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Coulomb corrections to density and temperature of bosons in heavy ion collisions
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A recently proposed method, based on quadrupole and multiplicity fluctuations in heavy ion
collisions, is modified in order to take into account distortions due to the Coulomb field. This is
particularly interesting for bosons such as d and α particles, produced in heavy ion collisions. We
derive the temperatures and densities seen by the bosons and compare them to results of similar
calculations for fermions. The resulting energy densities agree rather well with each other and with
the one derived from neutron observables. This suggests that a common phenomenon, such as the
sudden opening of many reaction channels and/or a liquid gas phase transition, is responsible for
the agreement.

PACS numbers: 25.70.Pq, 24.60.Ky, 64.70.Tg, 05.30.Jp

I. INTRODUCTION

Important information about the Nuclear Equation of State (NEOS) can be obtained by colliding heavy ions [1–4].
The task is not easy since we have to deal with a microscopic dynamical system. Non-equilibrium effects might be
dominant and we have to derive quantities, such as density, temperature and pressure to constrain the NEOS. To
minimize for non-equilibrium effects, we define different physical quantities in the transverse direction, a practice
commonly used in relativistic heavy ion collisions and other fields. Recently we have proposed a method to determine
density and temperature from fluctuations [5–9]. The reason for looking at fluctuations, especially in the perpendicular
direction to the beam axis, is because they are directly connected to temperature through the fluctuation-dissipation
theorem [10], for instance. Of course, the system might be chaotic but not ergodic, in which case fluctuations should
give the closest possible approximation to the ’temperature’ reached during the collisions. Quadrupole fluctuations
(QF) [5] can be easily linked to the temperature in the classical limit. If the system is classical and ergodic, the
temperature determined from QF and from the slope of the kinetic energy distribution function [11], i.e. the number
of ions in the energy interval dE, of the particles should be the same. In the ergodic case, the temperature determined
from isotopic double ratios [12] should also give the same result. This is, however, not always observed, which implies
that the system is neither ergodic, nor classical. Since we are dealing with bosons and/or fermions it can be necessary
to go beyond classical approximation [6–9]. In a previous work [9] we have discussed Coulomb corrections to fermion
fluctuation temperatures. In this paper we will concentrate on bosons, i.e. α and d particles. The boson case was
also discussed in [8] but without Coulomb corrections. It is well known that ideal Bose gases give unphysical results
near and below the critical point. These problems are mitigated or completely resolved when the bosons experience
some repulsive potential. This is surely the case for α and d where, at least, the Coulomb repulsion must be included.
For bosons it is not possible to disentangle the ’temperature’ from the critical temperature Tc, and thus the density
[8]. Since we have two unknowns, we need another observable, which depends on the same physical quantities. In
[6–8] we have proposed to look at multiplicity fluctuations (MF) which also depends on T and ρ of the system in a
way typical for fermions [6, 7] or bosons [8]. The application of these ideas in experiments has produced interesting
results such as a sensitivity of the temperature to the symmetry energy [13], fermion quenching [14] and the critical
T and ρ in asymmetric matter [15]. Very surprisingly, the method based on quantum fluctuations [15] gives values
of T and ρ very similar to those obtained using the double ratio method and coalescence [16–18] and gives a good
determination of the critical exponent β. This raises the question why, in some cases, different methods give different
values [19, 20], while in other cases the same values are obtained.

In [5] the classical temperature derived from QF gave different values for different isotopes. In [9] we showed that
Coulomb corrections result in similar T for different nuclei having the same mass number. We also showed that the
Coulomb repulsion of different charged particles can distort the value of the temperature obtained from QF, which
depends on kinetic properties. On the other hand, MF for different particles seem to be unaffected by Coulomb
effects as we have discussed in [8, 9]. Also the obtained values, say of the critical temperature and density, might also
be influenced by Coulomb effects ( as well as by finite size effects). For these reasons, it is desirable to correct for
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Figure 1: The multiplicity fluctuations versus ν with fixed A′

V T2 in Eq. (4). Different lines refer to different values of A′

V T2 .

these effects as best as possible. It is the goal of this paper to propose a method to correct for Coulomb effects in
the exit channel of produced charged particles. In order to support our findings, we will compare our results to the
neutron observables, which should not depend directly on the Coulomb force. Neutron distributions and fluctuations
are not easily determined experimentally. Thus we will base our considerations on theoretical simulations using the
Constrained Molecular Dynamics (CoMD) approach [21]. These simulations have already been discussed in [6–9] for
40Ca + 40Ca at b = 1fm and for beam energies ranging from 4 MeV/nucleon to 100 MeV/nucleon in the laboratory
system. About 250,000 events for each case have been generated.

Let us imagine that we have a charged particle, say a deuteron with charge Zd, leaving a system of charge Zs, mass
A in a volume V . The particle momentum is pi, and it gets accelerated by the Coulomb field to the final momentum
pf . Assuming a free particle wave function for that particle, the Coulomb field becomes [9, 22]:

V (q) = 〈ψf |Hint|ψi〉

=
Zde

V

∫
e−ipf ·x/~φ(x)eipi·x/~d3x

=
1.44× 4π~2ZdZs

q2V
F (q), (1)

where q = pi − pf , φ(x) is the Coulomb potential of the source, F (q) is the form factor. This is similar to that
assumed in the density determination of the source in electron-nucleus scattering [22]. To make calculations feasible,
we will assume that pi is negligible, which is not a bad approximation at low energies or temperatures such that most
of the charged particle acceleration is due to Coulomb effects. At high excitation energies we expect Coulomb effects
to be negligible [23, 24] since the source is at at high temperature and relatively low density. In fact we have seen
in previous calculations [6–9] that charged and uncharged particles produced in the collisions at high energies give
similar values of T as expected. For simplicity we will also assume that the form factor is equal to 1. More involved
numerical calculations and higher statistics are needed in order to fully explore the form factor F (q). Unfortunately,
those calculations are presently beyond our numerical capabilities.

The reason for essentially making a Fourier transform of the Coulomb field, is because the distribution function is
modified by the factor [10]:

f(p) ∝ exp[−Rmin

T
] ∝ exp[−V (q = p)

T
]. (2)

Using this result, we can estimate modifications to physical quantities in the classical and quantum cases. The classical
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Figure 2: Critical temperature versus density with fixed A′

V
. We take d as an example.

case is interesting because it gives smaller temperatures for different fragments, very close to the neutron values, as
was discussed in [9]. The correction to the distribution function is, as we will show below, crucial for bosons.

II. QUANTUM CASE

In this work we will restrict the results to the d and α cases. In the quantum case, considering the Coulomb
correction, the QF can be obtained from:

〈σ2
xy〉 = (2mT )2

4

15

∫∞

0
dyy

5
2

1

e
y+ A′

yV T2 −ν
−1∫∞

0 dyy
1
2

1

e
y+ A′

yV T2 −ν
−1

, (3)

where A′ = 1.44×4π~2q1q2
2m and ν = µ

T . On the same ground we can derive the MF as:

〈(∆N)2〉
N

=

∫∞

0 dyy
1
2

e
y+ A′

yV T2 −ν

(e
y+ A′

yV T2 −ν
−1)2∫∞

0
dyy

1
2

1

e
y+ A′

yV T2 −ν
−1

. (4)

A detailed derivation of Eqs. (3, 4) is given in the appendix A. We introduce three variables T, V and ν into Eqs. (3,
4). This means that to solve those equations we need one more condition. We choose the average multiplicity:

N =
gV

h3
4π

(2mT )
3
2

2

∫ ∞

0

dyy
1
2

1

e
y+ A′

yV T2 −ν − 1
. (5)

Again the detailed derivation is given in the appendix A. Those equations can be solved numerically. In figure 1

we plot the 〈(∆N)2〉
N vs ν with fixed A′

V T 2 in Eq. (4). One can see that the 〈(∆N)2〉
N is always larger than 1. When

A′

V T 2 = 0, i.e. no Coulomb correction, the 〈(∆N)2〉
N recovers the ideal Bose gas result when T > Tc [8] and it diverges

at the critical point. For T < Tc, ν = 0 and we get a Bose condensate. An interesting question is what the energy
of the condensate is in the case with Coulomb repulsion. Of course, we should first stress that we are dealing with
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Figure 3: N of bosons (a) and quadrupole fluctuations (b) divided by their respective values at the critical point vs T/Tc. This
result is, to a very good approximation, independent of the particle type (i.e. α or d) at one fixed density.

finite systems. The Coulomb term gives a correction which has some similarities with the repulsive potential used
in realistic Bose gases as first proposed by Bogoliubov [10, 25, 26]. For simplicity we assume that the ground state
energy of the condensate is that of a uniformly charged sphere of radius r. However, in the following we do not need
any information on the ground state of the system and we have included this in the discussion just for completeness.
We can rewrite Eq. (5) as

ρ =
g

h3
4π

(2mT )
3
2

2

∫ ∞

0

dyy
1
2

1

e
y+ A′

yV T2 −ν − 1
. (6)

In figure 2, we plot the critical temperature versus density for different values of A′

V . For a fixed density and volume,
the Coulomb energy is larger and the critical temperature is higher. This probably provides a larger chance for bosons
to reach the lowest energy state.

It is instructive to study the behavior of the quadrupole fluctuations and the density below the critical point. In
figure 3 we plot these quantities divided by their values at the critical temperature as function of T/Tc. The behavior
when the Coulomb term is zero (A′ = 0) was already discussed in [8]. For finite Coulomb potential, we observe that
the number of condensate bosons increases faster with decreasing T and, accordingly, the quadrupole fluctuations are
larger. In fact the larger the Coulomb repulsion, the higher are the fluctuations already at zero T , which is intuitively
clear: particles emitted from a source at zero T , will develop substantial final momenta because of the large Coulomb
acceleration and consequently will exhibit large fluctuations. Naturally, we have to keep in mind that at zero T ,
bosons might be confined by an attractive mean field.

In figure 4 we plot ρ̃ = ρ
ρ0

where ρ0 is the nuclear ground state density and T vs excitation energy respectively

obtained from CoMD simulations. The neutron case is also included [6, 7]. As we see the densities derived from d
and α observables with Coulomb correction are very close to each other and to those derived from the the neutron
observables.There is a large difference between the cases with Coulomb correction and without Coulomb correction
which demonstrates the crucial role of adding the Coulomb repulsion between bosons. For completeness we also include
the results for bosons from Landau’s O(m6) approach [8] which is close to the results without Coulomb corrections.
The derived T of d and α with Coulomb correction are also much closer to the neutron values. The good agreement
for the obtained temperatures and densities suggests that thermal equilibrium is nearly reached for particles emitted
in the transverse direction

In figure 5, we plot the energy density ε = E
N ρ versus T . Without Coulomb corrections, the results are systematically

located at larger T and energy density with respect to n. When the correction is included, we obtain a curve very
close to that derived from the neutron data which do not reflect Coulomb effects (at least not directly). Furthermore
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Figure 5: Energy density versus T for different cases, see figure 4.

they are fermions. This result shows that when all the different effects are properly taken into account, we obtain
a unique energy density behavior which demonstrates that different particles experience a sudden increase of the
degrees of freedom (fragmentation) at the same T about 4 MeV. At higher T the energy density increases because
of a liquid-gas phase transition. It is important to notice that our results but also other results in the literature
[15, 17, 27–29] seem to give always T smaller than the nuclear matter temperature at the critical point for a liquid-gas
phase transition. The impossibility of reaching TcLG was also predicted in microscopic dynamical calculations of the
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Lyapunov exponents. In those calculations, the Lyapunov exponents will not increase beyond a certain value since
collective effects will set in [30]. We stress that the critical temperature for a liquid-gas phase transition has nothing
to do, in principle, with the critical point of a Bose condensate. The CoMD model used in this work has no knowledge
of a Bose condensate, thus we do not expect any spectacular effects to be observable in figure 5. However, there are
many signatures of a possible condensate in nuclei even though none has been so far conclusive. We mention the Hoyle
state in 12C, but also the anomalous large number of α particles in the universe as compared to hydrogen [31, 32].
In heavy ion collisions a large production of α is observed. Recently, some experimental signatures of a condensate
have been proposed [33, 34]. In the calculations discussed here we have always implicitly assumed that the number
of bosons is constant, which is crucial to have a condensate. In reality, during the collisions, even though we might
start from ’perfect’ α cluster nuclei, because of the large excitation energy, α particles might be destroyed and thus
we obtain in general a mixture of fermions and bosons. This is of course especially severe for d-like events. In order
to avoid this problem we propose the following strategy to select ’good’ events. First we define the quantity:

bj =
1

M

M∑
i=1

(−1)Zi + (−1)Ni

2
, (7)

where M is the multiplicity in one event, Zi and Ni are the proton and neutron number in the ith fragment in that
event respectively. The meaning of such a quantity is clear: if the final fragments for instance are all d-like, we get
bj = −1, while for pure α like fragments bj = +1, if we further select N=Z nuclei. Pure fermion cases give bj = 0.
In figure 6 we plot the bj distribution from CoMD calculations. As we see in the figure the model gives an average
bj close to zero, which means that most of the final fragments in the model are ’fermion-like’. Recall that the model
takes into account mainly the Pauli principle. However, preliminary experimental results on 40Ca + 40Ca collisions
[35, 36], display much larger distributions than in figure 6. In particular events are observed near bj = ±1 which
could be a signature for a Bose condensate. Therefore, we propose to select fragments from data with bj = 1(−1),
N = Z, and perform the analysis discussed in this paper to obtain the density and temperature of the bosons for each
excitation energy. The energy density might be constructed for different situations and compared to fermions.

III. CONCLUSION

In conclusion, in this paper we have discussed Coulomb modifications to the density and temperature in heavy
ion collisions. The quantum case (bosons) has been discussed. We have shown that the temperatures obtained from
different particle types are very similar to those derived from neutron observables, which implies the ’near ergodicity’
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of the system. The energy densities are very similar at high temperatures, which suggests that Coulomb corrections
are small due to the small source densities. Experimental investigations of the effects discussed in this work for well
determined sources and excitation energies [5, 13, 15, 16, 27, 35] would be very important to further constrain the
Nuclear Equation of State in the liquid-gas phase transition region also for asymmetric matter. We suggest a selection
of data according to excitation energy and to their bj distribution as defined in this paper. The T , ρ and energy
density for d-like, α-like and fermion like events might be compared to pin down the possibility of a condensate in nuclei.

We thank prof. J. Natowitz for discussions and a critical reading of the manuscript. A mathematica code for the
quantum case is available from the authors upon request.

Appendix A

For the quantum case, assuming particles follow the Bose-Einstein distribution modified by the Coulomb correction,

f(p) =
1

e
[ε+

1.44×4π~2ZdZs

V p2
−µ]/T − 1

, (A1)

where ε = p2

2m is the energy , µ is the chemical potential, T is the temperature. The average number of particles is

N =
g

h3

∫
d3xd3pf(p)

=
gV

h3
4π

∫ ∞

0

dpp2f(p). (A2)

where g is the degeneracy. Let’s make the integral variable transformation,

ε =
p2

2m
, p = (2mε)

1
2 , dp =

m√
2mε

dε. (A3)

Thus Eq. (A2) becomes

N =
gV

h3
4π

∫ ∞

0

dpp2f(p)

=
gV

h3
4π

(2m)
3
2

2

∫ ∞

0

dεε
1
2 f(ε)

=
gV

h3
4π

(2m)
3
2

2

∫ ∞

0

dεε
1
2

1

e
[ε+

1.44×4π~2ZdZs

V p2
−µ]/T − 1

=
gV

h3
4π

(2m)
3
2

2

∫ ∞

0

dεε
1
2

1

e[ε+
1.44×4π~2ZdZs

2mV ε −µ]/T − 1

=
gV

h3
4π

(2m)
3
2

2

∫ ∞

0

dεε
1
2

1

e[ε+
A′

V ε−µ]/T − 1
, (A4)

where A′ = 1.44×4π~2ZdZs

2m . Define:

y =
ε

T
, ν =

µ

T
. (A5)

Therefore, Eq. (A4) becomes

N =
gV

h3
4π

(2mT )
3
2

2

∫ ∞

0

dyy
1
2

1

e
y+ A′

yV T2 −ν − 1
. (A6)

When T > Tc, the multiplicity fluctuation is

〈(∆N)2〉 = T (
∂N

∂µ
)T,V = (

∂N

∂ν
)T,V . (A7)
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Substitute Eq. (A6) into Eq. (A7), we get:

〈(∆N)2〉 = gV

h3
4π

(2mT )
3
2

2

∫ ∞

0

dyy
1
2

e
y+ A′

yV T2 −ν

(e
y+ A′

yV T2 −ν − 1)2
. (A8)

Dividing Eq. (A8) by Eq. (A6) gives

〈(∆N)2〉
N

=

gV
h3 4π

(2mT )
3
2

2

∫∞

0 dyy
1
2

e
y+ A′

yV T2 −ν

(e
y+ A

yT2 −ν
−1)2

gV
h3 4π

(2mT )
3
2

2

∫∞

0
dyy

1
2

1

e
y+ A′

yV T2 −ν
−1

=

∫∞

0
dyy

1
2

e
y+ A

yT2 −ν

(e
y+ A

yT2 −ν
−1)2∫∞

0 dyy
1
2

1

e
y+ A

yT2 −ν
−1

. (A9)

In the same framework, we also calculate the quadrupole momentum fluctuation:

〈σ2
xy〉 =

∫
d3p(p2x − p2y)

2 1

e
[
p2

2m
+

1.44×4π~2ZpZs

p2V
−µ]/T

−1∫
d3p 1

e
[
p2

2m
+

1.44×4π~2ZpZs

p2V
−µ]/T

−1

= (2mT )2
4

15

∫∞

0
dyy

5
2

1

e
y+ A′

yV T2 −ν
−1∫∞

0 dyy
1
2

1

e
y+ A′

yV T2 −ν
−1

(A10)
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