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Abstract

We study the resonant tunneling of quasiparticles through an impurity be-

tween the edges of a Fractional Quantum Hall sample. We show that the

one-particle momentum distribution of fractionally charged edge quasiparti-

cles has a quasi-Fermi character. The density of states near the quasi-Fermi

energy at zero temperature is singular due to the statistical interaction of

quasiparticles. Another effect of this interaction is a new selection rule for

the resonant tunneling of fractionally charged quasiparticles: the resonance

is suppressed unless an integer number of electrons occupies the impurity. It

allows a new explanation of the scaling behavior observed in the mesoscopic

fluctuations of the conductivity in the FQHE.
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The question regarding the extent to which the fractionally charged quasiparticles pro-

posed by Laughlin [1] are real and whether they can be observed individually, was recently

resolved by experiments [2]. In these experiments FQHE samples with constriction were

studied, in order to observe essentially one-particle tunneling processes of the quasiparticles.

In particular, the frequencies of the mesoscopic fluctuations of the longitudinal resistance in

the FQHE with ν = 1/3 were compared to those in the Integer QHE.

Previously, Jain and Kivelson [3] suggested that the the resonant tunneling of electrons

from one edge to another through an impurity could cause an enhancement of the dissipative

resistance in the IQHE samples with a narrow constriction. Kivelson and Pokrovsky [4]

proposed an analogous mechanism for the fractionally charged quasiparticles in the FQHE.

Their model implied simple scaling laws for the periods of the mesoscopic oscillations in

the vicinity of the state with filling factor ν ≡ p/q : ∆B ∝ q at fixed gate voltage VG, and

∆VG ∝ p at fixed magnetic field B. Both predictions have been confirmed experimentally [2].

Nevertheless, the theoretical understanding of this scaling can not be considered as satis-

factory. In particular, Kivelson [5] derived quasiclassical quantization rules for a multi-anyon

bound state at the impurity allowing for the statistical interaction; his scaling relations are

different from the observed ones. P. Lee [6] supported Kivelson’s result from the position

of the theory of edge quasiparticles. He accounted for the obvious discrepancy with the

experiment with the Coulomb blockade.

Another problem in understanding these experiments is that the mechanism of resonant

tunneling usually implicates the existence of a Fermi level for excitations. It clearly exists

for the case of the IQHE but is much less obvious for the FQHE. Recently Haldane [7]

defined the generalized Pauli principle for anyons. This principle, however, does not imply

the existence of the distinct Fermi level required to explain the resonances in tunneling.

The purpose of this work is to elucidate these general questions and give a new explana-

tion for the experimental result.

Let us start with the quasiclassical quantization rule derived by Kivelson. It reads
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Φ = mφ∗
0 +Nφ0, (1)

where Φ is the total magnetic flux through an area A surrounded by the trajectory of the

quasiparticle, φ0 = hc/e is the flux quantum for an electron, φ∗
0 = qφ0 is the flux quantum

for a quasiparticle (anyon) with charge e∗ = e/q, N is the number of quasiparticles captured

by the impurity, and m is the angular momentum of the tunneling quasiparticle. The first

term in the r.h.s. of equation (1) is required by the gauge invariance, while the second one

simply shows that each quasiparticle is bound with one flux quantum. The same quantum

spectrum arises in the exact solution for a system of N anyons in a quadratic potential [8].

At a given gate voltage VG, the area A enclosed by the trajectory, corresponding to the

Fermi level, is the same for any quantized value of Hall conductivity. This is true because

the Laughlin liquid is incompressible. Therefore, the intervals of the magnetic field between

consequent bound states of a quasiparticle are ∆Bq = φ∗
0/A if the number of quasiparticles

N is fixed. The scaling, consistent with these intervals, was observed experimentally.

However, during the tunneling the number of quasiparticles N coupled with the impurity

changes by one. It corresponds to the change of the flux Φ by a single flux quantum φ0 instead

of φ∗
0 = qφ0. Corresponding periods ∆B1 = φ0/A have not been observed experimentally.

The solution to this puzzle lies in the fractional statistics of quasiparticles. Consider

the situation where N quasiparticles are initially bound to the impurity, and the tunneling

quasiparticle arrives at an orbit enclosing all of them. In the quasiclassical approximation,

the wave function of this quasiparticle will gain a phase factor z = exp(i2πN/q) after

each complete revolution around the quantized orbit. More accurately, it is multiplied by

z(1 − γ/2), where γ is the total probability of tunneling from the impurity to either left or

right edge. The total tunneling amplitude contains a series

tLR =
∑
k

zk(1− γ/2)k =
1

1− z(1− γ/2)
. (2)

Usually resonant enhancement of the tunneling happens when all the amplitudes, corre-

sponding to different numbers of revolutions in (2) are coherent, i.e. z = 1. This is obviously
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the case for the usual Fermi quasiparticles (ν = 1). For a fractional value of ν, the contribu-

tions of q consequent revolutions almost cancel each other. Thus the resonant tunneling is

suppressed unless N/q is an integer. In other words, the tunneling of an anyon is resonantly

enhanced only if an integer number of electrons are already bound to the impurity. This

simple selection rule restores the scaling suggested in ref. [4] and agrees with experiment.

The scaling of the oscillation intervals on the gate voltage ∆VG [4] is also easily repro-

duced. Indeed, at a fixed magnetic field B the change ∆VG corresponding to a new resonance

is determined by the change of the area

∆A = ∆Φ/B, (3)

where ∆Φ is the change of the flux through the trajectory. As we have already established,

∆Φ = qφ0 for the resonant tunneling at ν = p/q. On the other hand, the value of the

magnetic field Bν , corresponding to the filling factor ν, is approximately 1/ν times B1. As

a result we obtain ∆Aν = p∆A1 and ∆V ν
G = p∆V 1

G

These intuitive and semi-classical arguments are supported by direct calculations in the

framework of Wen’s theory of edge excitations [9]. Simultaneously, we find the distribution

of edge quasiparticles over momenta to confirm the conjecture of its Fermi-like character [4].

All calculations have been performed for special values of ν = 1/q, where q is an odd integer.

In Wen’s theory the operator creating a quasiparticle

ψ†(x, t) = :eiφ(x,t) : (4)

at the point x of the edge is associated with the chiral Bose field φ(x, t) of an edge magneto-

plasmon. This field obeys the commutation relationship

[φx,t, φx′,t] = −iπν sign(x− x′) (5)

and is related to the charge density ρ = e/2π ∂φ/∂x at the edge. The permutation relations

of the anyon operators (4) are

ψ†(x, t)ψ†(x′, t) = eiπν sign(x−x′)ψ†(x′, t)ψ†(x, t). (6)
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To find the distribution of edge quasiparticles over momenta, it is necessary to calcu-

late the Fourier-transformation G̃p of the simultaneous correlation function G(x − x′) =

〈ψ†(x, t)ψ(x′, t)〉. We have performed this calculation explicitly with the following result:

G̃p can be represented as the product

G̃(p′) = g
T
(p′)

1

exp(βp′v) + 1
, (7)

where the momentum p′ = p − pF , pF is a Fermi momentum, and v is the drift velocity

along the edge for both the chiral field and the anyons. The second factor is the usual

Fermi-distribution, while the first one can be treated as the temperature-dependent density

of states; it is an even function of p′. At T = 0 the density of states g
T
(p′) has a singularity ∝

|p′|ν−1 and diverges at the Fermi-level. The singularity is smeared out at a finite temperature.

Details of the calculations will be published elsewhere.

To investigate the tunneling, we modelled the impurity as a void in the incompressible

quantum Hall liquid, its edge being an additional environment for the edge quasiparticles.

The perimeter Li of this edge was assumed to be small enough to neglect the probability

of thermal excitation of states with non-zero angular momentum m. The outer edge, on the

contrary, was assumed to be in the thermodynamical limit; it serves as a thermostat. The

many-body quantum mechanical states at the impurity are well-defined in the limit of a

small tunneling coupling

Ht =
∫
dxdyt(x, y)ψ†(x)ψi(y) + h.c., (8)

where ψi(y) is the annihilation operator for the edge quasiparticles at the impurity. This

limit allows us to reduce the evolution equation of the density matrix at the impurity to a

set of kinetic equations, describing the evolution of probabilitiesWN = 〈P̂N〉 to have exactly

N quasiparticles at the impurity, where P̂N is the appropriate projection operator.

The transition amplitudes are connected with different equilibrium averages similar to

〈ψ†
i (y)ψi(y

′)P̂N 〉. In the generic case they are periodic only at the q-fold boundary [10],

gaining the phase 2πN/q in each cycle. This phase, similar to the Berry phase, is the
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exact consequence of the fractional statistics and does not depend on the distribution of

edge phonons. As usual, the broken symmetry leads to the selection rule for the allowed

transitions; namely, transitions N −→ N + 1 are suppressed unless N/q is integer. This

statement coincides with our conclusion extracted from the semi-classical model. In contrast

to the previous derivation, we made no assumptions about the geometrical properties of the

orbit of the tunneling quasiparticle.

The factorization (7) yields the Boltzmann distribution for the probabilities of differ-

ent many-particle states of the impurity in equilibrium. In the presence of the inter-edge

potential difference, however, the impurity population depends on the tunneling probabil-

ities. The current-voltage dependence (see Figure 1) is highly non-linear and asymmetric,

especially in the vicinity of the resonance.

In conclusion, we have found new selection rules for the resonant tunneling of quasi-

particles in the FQHE, arising from the broken symmetry specific to anyons. The equilib-

rium momentum distribution of the edge quasiparticles has quasi-Fermi properties with the

temperature-dependent density of states. This explains the appearance of resonant tunnel-

ing effects in the anyonic systems and, in particular, the scaling properties of the mesoscopic

pattern measured in the experiment [2].

Upon completion of this work, we received the preprint [11], where the RG equations for

resonant inter-edge tunneling are solved numerically in a different geometry. The authors

considered neither scaling properties of the resonant effects, nor the momentum distribution

of quasiparticles. Their main emphasis was the line shape.

V. L. P. is indebted to Steve Kivelson for numerous discussions and to J. S. Langer and

Institute of Theoretical Physics in Santa-Barbara for the hospitality extended to him at the

initial stage of this work. L. P. P. wishes to thank the Soros Foundation for partial financial

support under grant # S92.56, and Jared Levy for valuable comments on the manuscript.
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FIGURES

FIG. 1. Non-linear resonant tunneling current I versus the inter-edge voltage V expressed in

the units of the temperature T at different values of the one-particle energy E of the bound state

at the impurity.
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