c2LRS2

]
, (3.11)

where (σ,M, µ, ν,m2, c1, c2) are arbitrary real constants. Defining

S = A+ iB , (3.12)

where A and B are real scalar fields, the N = (1, 0) supersymmetric truncation is achieved

by setting Vµ = 0 and B = 0. In that case the so-called generalized massive gravity (GMG)

model is defined by setting

ν =∞ , c1 = −
3

8m2
, c2 =

1

8m2
. (3.13)

With these choices of the coupling constants the model expanded around supersymmetric

AdS3 vacuum propagates only helicity ± 2 and ± 3/2 states with AdS energies that respect

perturbative unitarity. We shall define the N = (1, 1) supersymmetric version of the GMG

model by choosing the coupling constants as in (3.13) as well, since the quadratic action

obtained by expanding around the supersymmetric AdS3 vacuum contains the N = (1, 0)

sector as an independent subsector. In this case the total Lagrangian becomes

e−1LGMG = σ(R+ 2V 2 − 2|S|2) +MA

−
1

4µ

[
ǫµνρ

(
Rµν

ab ωρab +
2

3
ωµ

ab ωνb
c ωρca

)
− 8ǫµνρVµ∂νVρ

]

+
1

m2

[
RµνR

µν −
3

8
R2 −RµνV

µV ν − FµνF
µν +

1

4
R(V 2 −B2)

+
1

6
|S|2(A2 − 4B2)−

1

2
V 2(3A2 + 4B2)− 2V µB∂µA

]
. (3.14)

Remarkably, all terms proportional to |∂S|2, RA2, (∇µV
µ)2 and (VµV

µ)2 have cancelled.

The cancellation of the |∂S|2 and RA2 require c1 and c2 to have the values given in (3.13),

and it is crucial for having ghost-free propagation of massive modes, as we shall see below.
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Notwithstanding that the fields A and B do not propagate, their elimination yields

highly nonlinear interactions, including those which take the form of an infinite power

series in the Ricci curvature scalar R. In that sense, the notion of a supersymmetric GMG

model is extended here, compared to the case of N = (1, 0) supersymmetric version where

the single auxiliary field, a real scalar, can be eliminated from the action by means of its

algebraic equation of motion, yielding the standard bosonic GMG action. Nonetheless, in

both cases the action contains the combination (RµνR
µν− 3

8R
2), and if we take this feature

to be the defining one for an extended definition of super GMG models, it is clear that such

an extension is not unique. In such models, there is no need for eliminating the auxiliary

fields, even when they are non-propagating, unless their field equations are algebraic ones.

Turning to the model with parameters chosen as in (3.13), here we shall focus on

maximally supersymmetric AdS vacuum and determine the spectrum of fluctuations around

it. In view of the results of [19], the following background is maximally supersymmetric

R̄µν = −
2

ℓ2
ḡµν , Ā = −

1

ℓ
, V̄µ = 0 , B̄ = 0 , (3.15)

where ḡµν is the AdS3 metric, and ℓ is the AdS3 radius which must obey the equation

4σ + ℓM +
2

3ℓ2m2
= 0 . (3.16)

Let us define the fluctuation fields around this vacuum as

gµν = ḡµν

(
1 +

1

3
h

)
+Hµν , ḡµνHµν = 0 ,

A = Ā+ a , B = B̄ + b , Vµ = V̄µ + vµ , (3.17)

and choose the gauge condition

∇̄µHµν = 0 . (3.18)

The linearized field equations then take the form

[D(1)D(−1)D(η+)D(η−)H]µν = −
1

3ℓ2

(
∇̄µ∇̄ν −

1

3
ḡµν�̄

)
h ,

Ω

m2

(
ℓ2�̄− 3

)
h = 0 ,

Ω

m2
a = 0 ,

Ω

m2
b = 0 ,

Ω

m2
[D(η+)D(η−)v]µ = 0 , (3.19)

where

η± = Ω−1

(
−
ℓm2

2µ
±

√
ℓ2m4

4µ2
− Ω

)
, Ω ≡ σ ℓ2m2 −

1

2
. (3.20)

and D(η) is a first-order linear differential operator, parametrized by a dimensionless con-

stant η, that acts on a rank-s ≥ 1 totally symmetric, traceless and divergence-free tensor as
[
D(η)ϕ(s)

]
µ1···µs

= [D(η)]µ1

ρ ϕ
(s)
ρµ2···µs , [D (η)]µ

ν = ℓ−1 δνµ +
η√
|ḡ|

εµ
τν∇̄τ . (3.21)
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The equations for Hµν and h agree precisely with those arising in the N = (1, 0) GMG

model [4, 6] whose spectrum was studied in detail in [7], extending earlier results of [21]

for the bosonic model. For “non-critical” values of the couplings summarized by the

condition m−2Ω(η+ − η−)(|η+| − 1)(|η−| − 1) 6= 0, these equations describe the UIRs of

SO(2, 2) with lowest weight (E0, s), and where ℓ−1E0 is the lowest energy, and s is the

helicity, their values given by

(E0, s) : (2, 2) , (2,−2) ,

(
1 +

1

|η+|
,
2η+
|η+|

)
,

(
1 +

1

|η−|
,
2η−
|η−|

)
. (3.22)

The new degrees of freedom arising here furnished by the field vµ. From (3.19) it follows

the propagating modes have the representation content

(E0, s) :

(
1 +

1

|η+|
,
η+
|η+|

)
,

(
1 +

1

|η−|
,
η−
|η−|

)
. (3.23)

Together with the spin-2 modes displayed in (3.22), these form the bosonic content of

a massive spin-2 supermultiplet of N = (2, 0) supersymmetry in three dimensions. The

structure of this multiplet is similar to the one studied in detail in [22]. The critical

versions of our N = (2, 0) GMG model arises for

m−2Ω(η+ − η−)(|η+| − 1)(|η−| − 1) = 0 . (3.24)

We shall not examine these points here but we note that the spin-2 sector at critical

points has been analyzed in considerable detail in [4]. As for the spin-1 sector, it follows

a pattern similar to the one discussed in great detail in [22], in the context of a parent

supergravity theory whose off-shell degrees of freedom coincide with those of N = (2, 0)

supergravity in three dimensions upon a circle reduction.

4 N = (2, 0) supergravity models

This section is devoted to the construction of N = (2, 0) supergravity invariants. The

Poincaré supergravity and its cosmological extension has already been given in [12, 13], and

it is also referred to as Type II minimal supergravity. In this section, we first introduce our

gauge fixing choices, and construct the Poincaré supergravity and the supersymmetric cos-

mological constant based on the conformal vector multiplet actions discussed in section 2.

We then proceed to the four-derivative invariants and construct the supersymmetric R2

invariant by the same method. Finally, establishing an analogy between the non-abelian

vector multiplet and the Poincaré multiplet, we construct the R2
µν invariant, and discuss

the ghost-free maximally supersymmetric vacuum of the four-derivative extended theory.

4.1 N = (2, 0) cosmological Poincaré supergravity

The off-shell Poincaré supergravity is obtained from the action formula (2.43) and gauge

fixing the superconformal transformations by imposing the following gauge conditions

ρ = 1, λ = 0, bµ = 0 , (4.1)
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where the first choice fixes dilatations, the second fixes the S-supersymmetry and the third

fixes the special conformal symmetry. These gauge choices are maintained provided that

ΛD = 0 ,

ΛKµ = −
1

4
ǭ φµ +

1

4
η̄ ψµ + h.c. ,

η =
1

2
iγ · Ĝ ǫ+Dǫ . (4.2)

We therefore end up with the new minimal Poincaré multiplet consisting of a dreibein eaµ,

a gravitino ψµ, a U(1)R symmetry gauge field Vµ, a vector gauge field Cµ and an auxiliary

scalar D. The resulting local supersymmetry transformation rules are

δeµ
a =

1

2
ǭ γa ψµ + h.c.

δψµ =

(
∂µ +

1

4
ωµ

ab γab − iVµ

)
ǫ−

1

2
i γµγ · Ĝǫ− γµDǫ

δCµ = −
1

4
i ǭ ψµ + h.c.

δVµ = −
1

2
iǭ γνψ̂µν +

1

8
iǭ γµγ · ψ̂ −

1

2
ǭ γ · Ĝ ψµ + iDǭψµ + h.c.

δD = −
1

16
ǭ γ · ψ̂ + h.c. (4.3)

where the U(1)R covariant gravitino field strength is given by

ψ̂µν = 2

(
∂[µ +

1

4
ω[µ|

ab γab − iV[µ

)
ψν] − iγ[µγ · Ĝψν] − 2Dγ[µψν] . (4.4)

Substituting the gauge fixing conditions (4.1) into the Lagrangian (2.43), and rescaling

with a factor of −16, we obtain the following Poincaré supergravity

e−1LEH = R− 2G2 − 8D2 − 8ǫµνρCµ ∂νVρ , (4.5)

where we have defined

Gµ := ǫµνρG
νρ , G2 := GµG

µ . (4.6)

Consequently, Gµ is a covariantly conserved tensor ∇µGµ = 0. A supersymmetric cosmo-

logical constant can be added to the Poincaré supergravity (4.5), which can be obtained

from the action formula (2.42), and imposing the gauge fixing choices (4.1), obtaining

e−1LC = 2D − ǫµνρCµGνρ −

(
1

8
ψ̄µ γ

µν ψν + h.c.

)
. (4.7)

4.2 N = (2, 0) RD and R2 invariants

For the construction of the RD invariant, we consider the vector multiplet action (2.42)

for the primed vector multiplet (ρ′, C ′
µ, λ

′, D′). Using the composite expressions given

in (2.34) and fixing the redundant superconformal symmetries by using the gauge fixing

choices (4.1), give the supersymmetric completion of the RD action

e−1LRD = RD + 8D3 − 2Gµν (Fµν +∇µGν + 2DGµν) +
1

2
ǫµνρ Vµ Fνρ , (4.8)
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where we have rescaled the Lagrangian with an overall factor of −8. Note that although

the RD invariant and the Lorentz-Chern-Simons invariant (2.46) have the same conformal

ǫµνρVµFνρ term, the RD invariant is not conformally invariant as can be understood from

the existence of the Ricci scalar. Such non-conformal invariants are studied in detail in the

context of Chern-Simons contact terms in three dimensions [23–25].

Next, we construct the supersymmetric completion of R2. Using the composition

formula (2.34) and employing the gauge fixing choices (4.1) in the action formula (2.44),

we obtain

e−1LR2 = (R+ 24D2 + 2G2)2 − 8
(
Fµν + 2∇[µGν] + 4DGµν

)2
+ 64D�D . (4.9)

4.3 N = (2, 0) R2

µν
invariant

The supersymmetric completion of the Ricci tensor-squared term is most conveniently

obtained by establishing a map between Yang-Mills and supergravity multiplets. To do

so, we begin by gauge fixing the nonabelian version of the transformation rules (2.14) in

accordance with (4.1), obtaining

δCI
µ =

1

2
ǭ γµλ

I −
1

4
iρI ǭ ψµ + h.c. ,

δρI = iǭλI + h.c. ,

δλI = −
1

4
γµνĜI

µνǫ+
1

2
iDIǫ−

1

4
i /̂DρIǫ−

1

2
iρIDǫ+

1

4
ρIγ · Ĝǫ ,

δDI =

(
−

1

2
iǭ /̂DλI +

1

2
iDǭλI −

1

4
ǭ γ · ĜλI +

1

4
g ǭ fJK

I ρJλK + h.c.

)
. (4.10)

where

D̂µρ
I = ∂µρ

I +
(
−iψ̄µ λ

I + h.c.
)
+ g fJK

I CJ
µ ρ

K ,

D̂µλ
I =

(
∂µ +

1

4
ωµ

ab γab − iVµ

)
λI +

1

4
γρσĜI

ρσ ψµ −
1

2
iDIψµ +

1

4
i /̂DρIψµ

+
1

2
iρIDψµ −

1

4
ρIγ · Ĝψµ + g fJK

ICJ
µ λ

K ,

ĜI
µν = 2∂[µC

I
ν] −

(
ψ̄[µγν]λ

I −
i

2
ρI ψ̄µ ψν + h.c.

)
+ g fJK

I CJ
µ C

K
ν . (4.11)

We will next show that the following set of fields

(Ωµ
−ab , Ĝab , ψ̂ab , F̂ ab(V+, ω,Ω

−)) (4.12)

transform as a Yang-Mills multiplet (CI
µ , ρ

I , λI , DI), where the ab index pair plays the role

of Yang-Mills index. The definitions of the torsionful spin connection Ωµ
−ab, the gravitino

field strength ψ̂ab, and the modified U(1)R gauge field are given by

Ωµ
ab± = ωµ

ab ± 2εµ
abD , (4.13)

ψ̂ab = 2∇[a(ω,Ω
+, V )ψb] − iγ[aγ · Ĝψb] , (4.14)

Va+ = Va +
1

2
ǫa

bcĜbc , (4.15)
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where in the definition of ψ̂ab, the connection ω rotates the Lorentz vector index while the

connection Ω+ rotates the Lorentz spinor index.

First, we calculate the transformation rules for ωµ
ab, D and Ĝab

δωµ
ab = −

1

4
ǭ γµψ̂ab +

1

2
ǭ γ[aψ̂b]

µ +Dǭ γab ψµ − iǭ ψµĜ
ab + h.c. , (4.16)

δD = −
1

16
ǭ γ · ψ̂ + h.c. , (4.17)

δĜab = −
1

4
iǭ ψ̂ab + h.c. . (4.18)

From the first two equations, we observe that

δΩµ
−ab = −

1

2
ǭ γµψ̂

ab − iǭ ψµĜ
ab + h.c. . (4.19)

Next, we compute the transformation rule for the gravitino curvature

δψ̂ab =
1

4
γcd R̂abcd(Ω

+)ǫ− iF̂ab(V )ǫ− 2i∇[a(ω)Ĝb]cγ
cǫ

−i∇[a(ω) Ĝ
cdεb]cd + 2iD Ĝabǫ− Ĝabγ · Ĝǫ

+iĜγab γ · Ĝǫ , (4.20)

where R̂abcd(Ω
+) represents a torsionful supercovariant Riemann tensor. Using the defini-

tion of V+ given in (4.15), the Bianchi identity ∇[aĜbc] = 0 and R̂abcd(Ω
+) = R̂cdab(Ω

−),

we rewrite the transformation rule for the gravitino curvature as

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ǫ− iF̂ab(V+)ǫ+ i /∇(Ω−)Ĝab ǫ− Ĝab γ · Ĝǫ , (4.21)

where in ∇µ(Ω
−)Ĝab, the connection Ω− rotates both a and b indices. Finally, defining

F̂ab(V+, ω,Ω
−) where ω rotates the Lorentz vector index b, whereas the connection Ω−

rotates the index c in the covariant derivative acting on Ĝbc, we have

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ǫ− iF̂ab(V+, ω,Ω
−)ǫ+ i /∇(Ω−)Ĝab ǫ

−Ĝab γ · Ĝ ǫ+ 2iDGab ǫ . (4.22)

Finally, we consider the transformation rule for F̂ab(V+, ω,Ω
−)

δF̂ab(V+, ω,Ω
−) =

1

4
iǭ /∇(ω,Ω−)ψ̂ab−

1

4
iDǭ ψ̂ab+

1

8
ǭ γ · Ĝ ψ̂ab− iǭ Ĝc[aψ̂b]

c+h.c. , (4.23)

where in ∇c(ω,Ω
−)ψ̂ab the connection ω acts on the spinor index, whereas Ω− acts on both

a and b indices.

Comparing the transformation rules (4.18), (4.19), (4.22) and (4.23) with those of the

nonabelian vector multiplet, we find the following correspondence

Ωµ
−ab ↔ CI

µ , 4Ĝab ↔ ρI , −ψ̂ab ↔ λI , 2F̂ ab(V+, ω,Ω
−)↔ DI . (4.24)

– 19 –



J
H
E
P
0
2
(
2
0
1
5
)
1
2
5

We now turn to the supersymmetric completion of the Ricci squared term. To this

end, we first construct the following Lagrangian

e−1LYM =
1

4

(
GI

µν − ρ
IGµν

)(
GµνI − ρIGµν

)

−
1

2
(DI − ρID)2 +

1

8
Dµρ

IDµρI , (4.25)

describing the bosonic sector of Yang-Mills multiplet coupling to supergravity. This is

obtained by generalizing the superconformal invariant action (2.44) and then fixing gauges

according to (4.1). It is now straightforward to use the map (4.24) which gives the bosonic

part of the supersymmetric completion of the Riemann squared action

e−1LRiem2 =
1

4

(
Rµνab(Ω

−)− 4GabGµν

)(
Rµνab(Ω−)− 4GabGµν

)

−2
(
Fab(V+, ω,Ω

−)− 2DGab

)(
F ab(V+, ω,Ω

−)− 2DGab
)

+2∇µ(Ω
−)Gab∇

µ(Ω−)Gab . (4.26)

Finally, expanding the torsion terms and using the definition of three-dimensional Riemann

tensor

Rµνab = εµνρ εabc

(
Rρc −

1

2
eρcR

)
, (4.27)

we obtain the supersymmetric completion of the Ricci squared action

e−1LR2
µν

= Rµν R
µν −

1

4
R2 + 4RD2 +RG2 − 2Rµν G

µGν + 48D4 + 8D�D

+8D2G2 + (G2)2 − 2(Fµν +∇[µGν])
2 − (∇µGν + 4DGµν)

2 , (4.28)

where we recall that Gµ := ǫµνρG
νρ. If desired, a term proportional to LR2 from (4.9) can

be added to this result to obtain the invariant in which the only curvature squared term is

that of the Ricci tensor.

We conclude this subsection with comments on the existence of an off-shell RD2 in-

variant. Considering the vector multiplet action (2.45) and the composite formulae (2.34)

and (2.35), we find the following choices for CIJ to obtain a supersymmetric completion

for the RD2 term:

1. The supersymmetric completion of the RD2 term can be obtained by supersym-

metrizing the �
c(ρ−3D2) term. In order to do so, we can consider two vector multi-

plets: (ρ, Cµ, λ,D) labeled by 1, and (ρ′′, C ′′
µ, λ

′′, D′′) labeled by 3, and set C13 = ρ−1.

Making this choice, we find that all the terms in the Lagrangian (2.45) cancel each

other out, thus, not giving rise to an RD2 invariant.

2. Alternatively, one can consider the supersymmetric completion of ρ−2D2
�

cρ which

gives rise to an RD2 term after gauge fixing. Such a model can be obtained by con-

sidering two vector multiplets: (ρ, Cµ, λ,D) labeled by 1, and (ρ′, C ′
µ, λ

′, D′) labeled

by 2, and set C22 = ρ−1. Making this choice, however, we find that the resulting

action is the R2 action given in (4.9).
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3. Another alternative is the supersymmetric completion of ρ−2D�
c(ρ−1D). This con-

struction also corresponds to the choice C22 = ρ−1, and coincides with the R2 action

given in (4.9)

In view of these arguments, it is not clear to us how the supersymmetric completion of

RD2 as an off-shell invariant independent of the R2 and R2
µν invariants can be obtained

within the tensor calculus framework presented in section 2.

4.4 N = (2, 0) generalized massive supergravity

We now consider a combination of the invariants unto dimension four, namely,

I =
1

κ2

∫
d3x

[
MLC + σLEH +

1

µ
LCS +

1

ν
LRD +

1

m2
LR2

µν
+ cLR2

]
, (4.29)

where (σ,M, µ, ν,m2, c) are arbitrary real constants. This action is invariant under the off-

shell supersymmetry transformation rules given in (4.3). If we consider the defining feature

of a super GMG model to be that it contains the term RµνR
µν − 3

8R
2, such an extension

is clearly not not unique, as discussed earlier. Focusing on maximally supersymmetric

backgrounds and ghost free fluctuations around it, we begin by noting that the metric for

such backgrounds is AdS or Minkowski. In the former case, D must be non-vanishing, and

this is problematic for ghost-freedom due the presence of the RD2 term in the action. Such

a term is akin to the RA2 term in the N = (1, 1) model which we are able to eliminate.

In the case of Minkowski background, the presence of the RD2 term is harmless. Thus,

to achieve maximally supersymmetric Minkowski background, we are led to consider the

model with the following choice of parameters

M = 0 , ν =∞ , c = −
1

8m2
. (4.30)

In this case, the total Lagrangian becomes

e−1LGMG = σ (R− 2GµG
µ − 8D2 − 4GµVµ)

−
1

4µ
ǫµνρ

[
Rµν

ab ωρab +
2

3
ωµ

ab ωνb
c ωρca − 8Vµ∂νVρ

]

+
1

m2

[
RµνR

µν −
3

8
R2 − 2RD2 −Rµν G

µGν +
1

2
RG2 (4.31)

−24D4 +
1

2
(G2)2 − 4D2G2 − FµνF

µν + 8DGµν (Fµν +∇µGν)

]
.

For the maximally supersymmetric background, the fields (D,Vµ, Cµ) are vanishing.

Therefore, the analysis of the linearized fluctuations for spin-2 modes around this back-

ground is the same as that of standard GMG model, amounting to the purely gravitational

part of the action above. Thus, we know that the system describes two massive helicity

±2 modes with masses [26]

m2
± = −σm2 +

m4

2µ2

[
1±

√
1−

4σµ2

m2

]
. (4.32)
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Ghosts are absent for m2 > 0 and σ ≤ 0 [5, 6, 26]. Next, we note that the linearized

fluctuation of the field D vanishes. Denoting the linearized vector fluctuations of (Vµ, Cµ)

by the same symbols and choosing the Lorentz gauges ∂µV
µ = 0 and ∂µC

µ = 0, one finds

that their linearized field equations are

1

m2
�V µ −

1

µ
ǫµνρ ∂νVρ + σGµ = 0 , Fµν + 2∂[µGν] = 0 . (4.33)

A simple manipulation of these equations gives

[
(�+ σm2)δρµ δ

σ
ν −

σm2

µ
ǫ[µ

ρσ∂ν]

](
Fρσ

Gρσ

)
= 0 , (4.34)

Diagonalizing the mass matrix one finds that the masses for V µ and Cµ are given by the

formula (4.32). Thus, we have found the bosonic sector of two massive spin-2 multiplets

of N = (2, 0) supersymmetry.

5 Conclusions

In this paper we have completed the construction of all off-shell Poincaré supergravity in-

variants up to mass dimension four and with N = (1, 1) and N = (2, 0) supersymmetry.

We have mostly utilized superconformal tensor calculus except for the supersymmetric

completion of Ricci tensor squared invariant with N = (2, 0) supersymmetry, where we

have employed a map between the Yang-Mills multiplet and the Poincaré multiplet. The

resulting Lagrangians with N = (1, 1) and N = (2, 0) supersymmetry contain seven and six

free parameters respectively, each of which corresponds to separate off-shell invariants. We

have determined the relation between the parameters so that the spectrum of fluctuations

about a maximally symmetric vacuum solution is ghost-free. For ghost-free fluctuations

about AdS3 vacuum, certain type of off-diagonal invariants with mass dimension four,

namely RS2 for N = (1, 1) supersymmetry and RD2 for N = (2, 0) supersymmetry, with-

out curvature squared terms in their supersymmetric completion, play a crucial role. We

have constructed the former, but surprisingly we have found that the latter does not seem

to exist. Consequently, the N = (2, 0) model does not seem to have a supersymmetric AdS

vacuum with ghost-free spectrum, even though it does admit a supersymmetric Minkowski

vacuum that gives ghost-free massive spin-2 multiplet.

There are a number of directions to pursue in probing the properties of the general

class of off-shell supergravities constructed here. While the supersymmetric AdS vacuum

solutions were examined here, it will be instructive to study the non-supersymmetric AdS

vacuum solutions as well. A systematic study of the ghost-free vacua and their stability

under quantum corrections would also be useful. Such studies would also shed light on

the role of extended supersymmetry and the differences between the two versions of the

off-shell N = 2 theory at the quantum level.

Although we constructed vector multiplet actions by using an arbitrary function of

vector multiplet scalars, as given in (2.45, we did not consider such constructions for the

scalar multiplet in this paper. It would be interesting to consider the coupling of an
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arbitrary number of scalar multiplets and vector multiplets, since that would enable us

to construct a large class of supergravity Lagrangians [27]. The composite expression we

derived for both scalar and vector multiplet can also be used to construct matter-coupled

higher derivative supergravity models. Such three dimensional matter coupled theories have

attracted considerable amount of attention in the context of rigid supersymmetric theories

on three-manifolds [23, 28]. Since the compensating multiplet used in the construction

of N = (1, 1) theory includes a complex scalar, our gauge choice fixes R-symmetry in

addition to dilatations. However, this is not the case for the N = (2, 0) theory, since we

gauge fix dilatations with a real scalar. Therefore, one can use this setup to obtain an

Einstein-Maxwell theory where the R-symmetry is dynamically gauged.

Finally, we would like to mention that since N = (1, 1) generalized massive gravity

admits a maximally supersymmetric AdS3 vacuum, one should expect a holographically

dual superconformal field theory. Here, we do not attempt to calculate the central charge

as in the original argument of Brown-Henneaux [29], but consider the bosonic truncation of

the N = (1, 1) generalized massive gravity (3.14) as in [4, 6]. For parity-preserving theories

with higher derivative extensions, the left and right central charges are given by [30, 31]

cL = cR =
ℓ

2G3
gµν

∂(e−1L)

∂Rµν
. (5.1)

Parity-violating terms result in a difference in the left and right central charges. Given

the Lagrangian (3.11) with parameter choices (3.13), the only parity violating contribution

comes from the Lorentz Chern-Simons term and it is given by ± 3
2G3µ

.Therefore, the central

charges read

cL,R =
3ℓ

2G3

(
σ +

1

2m2ℓ2
±

1

µℓ

)
. (5.2)

Note that this result precisely matches with the three dimensional N = (1, 0) model [6]

since vacuum expectation values for the R-symmetry gauge field Vµ and the imaginary part

of the auxiliary scalar S vanish (3.15).
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A Complex spinor conventions

The metric signature is (−,+,+). The gamma matrices satisfy the Clifford algebra, i.e.{
γa, γb

}
= 2ηab, and the identities

(γµ)† = γ0γµγ0, (γµ)T = −CγµC−1, (γµ)∗ = BγµB−1 , (A.1)
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where C is the charge conjugation matrix and B is a unitary matrix with properties

CC† = 1 , CC∗ = −1 , CT = −C . (A.2)

C = iBγ0 , BB† = 1 , BB∗ = 1, BT = B . (A.3)

For Dirac spinors, there are two different definitions of the conjugate which are given by [10]

ǭ = iǫ†γ0, ǫ̃ = (Bǫ)∗ . (A.4)

For Majorana spinors, we impose the reality condition ǫ∗ = Bǫ and Majorana conjugation

ǭ = ǫTC is equivalent to Dirac conjugation ǭ = iǫ†γ0.

In order to obtain the flipping rules for bilinears formed by Dirac spinors, it is useful

to decompose a Dirac spinor into two Majorana spinors as ǫD = ǫM1 + iǫM2. As a result,

we have

(BǫD)
∗ = ǫM1 − iǫM2 , ǭD = ǭM1 − iǭM2, ǫ̃D = ǭM1 + iǭM2 , (A.5)

from which one can obtain

ǭ1Γ (Bǫ2)
∗ = α ǭ2Γ (Bǫ1)

∗ , ǫ̃1Γǫ2 = α ǫ̃2Γǫ1 , (A.6)

where Γ is any element of the Clifford algebra and α is the corresponding numerical factor

in the Majorana flipping relations. Using the decomposition, one also gets

ǫ̃1Γ (Bǫ2)
∗ = α ǭ2Γǫ1 . (A.7)

Note that this time we get a different type of bilinear, which becomes an important issue

in the closure of the algebra on the scalar multiplet. Namely, QQ commutation leads to a

translation parameter

ξµ3 =
1

2
ǫ̃2γ

µ (Bǫ1)
∗ −

1

2
ǫ̃1γ

µ (Bǫ2)
∗ , (A.8)

which can be shown to be identical to the usual translation parameter

ξµ3 =
1

2
ǭ2γ

µǫ1 −
1

2
ǭ1γ

µǫ2 , (A.9)

by using (A.7).

The charge conjugation of a spinor is defined by λC = B−1λ∗ = (Bλ)∗ and the complex

conjugation of bilinears are

(χ̄Γλ)∗ ≡ (χ̄Γλ)C = χCΓCλC = χ̃ΓC (Bλ)∗ , (A.10)

(χ̃Γλ)∗ ≡ (χ̃Γλ)C = χ̃CΓCλC = χ̄ΓC(Bλ)∗ , (A.11)

where the charge conjugation of matrices are determined by (Γ1Γ2)
C = ΓC

1 Γ
C
2 and γCµ = γµ.
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B Fierz identities

Elements of the Clifford algebra in 3D are
{
ΓA = 1, γµ

}
with the orthogonality relation

Tr
(
ΓAΓB

)
= 2 δAB. Therefore, any 2-dimensional matrix can be expanded in the basis{

ΓA
}
as M = 1

2

∑
ATr (MΓA) Γ

A. As a result, the Fierz identity in 3D is given by

χ̄1 χ2 ǫ = −
1

2
(χ̄1 ǫ χ2 + χ̄1 γ

aǫ γaχ2) , (B.1)

from which one can also obtain

χ̄1 γ
aχ2 γaǫ = −χ̄1 χ2 ǫ− 2χ̄1ǫ χ2 , (B.2)

χ̄1 γ
abχ2 γabǫ = 2χ̄1 χ2 ǫ+ 4χ̄1 ǫ χ2 . (B.3)

Whenever flipping relations are applicable, one can also obtain additional identities by

antisymmetrizing (B.2)–(B.3) with respect to 1←→ 2

χ̃1 γ
aχ2 γaǫ = −χ̃1 ǫ χ2 + χ̃2 ǫ χ1 , (B.4)

χ̃1 γ
abχ2 γabǫ = 2χ̃1 ǫ χ2 − 2χ̃2 ǫ χ1 , (B.5)

which are also true for bilinears of type ǭ1Γ (Bǫ2)
∗. Using (B.4) in (B.1) we also obtain

χ̃1 χ2 ǫ = −χ̃1 ǫ χ2 − χ̃2 ǫ χ1 . (B.6)
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