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The biological function of type I receptors of bone
morphogenetic protein in bone

Shuxian Lin1,2, Kathy KH Svoboda2, Jian Q Feng2 and Xinquan Jiang1

Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and
regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In
recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling
via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three
types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin-
like kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The
research areas covered include the current progress regarding the roles of these receptors during myogenesis,
chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these
receptors at the cellular and molecular levels will advance drug development and tissue regeneration for
treating musculoskeletal diseases and bone defects in the future.
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INTRODUCTION
Belonging to the transforming growth factor-β super family,1

bone morphogenetic proteins (BMPs) were discovered
and named in 1965 by Marshall Urist, who initially identified
their ability to induce ectopic bones in muscles.2 In the last
50 years, the potent osteogenic activity in vitro of BMPs has
been well characterized,3 as well as their constitutive
activation or exogenous application, which can induce
ectopic bone formation in vivo.4–5 BMPs signal through cell-
surface receptor complexes that consist of two distinct
transmembrane serine/threonine kinase receptors, type I
(BMPRI) and type II (BMPRII).6 Initially, BMP ligands bind with
high affinity to BMPRI, followed by heterodimerization with
BMPRII, which allows the BMPRII to phosphorylate a short
stretch of amino acids in the BMPRI and activate kinase
activity.6 Classically, after the activation of BMPRI, intracel-
lular signaling is initiated through the phosphorylation of the
C-terminal SSXS motif of specific receptor-regulated
Smads, including Smad1, 5, and 8.7–10 After being released
from the receptor, the phosphorylated Smads form hetero-
meric complexes with common partner Smad, that is,
Smad4. This complex is then translocated into the nucleus

to regulate the transcription of genes, broadly influencing
growth and differentiation.9

Three type I receptors have been shown to effectively
bind BMP ligands during mammalian skeletal development
—types IA and IB BMP receptors (BMPRIA or ALK3
and BMPRIB or ALK6), as well as type IA activin receptor
(ACVRI or ALK2).11–12 In recent decades, studies of clinical
patients, genetic animal models and cell lines have
consistently demonstrated that all three type I receptors
are essential for osteolineage and chondrolineage
proliferation, differentiation and function. It has become
clear that alterations in the intensity, location, and dura-
tion of BMPRI activity lead to heterotopic bone formation,
skeleton, and cartilage deformation, as well as bone
metabolism disorders. Here we provide an updated
review that specifically focuses on the biological func-
tion of BMPRI in bone formation. Emphasis is placed on
murine genetic studies (Table 1) that have assessed the
requirement for and the roles of different types of BMPRI,
including ALK2, ALK3, and ALK6 during osteogenesis,
chondrogenesis and osteoclastogenesis, as summarized
in Figure 1.

1Department of Prosthodontics, Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai, China and
2Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
Correspondence: Jian Q Feng or Xinquan Jiang (Jfeng@bcd.tamhsc.edu or xinquanj@aliyun.com)
Received: 7 December 2015; Revised: 4 February 2016; Accepted: 20 February 2016

Citation: Bone Research (2016) 4, 16005; doi:10.1038/boneres.2016.5

www.nature.com/boneres

http://dx.doi.org/10.1038/boneres.2016.5
mailto:Jfeng@bcd.tamhsc.edu
mailto:xinquanj@aliyun.com
http://dx.doi.org/10.1038/boneres.2016.5
http://www.nature.com/boneres


BIOLOGICAL FUNCTIONS OF ALK2 IN BONE
FORMATION
ALK2 is widely expressed in many tissues during embryonic
development and is highly present in bones during postnatal
development.13 Several mesenchymal stem cell (MSC) lines
show high expression levels of ALK2,11,14 and its constitutive
activation in myoblasts induces heterotopic bone during the
endochondral bone formation process, suggesting that ALK2
has essential roles in both osteogenesis and chondrogenesis.

Ectopic expression of ALK2 in myoblasts leads to
heterotopic endochondral bone formation
The regulatory role of ALK2 in osteogenesis and chondrogen-
esis did not arouse interest until the discovery of fibrodysplasia
ossificans progressiva (FOP, MIM 135100), which is character-
ized by congenital malformations of the great toes and
progressive heterotopic ossification in muscles, tendons,
ligaments, and other connective tissues.15–16 Genetic analysis
of FOP patients has identified gain-of-function mutations in
ALK2, including c.617G4A (p.R206H), c.619C4G (p.Q207E),
c.1067G4A (p.G356D), c.982G4 T(p.G328W), c.983G4
A(p.G328E), c.982G4A (p.G328R), c.774G4C/c.774G4T
(P.R258S), c.1124G4C (p.R375P), c.587T4C (p.L196P),
c.590–592delCTT (p.P197_F198delinsL), and c.605G4T
(p.R202I), among which R206H is the most commonmutation
and can be found in ~90% of FOP patients.17–31 The classic,
constitutively active ALK2 receptor containing the artificial
Q207D mutation or the R206H mutation recaptures the FOP
condition in transgenic animal models.32–33 Further evaluation
of these FOP mutations revealed that the ectopic expression

of ALK2 increased Smad-dependent BMP signaling activity,
which potentially occurs for both osteogenic and chondro-
genic differentiation of myoblasts, thus forming hetero-
topic bone through an endochondral bone formation
process.21,32,34–39 In addition, inhibiting the activation of BMP
signaling effectors Smad1/5/8 in tissues that constitutively
express ALK2 resulted in a reduction of the ectopic ossifica-
tion and functional impairment.32 The stable in vitro trans-
fection of the Alk2R206H mutation in C2C12 cells (mouse
myoblasts) increased the levels of both osteogenic markers
(osterix (Osx), alkaline phosphatase (Alp)) and chondrogenic
markers (type II collagen (Col2), type X collagen (Col10)).40–41

Conversely, knockdown of Alk2 in C2C12 cells potentiated
muscle differentiation and repressed BMP6-induced osteo-
blast differentiation.42 These elevated results suggest that
Smad-dependent ALK2 signaling is important in heterotopic
ossification and endochondral bone formation of myoblasts.

ALK2 regulates osteogenic and chondrogenic
differentiation of MSCs
Studies focusing on Alk2R206H mutant mice or cells also
provide evidence indicating that ALK2 has an important
role in the osteogenic differentiation of MSCs. First, the
mesenchymal progenitor cells isolated from FOP (R206H)
patients or Alk2R206H mutant mice showed increased
Smad-dependent BMP signaling activity with upregulated
Alp, runt-related gene 2 (Runx2), and osteocalcin (Ocn)
genes.39,43 Second, the constitutive expression of Alk2 in
mesenchymal cells or pre-osteoblasts makes those cells
more receptive to exogenous BMPs with respect to

Table 1. Summary of skeletal phenotypes in mouse models with BMPRI alterations
Gene Tg/KO/KI/CKO/CKI Promoter/Cre line Stage BMP

signal
Bone and cartilage phenotype(s) References

ALK2 CKI (Alk2Q207D) Ad.Cre
(injection)

P7–P30 Up Heterotopic endochondral ossification 32

CKI (Alk2Q207D) CAGGS CreER P7–P60 Up Heterotopic endochondral ossification 32

Het KI (Alk2R206H) 6–8 w Up Heterotopic endochondral ossification 33

CKO 3.2 kb Col1 CreER E13.5–E18.5, P2–P21 Down Bone mass ↑ 13

CKI (Alk2R206H) Nfatc1 Cre P4–P40 Up Ectopic cartilage and bone at the distal joints 44

ALK3 KO E7.0, E8.5 Down Embryonic lethality 55

CKO Oar2-Ires Cre E12.5 Down Palate bone formation ↓ 56

CKO Mx1 CrePolyI:C Early induction: P3–P7,
Late induction: P21–P25

Down Bone mass ↑, bone formation ↑ 49

CKO 3.2 kb Col1 CreER E13.5–E18.5, P2–P10/P14,
P2–P20/P21, 8–10/12 w,
8–22 w

Down Bone mass ↑, bone formation ↓, bone resorption ↓,
osteoblast proliferation ↑, osteoblast differentiation ↓,
osteoclast number ↓

58,60,65

CKO 2.3 kb Col1 Cre P2, 5 w, 8 w Down Bone mass ↑, bone formation ↓, bone resorption ↓,
osteoblast number ↑, osteoclast number ↓

59

CKO Og2 Cre 3 m, 10 m Down Bone mass (early ↓, late ↑), bone formation ↓,
bone resorption ↓, osteoblast differentiation ↓

61

CKO Ctsk Cre 8 w, 12 w Down Bone mass ↑, bone formation ↑, bone resorption ↓,
osteoblast number ↑

59

CKO Col2 Cre E14.5 Down Generalized chondrodysplasia 80

CKO Gdf5 Cre 1 w, 2 w, 7 w, 9 w Down Cartilage extracellular matrix ↓ 83

CKO Aggrecan CreER 1 w, 2 w, 1 m, 2 m, 5 m Down Arrested endochondral bone formation, ectopic bone
and fibrous formation, chondrocyte proliferation and
differentiation ↓

84–86

Tg (caAlk3) Col2 E13.5, E17.5 Up Chondrocyte maturation ↑ 82

CKI (UAS-caAlk3) Col2 Gal4 E17.5 Up Perinatal lethality, short long bone and growth plate 82

ALK6 KO E12.5, E13.5, E14.5, E17.5, P0 Down Restricted chondrodysplasia, chondrocyte proliferation
and differentiation ↓

80,82,88

KO E11.5, E12.5, E13.5/14, E16.5 Down Restricted chondrodysplasia, mesenchymal cell
proliferation and differentiation ↓

92

Tg (truncated Alk6) 2.3 kb Col1 E18.5, 1 m, 6 w, 8 w, 10 w,
12 w

Down Bone mass ↓, bone formation ↓, bone mineral density ↓,
osteoblast number ↓, osteoblast differentiation ↓

93

BMP, bone morphogenetic protein; m, month; w, week.
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differentiating into functional mineralizing osteoblasts.41 In
contrast, specifically suppressing Alk2 activity decreased
the enhanced osteogenic differentiation to control
levels.43 Furthermore, in vivo studies found that in hetero-
zygous Alk2R206H knock-in mice, the Tek/Tie2+ progenitor
cells could be recruited and differentiated into bone cells
in heterotopic ossification lesions.33 Consistently, a recent
mouse model study showed that conditional activation of
Alk2 in mesodermal lineage cells resulted in ectopic bone
formation at distal joints with an elevated number of
osteoblast progenitors as well as bone formation activity.44

Collectively, Smad-dependent ALK2 signaling in the
mesenchymal progenitors has an important role for their
specification toward osteolineage cells.
In addition, the tracking study of Tek/Tie2+ progenitor

cells in heterozygous Alk2R206H knock-in mice also identified
a chondrogenic differentiation of this cell population,
which was responsible for forming a cartilage template
that developed to form endochondral bone.33 Further
analysis found that ectopic expression of Alk2 increased
sensitivity and accelerated chondrogenic differentiation of
mouse embryonic fibroblasts and that the loss of Alk2
severely inhibited chondrogenic differentiation, suggesting
that ALK2 was required during early chondrogenesis.39

Moreover, studying a chick limb bud with constitutive Alk2
expression showed accelerated chondrocyte maturation
and induced Indian hedgehog, which is a key factor for
chondrocyte maturation.45 Moreover, chondrocytes with
the Alk2R206H mutation showed increased expression

of both the early chondrocyte-specific markers (sex
determining region Y)-box 9 (Sox9), Col2, aggrecan
(Agg), and the late marker Col10.39 Collectively, these
results established that ALK2 is an essential enhancer of
chondrogenic differentiation.

Roles of ALK2 in regulating osteoblasts and osteoclasts
The endogenous expression level of Alk2 in postnatal bone
was found to be much higher than that in heart and
skeletal muscles,13 suggesting that ALK2 might also be
essential in osteolineage cells. Accordingly, Alk2 knock-
down in murine osteoblast progenitors (KS483) reduced
BMP6-induced osteogenic differentiation.42 Interestingly,
an in vivo study found that a conditional disruption of
Alk2 in bone cells (including immature osteoblasts, mature
osteoblasts, and osteocytes) led to an increase in endo-
genous bone mass during postnatal development.13

Analysis of this mouse model indicated that the disturbed
bone homeostasis was more likely due to an upregulation
of canonical Wnt signaling in conjunction with the down-
regulation of Wnt inhibitors, scelerostin (SOST) and dickkopf
1 (DKK1; Figure 2).13 In addition to BMP signaling, Wnt
signaling in osteoblasts has been examined for a decade,
and there is sufficient evidence supporting the hypothesis
that canonical Wnt signaling serves as a bone mass
inducer that positively regulates osteoblast differentiation
and maturation but negatively affects osteoclast
activity (see below for a detailed description).46 However,

Figure 1. Regulatory roles of ALK2, ALK3, and ALK6 in the various differentiation stages of osteolineage, chondrolineage, and osteoclast lineage
cells and myoblasts. Osteoblasts, chondrocytes, and myoblasts are derived frommesenchymal progenitor cells, whereas osteoclasts are derived from
hematopoietic precursors. BMP, bone morphogenetic protein.
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the direct regulatory role of ALK2-induced BMP signaling in
late osteolineage cells remains unclear, and further
evaluations need to be performed for a comprehensive
understanding.
To date, no evidence has demonstrated that ALK2

directly regulates osteoclast function. However, recent
studies have found that the constitutively active mutation
of ALK2 in myoblasts led to the increased formation of
osteoclasts from their precursors through transforming
growth factor-β signaling. An implantation of Alk2R206H-
transfected C2C12 cells with BMP2 in nude mice resulted in
robust heterotopic ossification with increased osteoclast
formation in muscle tissues.47–48 Furthermore, a co-culture
of Alk2R206H-transfected C2C12 cells as well as the condi-
tioned medium from Alk2R206H-transfected C2C12 cells
enhanced osteoclast formation in mouse monocytic
RAW264.7 cells.47 Mechanism analysis suggested that the
elevated secretion of transforming growth factor-β from the
mutant myoblasts led to the upregulated activation of p38
mitogen-activated protein kinase (MAPK) signaling in the
surrounding monocytes, thus contributing to the enhanced
osteoclastogenic differentiation.47

BIOLOGICAL FUNCTIONS OF ALK3 IN BONE
FORMATION
ALK3 is widely expressed in a variety of tissues during
embryonic development, but it is mainly expressed in

osteolineage cells and bone marrow cells during postnatal
bone formation, based on in vitro studies of different cell
lines.49–50 Findings have confirmed a high expression level
of ALK3 in osteolineage cells from MSCs to differentiated
bone cells.14,51–54 Many studies have consistently indicated
that ALK3 is one of the key receptors for conducting BMP
signaling during osteogenesis and chondrogenesis. How-
ever, the roles of ALK3 in bone biology have remained
unclear until recent studies using Alk3 conditional ablation
in osteogenic tissues because its conventional deletion in
mice is embryonically lethal before bone development.55 It
is clear that the regulatory role of ALK3 differs depending
on distinctive cells, stages, tissues, and ages. ALK3-induced
BMP signaling also crosstalks with the Wnt/β-catenin
signaling pathway and functions in interactions between
osteoblasts and osteoclasts.

Roles of ALK3 in mesenchymal pre-osteolineage cells
In MSCs, the forced expression of Alk3 (that is, the
overexpression of wild-type Alk3) initiated osteogenic
development. On the contrary, downregulating Alk3
activity (that is, overexpressing truncated Alk3) led to
decreased expression of Alp and less von Kossa
staining.51 When specifically deleting Alk3 in the early
development of the palatal mesenchyme by E12.5
using Oar2-Ires Cre, the formation of mesenchymal
condensation in the palate was delayed as was the

Figure 2. A proposed mechanism diagram describing the crosstalk between osteoblastic BMP signaling (mainly via ALK3) and canonical Wnt
signaling in regulating bone homeostasis. After being activated by BMPs, the BMPRs in the cell surface induce intracellular BMP signaling, including
both Smad-dependent signaling and non-Smad-dependent signaling. Then, these activated signaling pathways initiate the expression of canonical
Wnt inhibitors (DKK1 and SOST), which influence the binding of Wnt ligands to their receptor complexes consisting of low-density lipoprotein
(LDL) receptor-related protein 5/6 (LRP5/6) and frizzled (Fzd) receptors. As a result, cytoplasmic β-catenin will be degraded, and its transcriptional
regulation will be diminished, resulting in a downregulation of Wnt/β-catenin signaling activity. The balance between BMP and canonical Wnt
signaling affects bone development and homeostasis by regulating both osteogenesis and osteoclastogenesis.
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consequent palate bone formation.56 This in vivo study,
together with the in vitro study, suggested that ALK3-
induced BMP signaling was required for the differen-
tiation of MSCs toward the osteolineage. However, other
groups came to an opposite conclusion in similar
studies. The downregulation of Alk3 in 2T3 cells (charac-
terized as osteoblast precursors) or the conditional deletion
of Alk3 in bone marrow mesenchymal cells using Mx1
Cre (Cre is activated in an osteolineage-restricted
stem/progenitor cell subset, one specific subset of bone
marrow mesenchymal cells57) led to ectopic mineralization
via the upregulation of the bone formation activity of
osteoblasts,49,54 indicating that ALK3 inhibits the osteo-
blastic lineage commitment of bone marrow stem cells.
These contrary results suggest that ALK3 may regulate
(promote or inhibit) the differentiation of MSCs in a tissue-
dependent manner.

Roles of ALK3 in osteoblasts
Deletion of Alk3 specifically in immature osteoblasts
using 2.3 kb Col1 Cre or 3.2 kb Col1 Cre indicated that
the maturation progress of these osteoblasts was sup-
pressed because both the bone formation rate and the
mineral apposition rate were downregulated.58–60 An
analysis of these mutant osteoblasts found an enhanced
proliferation with decreased expression of several specific
osteoblast markers, including Runx2, Osx, bone sialoprotein
(Bsp), and Alp.58–60 Mice with a specific disruption of Alk3 in
differentiated osteoblasts (using Og2 Cre) were born
normally and did not exhibit overt bone changes, except
for a slight decrease in bone mass at 3 months, which may
be caused by a mild downregulation of osteoblast
function (lower bone formation rate with decreased BV/
TV, but no change in the expression levels of osteopontin
(Opn) and Ocn),61 suggesting that ALK3 promotes mature
osteoblast function and osteoblast–osteocyte transition in
a relatively mild way. However, the decreased bone mass
in these mutant mice later increased and was confirmed
to have an even higher bone volume compared with
that of wild-type mice at 10 months, which mainly resulted
from the downregulated bone resorption caused by
reduced osteoclast activity.61 These results suggest that
ALK3 expressed in mature osteoblasts has diverse effects
on bone mass and homeostasis in an age-dependent
manner.

Roles of ALK3 in the interaction between osteoblasts and
osteoclasts
For decades, more and more studies have confirmed that
there is a communication between osteoblasts and
osteoclasts, which has an exquisite and important role in
bone modeling and remodeling. The discoveries of the

biological functions of ALK3 imply that this factor may be
one of the key molecules in this process.
Osteoblasts have critical roles in bone resorption by

regulating osteoclastogenesis due to their ability to pro-
duce nuclear factor kappa-B ligand (RANKL), which is
essential for promoting osteoclast differentiation and
function, and its decoy receptor osteoprotegerin
(OPG).62–63 Several studies have confirmed that ALK3-
induced signaling in osteoblasts regulates osteoclastogen-
esis via the RANKL-OPG mechanism. The earliest direct
evidence came from a report by Wan et al.,64 in which
they found that the transfection of constitutively active
Alk3 stimulated the OPG promoter and that two homeo-
box C8 (Hoxc-8)-binding sites in the OPG promoter
responded to the ALK3 activation. In accordance with
these results, several in vivo studies have confirmed that
conditional deletion of osteoblastic Alk3 in distinct cell
differentiation stages,59–61 or in different developmental
periods,58,60–61,65 led to decreased osteoclast numbers and
decreased expression of bone resorption markers (matrix
metallopeptidase 9 (Mmp9), tartrate-resistant acid phos-
phatase (Trap), and cathepsin K (CatK), among others).
Furthermore, accumulating evidence suggests that cross-
talk between BMP and Wnt signaling in bone may also
be involved in osteoblast-regulated osteoclastogenesis
through the RANKL-OPG pathway. Kamiya et al.60,65

recognized that a disruption of ALK3-induced signaling,
including both Smad and non-Smad signaling (such as p38
MAPK), in osteoblasts resulted in upregulated Wnt/
β-catenin activity due to decreased production of its
downstream targets, DKK1 and SOST.60,65 It is widely
reported that canonical Wnt signaling in osteoblasts
negatively regulates their supporting function in osteoclas-
togenesis by affecting RANKL and OPG expression, thus
inhibiting osteoclast differentiation and activity as well as
suppressing osteoclast-mediated bone resorption.66–67

Taken together, in osteoblasts, ALK3 activates SOST and
DKK1, while both SOST and DKK1 inhibit canonical Wnt
signaling and maintain the activity of Wnt/β-catenin
signaling at a certain level.68–71 As a result, ALK3-induced
BMP signaling and Wnt signaling contribute not only to
osteoblast proliferation, differentiation, andmaturation, but
also to the regulation of osteoclastogenesis (mainly via the
RANKL-OPG pathway; Figure 2).
However, ALK3 signaling in osteoclasts also negatively

regulates osteoblast functions. For example, conditionally
disturbed Alk3 expression in osteoclasts using CatK Cre
not only inhibited osteoclast function but also enhanced
osteoblast function, that is, increased osteoblast
number and bone formation rate.59 Furthermore, it has
been reported that several factors (including platelet-
derived growth factor BB, v-ATPase V0 subunit d2
(Atp6v0d2), CatK and osteoclast inhibitory lectin (OCIL))
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produced by osteoclasts negatively affect osteoblast
functions.72–75 Among these osteoclast-derived osteoblastic
inhibitors, both CatK and ATV6v0d2 were significantly
increased after a stimulation of Smad-dependent
ALK3 signaling in osteoclasts.76–78 Collectively, BMPs might
bind to ALK3 on the surface of osteoclasts and
activate BMP signaling, leading to the upregulation of
factors such as CatK and ATV6v0d2, which suppress
osteoblast activity and downregulate the rate of bone
formation.76–77,79

Roles of ALK3 in chondrogenesis
Although ALK3 mainly functions in osteogenesis, it also
has an important role in chondrogenesis. For instance,
a forced expression of Alk3 in MSCs (C3H10T1/2)51 or
pre-chondrocytes80 induced chondrogenic differentiation,
while downregulated Alk3 suppressed this process.51 The
regulatory function of ALK3 in chondrogenesis has been
further supported by in vivo studies.81–86 Initially, the role of
ALK3 in chondrogenesis, such as regulating chondrocyte
proliferation, survival, and differentiation, was thought to
be associated with ALK6 during chondrogenesis.81 Soon
after, it was demonstrated that ALK3 itself has a unique and
broad role during chondrogenesis. First, overexpressing
a constitutively active ALK3 in chondrocytes in vivo
stimulated the differentiation of pre-chondrocytes and
proliferating chondrocytes, promoting their maturation
toward hypertrophy.82 Second, the conditional deletion
of Alk3 specifically in developing joints resulted in the
downregulation of proteoglycans and extracellular matrix
cartilage genes, including Col2, Col10, and Agg, leading
to articular cartilage fibrosis and degeneration during
postnatal development.83 Third, Alk3 ablation in postnatal
chondrocytes caused arrested chondrogenesis and endo-
chondral ossification, with diminished chondrocyte prolif-
eration and little expression of cartilage markers, such as
SOX9, Indian hedgehog, Col II, Col X, AGG, and glycopro-
teins, among others.84–86 Taken together, these studies
support the notion that ALK3 is one of the key factors
for regulating the specification of pre-chondrogenic
mesenchyme as well as chondrolineage differentiation
and maturation, postnatal chondrogenesis and the main-
tenance of articular cartilage.

BIOLOGICAL FUNCTIONS OF ALK6 IN BONE
FORMATION
The expression of ALK6 is primarily restricted to mesen-
chymal pre-cartilage condensations during mouse deve-
lopment, but it has also been identified in differentiated
chondrocytes and osteoblasts in adult mice.50,87–89

Accordingly, a study of different cell lines suggested that
Alk6 was expressed at a low level or was undetectable in

MSCs; however, it was specifically upregulated during
osteoblastic differentiation.14,51,53 These ALK6 expression
patterns suggest that it may participate in chondrogenesis
and influence late osteolineage cells.

ALK6 in regulating chondrogenesis
Patients with a homozygous mutation in ALK6 have severe
limb deformations consisting of a short stature, aplasia of
the fibula, severe brachydactyly and ulnar deviation of the
hands, which mainly result from chondrodysplasia during
skeletal development.90 In addition, constitutive expression
of Alk6 in pre-chondrocytes significantly increases the
induction of chondrocyte differentiation.80,91 Accordingly,
several in vivo studies have consistently demonstrated that
ALK6 is required for the proliferation and chondrogenic
differentiation of pre-chondrogenic and proliferating
chondrocytes.82,88 However, null mutations of Alk6 only
exhibited mild limb abnormalities that were largely
restricted to the appendicular skeleton.82,88,92 Soyun Yi88

posited that ALK6 had broadly overlapping functions with
other BMP receptors because a Alk6-Bmp7 double-mutant
exhibited more-severe skeletal defects than did an Alk6
single-knockout. Later, it was suggested that ALK3 and
ALK6 display functionally redundant aspects during early
chondrogenesis81 because ALK6 signaling could be
replaced by constitutively active ALK3.82 In summary, these
results indicate that ALK6, rather than having a unique role,
may have overlapping functions with other BMP receptors,
especially ALK3, in supporting pre-chondrogenic mesench-
yme as well as chondrocyte proliferation, differentiation,
and maturation.

ALK6 in regulating osteogenesis
In vitro studies have found that the expression of a
constitutively active Alk6 induced the formation of miner-
alized bone matrix, while the overexpression of truncated
Alk6 or the inhibition of endogenous Alk6 completely
blocked BMP2-induced osteoblast differentiation and
mineralized bone matrix formation.54 These results suggest
that the osteoblastic ALK6 is required for osteoblast
differentiation and bone formation. Transgenic mice that
expressed a truncated dominant-negativeAlk6 in targeted
osteoblasts using the 2.3 kb Col1 promoter exhibited
impaired postnatal bone formation, including severely
reduced bone mineral density, bone volume, and bone
formation rates. These characteristics indicate that the
osteoblastic ALK6 has a necessary role during postnatal
bone modeling and remodeling via regulating osteoblast/
osteocyte maturation.93 However, in Alk6 null mice, the
defects largely resulted from the disturbed chondro-
genesis, and there was little influence on osteogenesis,88
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implying that the regulatory role of ALK6 is mildly involved in
bone ossification.

CONCLUSION
In conclusion, all three types of BMPRI have distinct but
important roles during chondrogenesis, osteogenesis, and
osteoclastogenesis. They might not only directly regulate
the chondrogenic or osteogenic differentiation of
bone cells and influence osteoclast activity through the
RANKL-OPG pathway but also crosstalk with Wnt signaling
by altering their downstream molecules, including DKK1
and SOST, during bone development and homeostasis.
Despite some knowledge gaps, much has been learned
over recent decades about the functions of BMPRI in a
variety of cell types, including MSCs, chondrocytes,
osteoblasts, osteoclasts, and myoblasts, using genetic
animal models. However, its regulatory role in osteocytes
remains unknown. Although osteocytes, which compose
90%–95% of all bone cells in adult bone, have recently
been demonstrated to be crucial for bone biology
because of their functions in inducing osteoclasts, regulat-
ing mineral metabolism and matrix remodeling, and
reacting to mechanical loading.94 Furthermore, studies of
BMPRI have been fueled by the desire to understand the
molecular underpinnings of rare bone diseases or the
mechanisms of clinical applications for BMPs in common
diseases, such as bone fracture healing and spinal surgery,
and these studies now might contribute to the develop-
ment of new therapies for congenital or age-related bone
diseases. Recently, Marc Baud’huin et al.95 developed a
soluble mBMPRIA (ALK3)-mFc fusion protein and found that
mBMPRIA (ALK3)-mFc treatment could successfully down-
regulate Smad-dependent ALK3 signaling, thus increasing
bone mass in both young (7–10 weeks) and old
(14–18 weeks) mice or preventing bone loss induced
by estrogen deficiency in ovariectomized mice. This work
set an example showing that regulation of signaling
through BMPRI may have therapeutic benefits. Hence,
continuing the bedside-to-bench exchange of information
about BMPRI will help to provide novel, therapeutically
useful strategies for skeletal physiology, pathology, and
regeneration.
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