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Abstract 

A comparative study was performed to identify differences in the amino acid composition of the eyes from zebrafish 
(Danio rerio) and sardine (Sardina pilchardus) larvae and their link to the environmental adaption of the species. Amino 
acids in the acidic hydrolysates of eyes from 11 zebrafish and 12 sardine were determined with the use of high-
performance liquid chromatography involving precolumn derivatization with ortho-phthalaldehyde. Differences in 
the content of most amino acids were detected between zebrafish and sardine. These amino acids were aspartate, 
glutamate, serine, glycine, threonine, arginine, methionine, valine, phenylalanine, isoleucine, leucine and lysine. Of 
particular note, the percentage of methionine in zebrafish eyes was much higher than that in sardine, whereas the 
opposite was observed for glutamate and glycine. These results indicate that zebrafish and sardine likely have expe-
rienced differences in adaptation to environmental changes. We suggest that the amino acid composition of eyes 
represents a powerful tool to discriminate between species characterized by different lifestyle and inhabiting different 
environments.
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Background
Recent studies led to the discovery that the genes 
involved in the eye ontogeny are conserved and that all 
of the eyes are monophyletic, that is, they arose from a 
single eye origin (Gehring and Ikeo 1999; Russell et  al. 
2000; Fernald 2000). Likewise, the conservation of a spe-
cific transcription factor has a common evolutionary ori-
gin for all eyes (Treisman 2004), and regulatory effect of 
certain AA on gene expression may be mediated by tran-
scription factors (Wu 2010, 2013a).

Salvini-Plawen and Mayr (1977) demonstrated that the 
eye evolved at least 40 times among the branches of the 
animal evolutionary tree. The evolutionary phenomenon 
that led to the development of complex eyes, as those of 

mammals from teleost fish, is due to different factors, 
such as the influence of specific environmental changes 
on the biochemical composition of the tissue structure of 
a living being (Brown and Taylor 1992; Nissling and Val-
lin 1996; Guisande et al. 1998; Riveiro et al. 2000, 2003).

According to the Darwinist idea that animals adapted 
to the environment where they live in order to survive 
to specific environmental pressures, changes in amino 
acid composition (AAC) and density patterns of pelagic 
and mesopelagic fish larvae were evidenced in relation 
to oceanographic phenomenon in different areas of the 
Central Mediterranean Sea (Cuttitta et  al. 2004, 2006; 
Bonanno et al. 2013). Another factor that could affect the 
biochemical composition of the tissues is that their syn-
thesis during the larval development happens at different 
times and rates (Osse et al. 1997).

Conceição et  al. (1998) showed that in the larval cat-
fish (Clarias gariepinus) changes in the amino acid 
profiles occur at different temperatures, due to the syn-
thesis of additional proteins during larval growth. Such 
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environmental influence on biochemical composition 
lead to of use of AAC in eggs and larvae of fish to dis-
criminate among species and spawning areas within 
species (Riveiro et al. 2003), considering also that larval 
AAC in pelagic fishes may also be affected by the parental 
strategies (Baynes and Howell 1996; Riveiro et al. 2011).

According to the preliminary study of Riveiro et  al. 
(2011), the eyes may be the best fish tissue to discrimi-
nate among species through the AAC analysis. Generally 
all cells have a basal requirement for amino acids in pro-
cesses such as protein synthesis (Wu 2013a). Amino acids 
are building blocks of proteins and also regulate meta-
bolic processes in the body (Hou et al. 2015; Wu 2013b).

Amino acids play a critical role also in healthy vision. 
Interestingly, the most abundant amino acids in verte-
brate’s eyes are glutamate (for gamma amino-butyric 
acid synthesis; GABA) and GLY (Neal 1976; Massey and 
Redburn 1987; Massey and Miller 1988; Barnstable 1993; 
Pourcho 1996; Redburn 1998; Thoreson and Witkovsky 
1999). In addition to peptide-bound amino acids, eyes 
also contain free amino acids, including aspartate, aspar-
agine, glutamate, glutamine, glycine, serine, proline, 
homocysteine, and taurine. At present, little is known 
about the ocular content of total amino acids in eyes. In 
addition, reference values of AAC in the eyes of larval 
fish of different species are not available in literature.

In this study we focused our attention on two fish spe-
cies at larval stage: the cyprinidae zebrafish (Danio rerio), 
a tropical freshwater species, and sardine (Sardina pil-
chardus), belonging to the Clupeidae family that is a 
typical pelagic species living in open sea waters. The two 
species differ markedly in biology, habitat, and growth 
rates. The results can be used to assess the adaptation of 
the species to different environmental conditions.

Results
We analyzed the total content of amino acids (both 
free and peptide-bound) in the eyes of two fish species: 
zebrafish (Danio rerio) and sardine (Sardina pilchardus) 
at the larval stage. The mean and median values on amino 
acid composition (g/100 g amino acids) in the eyes of the 
two fish species are reported in Table 1. Reported values 
show that both mean and median percentage composi-
tions (Fig. 1) of amino acids in the eyes of S. pilchardus 
are generally higher (p < 0.05) than those ones in D. rerio, 
especially for ASP  +  ASN, GLU  +  GLN, GLY, THR, 
ARG, PHE, VAL, and LEU. On the contraty, mean and 
median percentage compositions of SER, MET and LYS 
in the eyes of D. rerio were higher than those in S. pil-
chardus. Furthermore, except for GLY and ASP + ASN, 
it was evident that AAC percentage values showed gener-
ally higher variability (as inferred by interquartile range—
Fig. 1) in D. rerio than in S. pilchardus.

Statistical tests were carried out in order to evalu-
ate the significance of observed differences in terms of 
AAC (Table 2). In particular, the Mann–Whitney U test 
was used because not all the data met homoscedastic-
ity assumptions, as required by parametric tests. Indeed, 
the Levene’s test (not shown) evidenced a significant 
difference in variance between the two groups of fish 
for some amino acids. Test results (Table 2) highlighted 
that median values of HIS, ALA and TYR were not sig-
nificantly different (p > 0.05) between the two considered 
species. Conversely, significant differences were recorded 
for all the other AACs (p < 0.05). In particular, SER, ARG 
and MET showed the highest differences in median val-
ues with respect to the other AACs (Table 2).

The mean and standard deviation values for S. pilchar-
dus were compared with those obtained on the amino 
acid content of the eyes of adult fish of the same species 
(Fig.  2) obtained from the Strait of Sicily (Riveiro et  al. 
2011). Our results showed higher standard deviations 
for ASP, GLY, GLU, ARG, LYS and PRO, compared to the 
values reported by Riveiro et al. (2011); the opposite was 
observed for the remaining AAs.

Discussion
Results of the present study provide reference values of 
amino acid content in the eyes of zebrafish and sardine 
for the larval stage. As free amino acids represent <3 % 
of total amino acids in tissues (Wu 2013a), our values 
refer to primarily peptide-bound amino acids in the eyes 
of the fish. The amino acid composition found in this 
work could be compared with the amino acid composi-
tion in structural proteins of the retina (Harding and Dil-
ley 1976; Wistow and Piatigorsky 1988; Zhao et al. 2011). 
Our results showed that it is possible to discriminate 
fish species based on the AAC of the eyes. Among the 
considered AA, the two species showed marked differ-
ences particularly in SER, ARG and MET. It is unknown 
whether the differences in AAC of the fish eyes result 
from differences in dietary protein intake and/or plasma 
concentrations of amino acids. It has been demonstrated 
that SER, ARG and MET have a greater insulinotropic 
effect compared with glucose in fish (Andoh 2007; 
Zinalla and Hall 2008). Further, MET has growth-pro-
moting effects in the rainbow trout (Rodehutscord et al. 
1995).

In the eyes of larval zebrafish, the amount of methio-
nine was lower than in the sardine larvae but the oppo-
site was observed for arginine. The difference between 
the species was smaller for lysine. Moreover, it was found 
that GLU + GLN and GLY were higher in sardine than 
in zebrafish. Whether these differences are unique to 
the eyes or common to other fish tissues remain to be 
determined.
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The mean and standard deviation values for S. pilchar-
dus were compared with those for the amino acid con-
centration of the eyes of adult fish of the same species 
obtained from the Sicilian Channel. The composition of 
most amino acids in the eyes of adult and larval speci-
mens of S. pilchardus was similar (Fig. 2); only ASP, SER, 

GLY, ARG, LEU and LYS appeared to have quite differ-
ent values. On the basis of this result, we surmise that 
ASP, SER and GLY are generally more abundant in adults, 
while ARG, LEU and LYS were higher in larvae than in 
adults. Such differences within the same species, during 
growth from the larval to adult stage, are in agreement 

Table 1 Median and mean values of the composition of amino acids in the eyes of Danio rerio and Sardina pilchardus lar-
vae

Amino acid (g/100 g amino acids; %) Danio rerio (n = 11)

Median Quartile range Min–max Mean SE

ASP + ASN 7.9 1.4 5.5–9.7 7.80 0.32

GLU + GLN 11.3 2.4 8.9–13.5 11.16 0.46

SER 13.1 10.7 6.6–22.8 14.04 1.66

HIS 3.1 2.5 1.7–5.8 3.31 0.41

GLY 6.2 1.4 4.2–9.4 6.15 0.40

THR 4.1 1.4 3.1–5 4.02 0.21

ARG 6.3 3.6 3.9–8.5 6.39 0.51

ALA 5.8 2.0 4.8–8.1 6.19 0.35

TYR 5.0 1.5 4–6.3 5.03 0.24

MET 4.6 1.3 2.2–6.2 4.65 0.36

VAL 4.7 1.1 3.7–5.9 4.76 0.22

PHE 5.7 0.9 4.8–6.8 5.63 0.20

ILE 4.2 1.6 3.0–5.9 4.29 0.28

LEU 7.7 2.0 5.8–9.7 7.52 0.39

LYS 8.9 2.1 6.4–10.9 9.07 0.42

CYS 1.6 0.7 0.7–1.8 1.39 0.24

TRP 0.3 0.1 0.2–0.3 0.29 0.02

PRO 4.0 1.3 3.6–5.4 4.22 0.44

Amino acid (%) Sardina pilchardus (n = 12)

Median Quartile range Min–max Mean SE

ASP + ASN 10 2.3 2.7–11.8 9.34 0.69

GLU + GLN 14.1 1.6 6.2–14.7 13.33 0.70

SER 4.4 0.4 4.1–4.9 4.46 0.08

HIS 3.2 0.3 1.1–3.7 3.02 0.19

GLY 7.4 1.3 6.6–11.6 7.95 0.39

THR 5.1 0.3 4.3–5.3 5.03 0.08

ARG 11.5 0.8 10.7–15.9 11.96 0.39

ALA 5.5 0.5 4.7–6.1 5.51 0.11

TYR 4.9 0.4 4.3–5.7 4.97 0.11

MET 0.5 0.7 0.1–2.3 0.80 0.21

VAL 5.8 0.1 5.6–6 5.76 0.03

PHE 6.5 0.4 5.9–8 6.59 0.15

ILE 5.0 0.2 5.0–5.3 5.08 0.03

LEU 8.4 0.6 7.5–9.8 8.49 0.18

LYS 7.5 1.1 6.2–11 7.72 0.37

CYS 0.7 0.4 0.5–1.4 0.83 0.16

TRP 0.1 0.1 0.0–0.2 0.08 0.02

PRO 3.0 2 2.1–5.4 3.33 0.64
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with the findings of Conceição et  al. (1997, 2010) and 
Aragão et al. (2004) who carried out the study of the AAC 
in the whole body of larval fish.

In particular, the observed higher glycine concentration 
in adults than in the sardine larvae is in agreement with 
Sivilotti (2010), which highlights the synaptic role of GLY. 
It is possible that the eyes of adult fish have higher con-
tent of collagen proteins than larvae, because glycine is 
a major amino acid in these proteins (Wang et al. 2013). 
The glicinergic synapses are important in restricted areas 
of the adult nervous system, such as the spinal cord, brain 
stem and retina. They are activated primarily by GLY, but 
can also be activated by common amino acids.

The ASP was classified by Wu (2013b) as a condition-
ally essential AA. Abundant AA in food proteins of plant 
and animal origins (Li et  al. 2011) is a major metabolic 
fuel for mammalian enterocytes (Burrin and Stoll 2009; 

Rezaei et  al. 2013a, b). Further, Wu (2010) and Wu 
(2013b) found that some Amino Acids are involved in 
regulating the metabolic key pathways improving health, 
survival, growth, development, lactation, and reproduc-
tion of organisms. At present, little is known about ASP 
metabolism in fish. According to Kim et  al. (2011a, b), 
Wu et al. (2011a, b) and Wu (2013b), the GLY, together 
with other amino acids, was traditionally classified as 
non-essential amino acids, but these amino acids play 
an important role in regulating gene expression (Liu 
et al. 2012), cell signaling (Bazer et al. 2012; Jewell et al. 
2013), nutrient transport and metabolism in animal cells 
(Suryawan et al. 2012; Wang et al. 2013). Regarding SER 
and LYS, their high concentration has been reported in 
the whole body of fish at the larval period (Zakeri et al. 
2009). As building blocks of peptides, these amino acids 
have an important role in the synthesis of protein. Like 

Fig. 1 Box plot comparing amino acid composition (g/100 g amino acids; %) between zebrafish (Danio rerio) and sardine (Sardina pilchardus) larvae



Page 5 of 9Falco et al. SpringerPlus  (2016) 5:519 

many of the other amino acids (Li et al. 2007a), SER and 
LYS may be critical for immune response during the lar-
val stage.

According to Kalloniatis et al. (2013), amino acids are 
also involved in metabolism, and in retina cell, glutamate 
is the major excitatory neurotransmitter in the retina 
(Fletcher and Kalloniatis 1996; Ehinger et al. 1988; Mas-
sey and Miller 1990). Glutamate is also the precursor of 
GABA (Erecinska and Silver 1990) and there is strong 
evidence that glutamate is used by photoreceptors (Mas-
sey and Miller 1990, 1998).

Riveiro et  al. (2011) found that there were differences 
in the AAC of the eyes of adult sardine between samples 
from two different regions (the Atlantic Ocean and the 
Mediterranean Sea). With the available data, it is not pos-
sible to determine whether the different environmental 
conditions may affect AAC in the eyes of zebrafish and 
sardine reported from the present study. However, this is 
a very important issue to be addressed in future investi-
gations. Such work could help to explain the link between 
environment and AAC in fish eyes.

It is noteworthy that differences in AAC of fish eyes 
found in this study are in agreement with those reported 
by Li et al. (2007b) and Li and Ortí (2007) who used the 
D. rerio specie belonging to the Ostariophysi super-
order within Teleosts (Lê et  al. 1993; Lecointre and 

Nelson 1996). The most abundant and major vehicle of 
amino acid delivery in all fish is high-density lipopro-
tein vitellogenin (Vtg) (Ziv et al. 2008), it’s coded by two 
major genes Vtga and Vtgb, as well as a minor one, Vtgc. 
Vtgc is expressed also in Ostariophysi, but at low levels 
(Wang et al. 2000, 2005). In this context it is important to 
emphasize that because the Vtg sub domains may be dis-
parately involved in the binding or transporting of non-
polar ligands such as lipids and retinoic acid (Grogan and 
Taborsky 1987; Sawaguchi et al. 2006). Robust evidences 
showed that a positive selection of coding genes for pro-
teins is provided by synonymous substitution (Yang and 
Bielawski 2000), and the change of AA offers a selective 
advantage.

An interesting concept emerging from the present 
work is that differences of AAC in fish eyes may provide 
insight into the different capacity of the animals to adapt 
to different environmental temperatures. In fact, several 
authors have defined zebrafish and sardine as euryther-
mics. Sardines are eurythermic and euryhaline clupeoids 
that generally inhabit waters with temperatures ranging 
from 8 to 24 °C and salinities from 30 to 38 psu (Haynes 
and Nichols 1994; Giannoulaki et  al. 2005; Coombs 
et al. 2006; Petitgas et al. 2006; Stratoudakis et al. 2007; 
Bonanno et al. 2014). Zebrafish are freshwater fish; even 
if they are also tolerant to a wide range of salinities that 
technically extend to brackish conditions. Sawant et  al. 
(2001) found that embryos, reared in salinities of up to 
2 parts per thousand, displayed similar rates of survival 
and hatching in controlled environment at ∼0.3  ppt. 
They can tolerate a wide temperature range from 6 to 
38 °C.

Costas et  al. (2012) suggested that acclimation to dif-
ferent environmental temperatures induces several meta-
bolic changes in Senegalese sole, suggesting that plasma 
amino acids (e.g., ASP, GLU and GLY) may be important 
for thermal acclimation; they showed that temperature 
affect more drastically concentrations of dispensable 
amino acids than those of indispensable amino acids and 
that different exposure temperatures induce different 
responses. Thus, as in mammals (Liu et al. 2016; Wu et al. 
2014; Wu 2014), dietary requirements of all amino acids 
by fish to meet optimal needs for protein synthesis in tis-
sues (including eyes) are affected by both genotypes and 
environmental factors. In support of this notion, envi-
ronmental salinity plays an important role in affecting 
plasma AAC of fish species (Li et  al. 2009). Our results 
are in agreement with Aragão et al. (2010) who showed 
that the levels of some indispensable amino acids (HIS, 
MET and PHE) do not change significantly with environ-
mental salinity, and ILE, LEU and VAL tend to increase 
with salinity.

Table 2 Mann Whitney U test results for  differences 
in  amino acid composition in  eyes between  Danio Rerio 
and Sardina pilchardus larvae

Significant differences are marked in italic. The absolute differences in median 
values were also reported

Amino acid U Z Z adj. p-value Median 
differences

ASP + ASN 19 −2.862 −2.862 0.004 2.1

GLU + GLN 17 −2.985 −2.985 0.003 2.8

SER 0 4.031 4.031 0.000 8.7

HIS 61 −0.277 −0.277 0.782 0.1

GLY 12 −3.293 −3.293 0.001 1.3

THR 8 −3.539 −3.539 0.000 1.1

ARG 0 −4.031 −4.031 0.000 5.2

ALA 50 0.954 0.954 0.340 0.3

TYR 61 0.277 0.277 0.782 0.1

MET 2 3.908 3.908 0.000 4.1

VAL 20 −2.800 −2.800 0.005 1.1

PHE 19 −2.862 −2.862 0.004 0.8

ILE 31 −2.123 −2.123 0.034 0.9

LEU 28 −2.308 −2.308 0.021 0.7

LYS 29 2.246 2.246 0.025 1.4

CYS 2 1.837 1.837 0.066 0.9

PRO 6 0.857 0.857 0.391 1.0

TRP 0 2.327 2.327 0.02 0.2
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Conclusions
The amino acid composition of the eyes of two fish species 
(zebrafish and sardine) at the larval stage were determined. 
The results indicate that eye’s AAC could be used as a use-
ful tool to discriminate the evolutionary origin and species 
of fish. Although further studies are needed to evaluate the 
power of such approach, our study showed that the AAC 
was different between Sardina pilchardus and Danio rerio 
species. This does not mean that this technique is suffi-
cient to identify genetic differences between the species, 

but the data can be used as auxiliary information. Consid-
ering that this study stressed the importance of the use of 
AAC in eyes as a discriminating factor, more experiments 
are warranted to define the scientific degree of certainty in 
studies of fish evolution and metabolism.

Methods
Zebrafish (Danio rerio)
Larvae of zebrafish, which were raised under normal 
farming conditions, were obtained from Department of 

Fig. 2 Comparison of the average amino acid composition (top panel) and SD values (bottom panel) between adults (Riveiro et al. 2011) and larvae 
(this study) of the species Sardina pilchardus
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Biology, Texas A&M University, College Station, USA, 
and maintained according to the regulations of the Texas 
A&M University Animal Care and Use committee. The 
total number of samples used for the experiment was 11. 
The fish were used about 4 days of age after hatching, and 
they were picked up individually to make sure they were 
still alive. The fish were anesthetized with tricainemeth-
anesulfonate (TMS), also known as MS-222, at the con-
centration of 200 mg/L in deionized water, with the pH of 
the solution being adjusted to 7.4 through the addition of 
sodium bicarbonate. The fish were then fixed in alcohol 
and the main morphological measurements were taken 
by means of an optical microscope. The total length of 
the fish 3.7 mm and the eye diameter was 0.3 mm. Finally, 
using a pair of needles, the eyes were extracted, dried in 
an oven at 50  °C to evaporate all the alcohol, and then 
subjected to acid hydrolysis for the determination of total 
amino acids.

Sardine (Sardina pilchardus)
Twelve samples of sardine were obtained along the Sic-
ily coast in the Tyrrhenian Sea and used for the experi-
ment, with the approval of the Institute for Coastal and 
Marine Environment (IAMC), Detached Units of Capo 
Granitola, Naples, Italy. Fish samples were obtained and 
preserved in the same manner as described for zebrafish. 
The total length of the fish (TL) was 33 mm and the eye 
diameter was 1.6 mm. The fish eyes were extracted and 
then processed for hydrolysis, as described previously.

General consideration
Amino acid analysis, although a classical technique, 
remains indispensable for quality control studies in bio-
chemistry and biotechnology. Over the year, a large num-
ber of HPLC methods with fluorescence or UV/visible 
detection have been developed for the analysis of AAC 
in protein hydrolysates (Wu et al. 1999; Dai et al. 2014). 
A successful amino acid analysis depends on the proper 
performance of the hydrolysis. In fact, other studies have 
shown that the influence of the hydrolysis conditions rep-
resent a major source of error in the analysis (Yüksel et al. 
1995). Using our HPLC method, we successfully identi-
fied 15 amino acids in fish eyes.

Method for hydrolysis of protein in fish
The acid hydrolysis method (Dai et  al. 2014; Wu et  al. 
1999) has been used with some modifications. Briefly, 
two eyes were inserted in a 2-ml glass vial to which was 
added 1 ml of 6 M HCl. The glass vial was gassed with N2 
for one min and then capped. All tubes were placed in an 
oven with 110 °C. Two hours later, the glass vials were gen-
tly shacked to ensure that the sample was completely dis-
solved in the solution. After 20  h of hydrolysis, the glass 

vials were gently shacked to ensure that the precipitate was 
suspended in solution. At the end of the 24-h hydrolysis, 
the whole solution was dried carefully under N2. Finally 
1 ml of HPLC-grade water was added to each vial and the 
solution was stored at 4 °C until analyzed within 2 days.

Amino acid analysis
Amino acids in acid hydrolysates were analyzed with 
the use of the Waters HPLC apparatus, an analytical col-
umn (supelco 3 μm C18 column, 150 mm × 4.6 mm ID) 
protected by guard column (supelco 5 cm × 4.6 mm), a 
model 2475 Multi l fluorescence detector and a Millen-
nium-32 workstation (Dai et  al. 2014). Fluorescence is 
monitored at excitation wavelengths of 340 and 455 nm, 
respectively. The following amino acids were analyzed: 
aspartate (ASP) plus asparagine (ASN), serine (SER), 
glutamate (GLU) plus glutamine (GLN), glycine (GLY), 
histidine (HIS), arginine (ARG), threonine (THR), ala-
nine (ALA), tyrosine (TYR), valine (VAL), lysine (LYS), 
isoleucine (ILE), leucine (LEU), Phenylalanine (PHE), 
methionine (MET), cystine (CYS), tryptophane (TRP) 
and proline (PRO).

Statistical methods
The unpaired t-test was used to evaluate the significance 
of observed differences between the two groups of fish. 
This kind of test belongs to the so-called parametric 
methods and it is subjected to some assumptions, such 
as the normality and homoscedasticity. Such properties 
were checked by means of the Lilliefors and Levene’s test. 
Even though the assumption of normality and homosce-
dasticity was met for most AA in both fish species, the 
same was not verified for several amino acids. As a con-
sequence, we used the Mann–Whitney U test that is the 
non-parametric analogue of the t-test. The Mann–Whit-
ney U test is conceptually similar to the t-test, except that 
it is based on the U statistic and does not require normal-
ity nor homoscedasticity. Probability values ≤0.05 were 
taken to indicate statistical significance.
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