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Abstract

Infectious diseases remain a significant health concern around the world. Mathematical modeling of these diseases can help
us understand their dynamics and develop more effective control strategies. In this work, we show the capabilities of
interior-point methods and nonlinear programming (NLP) formulations to efficiently estimate parameters in multiple
discrete-time disease models using measles case count data from three cities. These models include multiplicative
measurement noise and incorporate seasonality into multiple model parameters. Our results show that nearly identical
patterns are estimated even when assuming seasonality in different model parameters, and that these patterns show strong
correlation to school term holidays across very different social settings and holiday schedules. We show that interior-point
methods provide a fast and flexible approach to parameterizing models that can be an alternative to more computationally
intensive methods.
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Introduction

Infectious diseases continue to be a significant public health

concern, especially in developing countries where inadequate

resources, social influences, and environmental factors may

prevent effective, sustained results from public health initiatives

[1,2]. From a public health perspective, it is clear that reliable

models can greatly aid in the decision making process. For

example, quantitative long-term dynamic models could be used to

determine optimal allocation of limited resources, assess the

effectiveness of current public health practices, or even predict

outbreak risk. From a scientific perspective, the identification of a

reliable mechanistic model can improve our understanding of the

important factors affecting infectious disease dynamics.

Both of these goals require estimation of parameters in

infectious disease models from empirical data. Childhood diseases

like measles and chickenpox, for which long-term case count data

is available, provide an appropriate test bed for developing models

and estimation procedures. Probably the most highly studied

dataset for measles has been made available electronically by

Grenfell [3] (URL: http://www.zoo.cam.ac.uk/zoostaff/grenfell/

measles.htm). This data set contains yearly reported birth records

in addition to biweekly reported measles case counts and has

several favorable properties, including a high reporting fraction

and temporal resolution. Unfortunately, these favourable charac-

teristics are not typical among other datasets, including one

studied in this paper.

For most long-term studies, the only available data are disease

case counts (incidence) aggregated over time periods that are

longer than the serial interval for the disease (typically monthly or

even quarterly). Little information is known about the number and

dynamics of susceptibles within the population, a critical

determinant of disease dynamics; therefore this state variable

must be estimated along with the unknown parameters. Further-

more, incidence is almost always under-reported since data is

typically collected passively, health care providers may neglect to

report all cases, and some cases may not be accurately diagnosed.

The reporting fraction is difficult to quantify, but can be

significantly lower than unity, and must be considered in the

estimation procedure. Changes in public health policies and

administration, as well as changes that affect the population at risk,

and changing geographic boundaries such as city expansion, can

result in reporting inconsistencies over the full time horizon. While

each of these difficulties may not be present in all epidemiological

datasets, they are representative of those encountered in many

historical, passively-reported datasets on the incidence of child-

hood diseases, and they result in significant challenges for effective

parameter estimation.

In addition to the difficulties inherent in the available data,

estimation is further complicated by the structure of disease

models themselves. There are two fundamental classes of

mechanistic models used for the spread of infectious disease.

Individual or agent-based modeling approaches have been used

extensively, however, the large parameter space of these models

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e74208

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231872218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


often overwhelms the data available to specify those parameters.

The classic framework of compartment models (e.g. the Suscep-

tible-Infected-Recovered (SIR)) have fewer parameters and can be

described by sets of differential or discrete-time equations, allowing

for efficient, derivative-based estimation from historical case data.

Within this framework, model structures can vary dramatically

depending upon the selection of incidence and recovery functions,

the discretization strategy selected, and the consideration of age or

spatial dynamics. Furthermore, when performing parameter

estimation, several measures of fit can be proposed. Therefore,

we present an estimation formulation and solution procedure that

is flexible enough to accommodate the limitations in the available

data and the challenges associated with complex nonlinear models.

In addition, this approach is computationally efficient and allows

for exploration of different model structures along with the

promise of tackling larger systems.

Advanced NLP packages provide an excellent framework for

efficient estimation of infectious disease models from long-term

case data. Modern mathematical programming languages (e.g.,

AMPL [4], GAMS [5], Pyomo [6]) provide efficient computation

of derivative information through automatic differentiation in a

flexible framework for exploration of different model structures. In

this paper, we present an approach for estimating parameters in a

discrete-time SIR model. The model equations are included as

equality constraints in the NLP problem. In this approach, the

values of the system states are converged simultaneously with the

model parameters. This technique has the potential to be very

efficient since the forward problem is converged only once along

with the estimation problem. We demonstrate this approach by

formulating three models with seasonality included in different

model parameters. The first model estimates seasonality in the

transmission parameter, the second seasonality in an exponential

parameter on the incidence, and the third seasonality in the

introduction of new susceptibles into the population (i.e. from

births). Our results show that the estimated seasonality is strongly

correlated to school holidays across multiple settings regardless of

how seasonality is included in the problem formulation. Solution

times demonstrate the efficiency of our approach, with the longest

run-time for any of our estimations requiring less than 6 seconds,

even when considering over 20 years of historical data. The

efficiency and flexibility of this estimation framework make it

suitable for investigation of new model structures and increasingly

larger problems.

In the section titled ‘‘Background’’, we discuss the relevant

literature and, in particular, the seasonality of measles transmission

and the formulation of the time-series SIR model. In ‘‘Methods’’,

we present the NLP problem formulations used for parameter

estimation and an overview of the interior-point strategy for

solving these large-scale NLPs. The section titled ‘‘Data’’ describes

the data and data preparation used for our estimations. The

section titled ‘‘Results and Discussion’’ shows our estimation

results for a seasonal transmission parameter performed using real

measles case count data from London, New York City, and

Bangkok. We also present results from problem formulations that

contain seasonality in model parameters other than the traditional

transmission parameter. The section titled ‘‘Conclusions’’ presents

the significance of our results, and we mention topics for future

research in ‘‘Future Work’’.

Background
The basis for the formulation of traditional infectious disease

models is the compartmental framework where the population is

divided into various compartments based on their status with

respect to the disease [1,7–9]. In the basic SIR model, the

population is assumed to be well-mixed, and individuals are

classified as being susceptible to the disease (S), infected with the

disease (I), or recovered from the disease and currently immune

(R). Mathematical models based on the compartmental framework

can be formulated in both continuous-time (resulting in coupled

differential equations) and discrete-time (giving rise to a large set of

algebraic or transcendental equations). For a discrete-time model,

St, It, and Rt are the current number of susceptible, infected, and

recovered individuals at each time interval t. The infection process

that defines the number of new cases in a given time interval is

described through the incidence function, which usually depends

on the present value of the state variables as well as model

parameters H, which may themselves depend on time.

The classic incidence function for the number of new cases at

interval t is typically defined by bItSt=Nt. Here, b (known as the

transmission parameter) is proportional to the number of adequate

contacts for the spread of infections, and Nt is the total population

at time t, which is typically known from census data. Different

models have been proposed for the recovery function, including a

constant time delay (individuals stay infected for a fixed period of

time) and a fixed recovery rate (resulting in an assumption of

exponentially distributed recovery times). In a structural sense, this

is one of the most basic models of infectious disease dynamics, and

more complex compartment structures have been studied [1,7,10].

However, significant flexibility in this basic model is still possible

through various definitions of the incidence and recovery

functions. In particular, by allowing seasonal model parameters,

discrete-time models of this basic structure have a tremendous

capacity to fit real world case data [3,11,12].

Based on work by Soper [13], Fine and Clarkson consider an

incidence function where the transmission parameter is allowed to

vary with time [14]. They estimate values of this temporally

varying transmission parameter using measles incidence data

collected in England and Wales from 1950–1966. Over this time

period, the incidence follows a biennial pattern of alternating

major and minor epidemics. Remarkably, however, their estimate

of the time-varying transmission parameter has a similar pattern

and magnitude in both minor and major epidemic years.

Furthermore, this pattern is loosely correlated with school

holidays. This strongly supports the assertion of a relatively

consistent, underlying seasonal transmission effect related to school

terms. They conclude that the observed biennial pattern is a result

of the dynamics of susceptible individuals in the population as

driven by births and the infection process.

Semi-mechanistic approaches are also used to describe the

infection process. Ellner et al. couple the mechanistic compart-

ment balances with a phenomenological model (empirically

estimated) to describe the incidence function [15]. Using the

measles dataset from England and Wales, they estimate a general

form for the incidence relationship using both feed forward neural

networks and semi-nonparametric models. Probing the input-

output behavior of their estimated incidence relationship, they

suggest the presence of an underlying seasonal effect and that the

incidence function should be nonlinear in It. Cauchemez and

Ferguson confirm that assuming nonlinearity in It is necessary to

not miss key features of epidemics [16]. Lui et al. conduct a

thorough analysis of the equilibrium behavior and stability

properties of various continuous-time compartment models with

nonlinear incidence rates of the form bIp(t)Sq(t) [17]. They

conclude that, while values of q=1 have no ‘‘major effects’’,

altering the value of p from unity can have a significant effect on

qualitative, long-term behavior. Word et al. do not assume

nonlinearity in I and find reliable estimates for seasonal

transmission parameters using a continuous-time model [18].

Methods for Estimating Seasonal Parameters
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There is significant work being done to investigate the

homogeneity, or lack thereof, in mixing within populations.

Keeling and Eames explore the implementation of various

techniques from network theory into epidemiology theory to

provide a more accurate estimation of mixing networks than the

typical random-mixing assumption [19]. In another paper,

Keeling specifically examines using metapopulation models to

better understand mixing dynamics [20].

The results of Fine and Clarkson and others provide strong

evidence of an underlying seasonal mechanism that is linked to

school terms [14], although Gomes et al. did not reach that

conclusion for Portugal [21]. However, the Fine and Clarkson

model [14] has been criticized [22], since its long term behavior

does not exhibit the observed two-year periodicity, but rather a

periodicity close to three years. It is with this backdrop that

Finkenstädt and Grenfell introduce the time-series SIR model that

can adequately describe the periodicity of the data by using a

seasonally varying transmission parameter [11].

We extend the ideas of Finkenstädt and Grenfell [11] and

present a large-scale, NLP approach for efficient estimation of

time-series SIR models using existing case data. We make use of

the time-series SIR model because of its demonstrated ability to

reliably represent measles time-series data and the lack of an

assumed functional relationship restricting the shape of the

seasonal transmission profile. However, unlike in [11], our

approach is not one-step-ahead, and we do not require the

susceptible dynamics and the time-varying reporting fraction as

inputs, but instead estimate them simultaneously with the

unknown model parameters. The simultaneous estimation of the

reporting fraction has been performed previously with a contin-

uous-time SEIR (Susceptible-Exposed-Infected-Recovered) model,

where a generalized profiling estimation approach was used that

also estimated the susceptible dynamics and the reporting fraction

along with the model parameters [23]. Here, we use an interior-

point method to estimate seasonal parameters for discrete-time

models and investigate seasonality in multiple model parameters.

Our estimation problem is formulated as a large-scale NLP

problem. The discrete-time model is written over the entire time

horizon of the selected data and included in the formulation as

constraints. While this approach produces a large-scale NLP

problem, it can be solved efficiently using modern NLP solvers.

Advancements in NLP algorithms, including the introduction of

large-scale nonlinear interior-point methods [24–28] allow

efficient solution of increasingly large problems. In addition, this

approach is very flexible, allowing easy formulation of new model

structures. While previous work has shown benefits of using

continuous-time models rather than discrete-time models [18,29],

discrete-time models are still commonly used because of their

simplicity and their ability to adequately describe the observed

data. This fact drives the development of the efficient solution

approach presented here.

The effectiveness of this overall approach is demonstrated with

data from communities at a time where measles was endemic and

monthly case counts remained above zero for decades. Parameters

are estimated using available measles data from the UK for 1944–

1964 [3] and New York City for 1944–1963 [30], as well as pre-

vaccination measles data collected in Thailand from 1975–1986

[31]. The school term schedule in Thailand differs significantly

from the schedule in the other two locations, making it an

excellent complimentary dataset for comparing the seasonality of

model parameters with school patterns.

Methods

In this section, the base problem formulation is introduced,

along with a description of the sparse interior-point method used

to solve the large-scale nonlinear problem. We describe three

estimation formulations that incorporate seasonality into different

Figure 1. The true values of b used in the SIR simulation study
(circles). The mean of the estimates from the simulation study (solid
line). The 2.5th and 97.5th quantiles of the estimates from the
simulation study (dashed lines).
doi:10.1371/journal.pone.0074208.g001

Figure 2. The estimated transmission profile b (solid line) for a
single data set with 95% confidence intervals (– –) found using
log-likelihoods as described in [34]. The true values of b used in
the SIR simulation (circles).
doi:10.1371/journal.pone.0074208.g002

Figure 3. A comparison of seasonal transmission parameters
estimated for London. The values estimated in this work (– –) are
overlaid with those reported by Finkenstädt and Grenfell [11] (—).
doi:10.1371/journal.pone.0074208.g003
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model parameters. The first formulation estimates a seasonally

varying transmission parameter b (labeled SVTP). The second

formulation estimates a seasonally varying exponential parameter

a (labeled SVEP). The third formulation estimates seasonality in

the introduction of susceptibles into the population (labeled SVIS).

Estimation Problem Formulations
The deterministic skeleton of the TSIR (Time-series SIR) model

used in this analysis is given by,

Itz1~
bt(t)I

a
t St

Nt

V t[T , ð1Þ

Stz1~StzB?
t {Itz1V t[T , ð2Þ

where t[T refers to the set of discrete time periods, It is the

number of new cases in time period t, St is the current number of

susceptible individuals, and B?
t corresponds to the number of

yearly births divided by the number of discrete-time intervals per

year. Equation 1 describes the infection process and Equation 2 is

the susceptible balance. Note that the discrete time interval is

assumed to be the same as the generation time of disease and, as

such, removes the distinction between incidence and prevalence.

Full recovery is assumed from one time interval to the next. The

transmission parameter bt(t) is seasonal and restricted to be the

same from year to year (i.e. t(t) is a mapping from the overall time

interval t to an index from the beginning of the current year only).

The exponent a is a parameter that allows a nonlinear dependence

on It in the incidence function [2,3,11,12,17]. In this model,

population Nt and births B?
t are known inputs.

The goal is to estimate the unknown parameters bt(t) and a

along with the unobserved state St using reported incidence.

However, the cases are almost always under-reported. Therefore,

the true incidence It is related to the reported incidence C?
t by an

unknown, potentially time-varying, reporting fraction ct,

C?
t ~ctIt: ð3Þ

In the absence of additional information or further restriction of

the time-varying reporting fraction, it is clear that unique

estimation is not possible. Any value for It can be matched

exactly to the reported incidence C?
t by setting ct~It=C?

t . In our

work, we will assume that the reporting fraction varies linearly

over the entire time horizon, although this framework supports

general restrictions on its functional form. Additionally, we assume

multiplicative measurement noise in the reported cases since the

variance of the noise appears to increase with the number of

reported cases [11] (i.e., C?
t ~ctItEC

t where EC
t is an unknown error

term).

To improve the scaling and convergence properties of the

nonlinear estimation formulation, an exact log transformation is

performed on the incidence expression and the reporting fraction

correction expression. This gives the formulation of our discrete-

time deterministic model with seasonally varying transmission

parameter (SVTP), b, shown in Problem 4.

min
X

t

(~EEC
t )2 ð4aÞ

s.t.

Table 1. Problem size and solution times for the London,
New York City (NYC), and Bangkok estimation problems
studied in this paper.

City Model Variables Constraints
CPU Time
(sec)a

London bt 3878 3847 4.5

bt 3696 3665 2.3

NYC at 3671 3640 3.2

nt 3671 3640 3.2

bt 2240 2183 0.6

Bangkok at 2215 2158 5.6

nt 2215 2158 0.6

aAll problems were solved on a 2.13 GHz Intel Core 2 Duo processor and times
are reported in seconds.
doi:10.1371/journal.pone.0074208.t001

Figure 4. New York City results: The estimated number of reported cases (– –) with the actual number of reported cases (—) of
measles.
doi:10.1371/journal.pone.0074208.g004
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Stz1~StzB?
t {Itz1V t[T{ ð4bÞ

~IItz1~~bbt(t)za~IItz~SSt{ ~NNt V t[T{ ð4cÞ

ctz1~ctzcincV t[T{ ð4dÞ

~CC?
t ~~cctz~IItz~EEC

t V t[T ð4eÞ

It~exp(~IIt)V t[T ð4fÞ

St~exp(~SSt)V t[T ð4gÞ

ct~exp(~cct)V t[T ð4hÞ

by~exp(~bby)V y[Ty ð4iÞ

0ƒ ctƒ1V t[T ð4jÞ

0ƒ It,StƒNtV t[T ð4kÞ

Here, t[T refers to the discrete time interval in the entire time

horizon T , set T{ is identical to set T except that it is missing the

Figure 5. New York City results: The estimated number of individuals susceptible to measles.
doi:10.1371/journal.pone.0074208.g005

Figure 6. Estimated bt for measles in New York City with 95% confidence intervals (—).
doi:10.1371/journal.pone.0074208.g006
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last element of T , and Ty is the set of time intervals within a single

year. It is the number of new cases at time t, C?
t is the number of

reported cases at time t, St is the number of susceptible individuals

at time t, B?
t still corresponds to the number of yearly births

divided by the number of discrete-time intervals per year, and Nt

is the population at time t. The variable ~EEC
t is the log

transformation of the multiplicative error in the number of

reported cases, a is an exponential parameter on the incidence,

and c is the incidence reporting fraction that is assumed to vary

linearly by some increment cinc between each time interval. The

seasonal transmission parameter bt(t) is restricted to be the same

from year to year (i.e. t(t) is a mapping from the overall time

interval t to an index y from the beginning of the current year

only). The , symbol denotes log-transforms such that ~IIt, ~SSt, ~cct,
~bb,

and ~CC?
t are the log-transformations of It, St, ct, b, and C?

t

respectively. Note that this model uses exact log transformations

and not linear approximations.

This formulation has several advantages over previously existing

approaches for discrete-time models. This approach simultaneous-

ly estimates the susceptible dynamics and the reporting fraction

along with the disease parameters, and provides an estimate of the

susceptible count profiles in time. In addition, this formulation can

easily account for missing data by removing terms from the

objective function for periods where no data is available, and given

the flexible nature of the framework, a variety of measures of fit

could be used as the objective function.

The estimation formulation (SVTP) above assumed seasonality

in the transmission parameter b, however, it is reasonable to

postulate models with seasonality in other model parameters. In an

effort to better understand potential drivers of observed infectious

disease dynamics, this paper also presents estimation results for

formulations that include unknown seasonality in the exponential

parameter a, and in the birth rate. In particular, we wish to know

if alternate models provide improved fit to the data, and if the

estimated seasonal patterns are the same for different parameters

(e.g., are they still correlated with school holiday schedules). The

first alternative model formulation includes a time-invariant

transmission parameter but seasonal exponential parameter a.

This formulation is identified as SVEP and is identical to that

shown in Equation 0 except that the incidence balance (4c) is now

~IItz1~~bbzat(t)
~IItz~SSt{ ~NNtV t[T{: ð5Þ

Here, b is no longer seasonal, but a is defined to be seasonal where

t(t) is a mapping from the overall time interval t to an index from

the beginning of the current year only.

In the third formulation, we investigate estimation of seasonality

in the birth rate. Our available birth data includes the yearly

number of births only, and in previous formulations, we have

assumed that births occur uniformly throughout the year.

However, time-varying birth rates may contribute to susceptible

dynamics in a non-uniform way throughout the year due to the

newborn children effectively entering the pool of individuals at risk

of infection at particular times of year. Therefore, we developed a

formulation that estimates unknown seasonality in the birth data

from case count data to see if seasonality observed in infection data

can be captured by seasonally varying births. It is important to

note that the estimated seasonal pattern may not be directly

related to seasonality in the births themselves, but rather when

those births provide the most impact on the observed dynamics

(e.g. school entry).

The model formulation assuming seasonality in births, identified

as SVIS, incorporates several differences from the previous

formulations. Rather than assuming a uniform addition of births

into the susceptible population throughout the year, this formu-

lation includes a weighting factor nt that allows for seasonal

variation in births, keeping b and a time-invariant. This model

formulation differs from that in Equation 4 by replacing the

susceptible balance (4b) with (6), the incidence balance (4c) with

Figure 7. New York City results: 95% confidence region for a
and �SS=N.
doi:10.1371/journal.pone.0074208.g007

Figure 8. New York City results: 95% confidence region for �bb
and �SS=N.
doi:10.1371/journal.pone.0074208.g008

Figure 9. New York City results: 95% confidence region for �bb
and a.
doi:10.1371/journal.pone.0074208.g009
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(7), and adding one new constraint (18),

Stz1~Stznt(t)B
?
t {Itz1V t[T{ ð6Þ

~IItz1~~bbza~IItz~SSt{ ~NNtV t[T{ ð7Þ

X

i[Ty

nt(t)~DTyD: ð8Þ

Here, Ty refers to the set of discrete time within a single year, nt(t)

is a seasonally varying weight on births, and B?
t correspond to the

number of yearly births divided by the number of discrete-time

intervals per year. Equation 8 ensures that the number of new

susceptibles introduced into the population every year is equal to

the number of reported births for each year, and DTyD is the

cardinality of Ty (i.e., the number of discrete time intervals per

year). However, this constraint allows these new susceptibles to be

added in a seasonally varying manner.

In this paper, we estimate parameters using the large-scale, full-

space interior-point method, Ipopt [24,32]. The Ipopt algorithm

implements a primal-dual log-barrier interior-point approach for

handling large-scale nonlinear (and non-convex) programming

problems that may have many variable bounds. The Ipopt

algorithm makes use of full first and second order derivative

information for the constraints and the objective. In this research,

the modeling language AMPL [4] was used to describe the

problem formulation. AMPL provides efficient numerical values of

the analytical derivatives through automatic differentiation. The

original implementation of the algorithm was developed in Fortran

by Andreas Wächter and Lorenz T. Biegler. For full details of the

algorithm please see the literature [24,33].

Figure 10. Bangkok results: The estimated number of reported cases (– –) with the actual number of reported cases (—) of measles.
Note: Case data is unavailable for 1979.
doi:10.1371/journal.pone.0074208.g010

Figure 11. Estimated bt for measles in Bangkok with 95% confidence intervals (–).
doi:10.1371/journal.pone.0074208.g011

Methods for Estimating Seasonal Parameters
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Data
Four different data sets were considered in this work. Simulated

data from an SIR model was used to validate the estimation

procedure. Case data from London was used to compare our

estimation results with existing literature values. The London data

set has been heavily studied and is used in this work to

demonstrate the agreement of our approach with existing

literature. Data from two cities, New York City (NYC) and

Bangkok, are investigated in this study using all 3 estimation

formulations. The NYC and Bangkok data sets are used due to

their very different school term holidays, allowing us to show the

correlation between school terms and seasonal transmission. NYC

has a long summer school holiday lasting from the end of June

until mid September, while Bangkok has two long school holidays:

one from the beginning of March until the middle of May and one

the entire month of October.

The data from London reports biweekly measles cases and

yearly birth rate data for the years 1944–1963 [2]. A constant

population was assumed for this data set. The data from New York

City (NYC) contained yearly reported population and birth rate

data, and monthly reported measles case counts for the years

1944–1963 [30]. The Bangkok data contained yearly reported

birth rate data [31], but the population was only reported every

decade. Linear interpolation was used to approximate the yearly

populations across the time horizon studied. The measles case

counts were reported monthly for the years 1975–1986. In all of

these estimations, the population is assumed to vary linearly

throughout each year, and the birth rate is assumed to be uniform

throughout each year.

In our estimation approach, we assume that the under-reporting

of incidence varies linearly in time, and we estimate a reporting

fraction along with other model parameters. An additional

challenge in the Bangkok data is the absence of case count data

for the year 1979. To account for this, the formulation is modified

to exclude these points from the objective function, while still

including them in the simulated dynamics.

To estimate the discrete-time model, data must be available on

the same time interval as the model discretization. The London

data is available in a biweekly form that is consistent with the

model discretization. However, the NYC and Bangkok data were

reported monthly, so the data must be converted into a biweekly

form. To resample the data, the monthly case counts are first

converted to cumulative case counts. This cumulative data is

interpolated at biweeks with a piecewise cubic Hermite interpo-

lating polynomial (using the pchip method in MATLAB) to ensure

no overshoot. The number of new cases in the biweekly intervals

was then estimated by taking the difference between the biweekly

interpolated data points.

Results and Discussion

In this section, we present estimation results from the three

different formulations. All models assume multiplicative noise in

the measurements but differ in how seasonality is included in the

model. First, we validate our estimation procedure on simulated

data using a model incorporating the common assumption of

seasonality in the transmission parameter b. Additionally, we

perform estimation on real measles case count data from London

and compare our results with other literature studies. After

validating our estimation procedure, we present estimates for

seasonal profiles using measles data from New York City and

Bangkok. These two data sets are used for estimates with all three

model formulations.

Confidence intervals and regions are found using the log-

likelihood method presented in Rooney and Biegler [34].

Confidence intervals for all estimated parameters are constructed

by fixing one parameter and allowing optimization over the

remaining parameters. Confidence regions are created by fixing

the 2 parameters being compared and optimizing all other

variables. These confidence regions show the relationship between

the exponential parameter (a), the mean of the transmission

parameters (�bb), and the mean susceptible fraction (�SS=N).

Model and Procedure Validation
We first test the SVTP (4) estimation formulation using known

parameter values. We perform 10,000 simulations with an SIR

model using MATLAB. Our simulations use a constant population

of 10,002,000, a birth rate of 2.5% of the population per year, and

a reporting fraction of 0.5. To generate 20 years of case data, the

deterministic model is simulated for 100 years to achieve a cyclic

Table 2. Estimated parameters with 95% confidence intervals
for measles in New York City and Bangkok using a seasonal
transmission parameter.

NYC Measles Bangkok Measles

Est Low High Est Low High

a 0.9468 0.9405 0.9530 1.0137 1.0056 1.1062

c0 0.07363 0.06599 0.08188 0.01187 0.01013 0.01379

cinc 9.57E-5 6.30E-5 1.29E-4 1.00E-4 8.30E-5 1.17E-4

I0 11360 8750 14810 6810 5120 9080

S0 414800 393600 435900 352200 339500 362400

b1 34.28 25.74 45.60 12.80 8.86 18.40

b2 31.66 23.79 42.07 9.58 6.60 13.82

b3 33.14 24.95 43.94 10.41 7.16 15.05

b4 34.22 25.83 45.25 10.37 7.11 15.04

b5 34.59 26.17 45.63 10.22 6.99 14.86

b6 30.33 22.94 40.05 7.51 5.14 10.94

b7 32.29 24.41 42.68 7.94 5.44 11.55

b8 30.70 23.11 40.77 7.16 4.92 10.40

b9 32.79 24.52 43.89 7.01 4.83 10.17

b10 29.85 22.12 40.38 9.29 6.40 13.47

b11 30.61 22.48 41.88 9.82 6.77 14.23

b12 23.54 17.32 32.18 10.86 7.49 15.74

b13 17.42 12.90 23.62 11.91 8.21 17.26

b14 19.44 14.42 26.26 11.87 8.18 17.20

b15 13.96 10.40 18.77 12.95 8.93 18.78

b16 17.69 13.21 23.71 12.09 8.34 17.53

b17 16.88 12.62 22.59 10.37 7.16 15.01

b18 18.07 13.53 24.14 10.77 7.44 15.58

b19 28.07 21.04 37.46 12.36 8.54 17.88

b20 26.98 20.23 36.01 12.44 8.60 17.98

b21 29.77 22.32 39.72 9.37 6.49 13.52

b22 30.52 22.88 40.72 9.09 6.29 13.11

b23 32.22 24.15 42.99 9.48 6.56 13.67

b24 35.70 26.76 47.63 9.00 6.22 12.99

b25 33.84 25.36 45.14 10.74 7.42 15.50

b26 37.74 28.37 50.17 18.39 12.75 26.43

doi:10.1371/journal.pone.0074208.t002
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steady state, and the final values from this simulation are used as

the initial values for the 20 year simulation. The simulations are

performed with the same model as that used for the estimation.

Multiplicative measurement noise is drawn from a log-normal

distribution with mean 1 and a standard deviation of 0.1 and

applied to the reported cases.

Figures 1 and 2 demonstrate that our estimation approach gives

a good estimate for b using data from the SIR simulations. In

Figure 1, the circles show the true parameter values used for all

10,000 simulations. The solid line shows the mean of the estimated

values for the parameters and the dashed lines show the 2.5 and

97.5 quantiles for the parameters estimated from all 10,000

simulations (giving 95% confidence intervals for these estimates).

Figure 2 shows the estimates for a single simulated data set

randomly selected from the pool of 10,000 simulations. The solid

line shows the estimated parameters while the true parameters are

shown with circles. The dashed lines show the 95% confidence

intervals. The true parameter values are included inside these

confidence intervals.

To further validate this approach, we then performed estima-

tions with the London data that had been used in other studies and

found our results to be consistent with other literature estimates

[2,12,14,16]. Our estimate of seasonality in b for London is similar

to that obtained by Finkenstädt and Grenfell [11] for England and

Wales over the same time period. Figure 3 shows a comparison of

our estimated b with that estimated by Finkenstädt and Grenfell

[11]. The seasonality observed shows a small drop in the

transmission parameter at the Easter break (biweek 8), and a

large drop at the summer break (biweeks 15–18). This observation

is in agreement with the proposal that transmission of measles is

correlated with school holidays.

Our estimates are very similar to others in the literature, and

our solution approach is also very fast. The run time for the

London estimation is under 5 seconds even though this estimation

included 21 years of data and estimated the susceptible population

and reporting fraction simultaneously with the model parameters.

The computational time required for all estimates reported in this

work using real case data is given in Table 1. Given our ability to

accurately estimate known parameters given simulated data, and

the similarity between our estimates and other estimates from the

literature using London data, we are confident that our estimation

Figure 12. New York City estimates of seasonal exponential parameter at with 95% confidence intervals.
doi:10.1371/journal.pone.0074208.g012

Figure 13. Bangkok estimates of seasonal exponential parameter at with 95% confidence intervals.
doi:10.1371/journal.pone.0074208.g013
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procedure offers a fast, reliable method to estimate seasonal

parameters in infectious disease models.

Estimation Results for Seasonality in Different Model
Parameters

In this section, we show the estimation results for the three

different problem formulations SVTP, SVEP, and SVIS, address-

ing seasonality in the transmission parameter, the exponential

parameter, and the introduction of susceptibles respectively. Each

of these three formulations is solved using measles data from both

New York City and Bangkok, two locations with significantly

different school holiday schedules.

The first set of estimation results are shown for formulation

SVTP using measles data from New York City. Our estimates

using this data yield an estimated number of reported measles

incidence that fits reasonably with the actual reported incidence

data as shown in Figure 4. The mismatch shown at the beginning

of the time horizon may be due to our assumption that the

reporting fraction varies linearly in time. The biennial periodicity

seen in the case counts and the estimated number of susceptibles

(Figure 5) is consistent with expectations for endemic measles in

cities with a low birth rate. Our estimate of b using NYC measles

data is shown in Figure 6, and the observed seasonality coincides

strongly with the school term summer break which occurred over

biweeks 11–17. While the confidence intervals shown in Figure 6

seem large, recall that we determine these intervals by fixing the

Figure 14. Spearman correlation coefficients computed for New York City are shown. The coefficient calculated using reported holiday
schedules and estimated parameters are shown by the dashed line. The coefficient computed using a holiday schedule shifted forward by one
biweek is shown by the solid line. The histogram shows the distribution of correlations that were computed between the reported holiday schedule
and 1,000 randomly ordered vectors of our parameter estimates.
doi:10.1371/journal.pone.0074208.g014

Figure 15. Spearman correlation coefficients computed for Bangkok are shown. The coefficient calculated using reported holiday
schedules and estimated parameters are shown by the dashed line. The coefficient computed using a holiday schedule shifted forward by one
biweek is shown by the solid line. The histogram shows the distribution of correlations that were computed between the reported holiday schedule
and 1,000 randomly ordered vectors of our parameter estimates.
doi:10.1371/journal.pone.0074208.g015
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value of a single parameter and optimizing over the remaining

parameters (i.e., re-estimating the remaining parameters) to

generate profile likelihoods.

At the solution of the estimation problem, the optimization

package Ipopt indicates that the reduced-Hessian is positive

definite, which implies that the estimated parameters are locally

unique. However, in addition to single variable confidence

intervals, we are also interested in confidence regions where

parameter values can be expected. Using the procedure outlined

in Rooney and Beigler [34], we construct pairwise confidence

regions for the mean of the transmission parameter, the mean of

the susceptible population, and the exponential parameter a,

based on the likelihood ratio test. Figure 7 shows the relationship

between the exponential parameter (a) and the mean susceptible

fraction (�SS=N), Figure 8 shows the relationship between the mean

of the transmission parameters (�bb) and the mean susceptible

fraction (�SS=N ), and Figure 9 shows the relationship between the

mean of the transmission parameters (�bb) and the exponential

parameter (a). In all figures the plus sign indicates the optimal

solution, and the bold line indicates the extent of the 95%

confidence region. All three regions have similar shapes and show

some correlation between the parameters. High values of �bb

correspond to lower values of �SS and a. This is reasonable since an

increase in the infection term bIaS caused by a higher b could be

offset somewhat by a reduction in either a or �SS. An increase in a

corresponds to a higher value of �SS which seems contrary to the

previous results, however, when constructing these intervals, we

optimize over the remaining variables and a lower value of a

corresponds to a higher value of �bb. Furthermore, the relative range

of a in the confidence region is much smaller than that of �bb and �SS.

While not shown here for brevity, confidence regions with similar

characteristics were found for the other data sets used in this

paper.

The Bangkok data allows us to perform estimates for a location

with a very different social environment and school schedule than

NYC. These case counts suffered from a much lower reporting

fraction and even missing data during one year (1979). Still, the

estimated reported measles incidence gives a remarkably good fit

to the actual reported incidence data as shown in Figure 10.

Our estimate of b for Bangkok is shown in Figure 11, and, as

expected, the estimated transmission profile is very different from

those estimated for both London and NYC. However, the

observed seasonality again appears to be correlated with the

school term holidays that occur from the beginning of March

through the middle of May and the entirety of October

(corresponding approximately to biweeks 5–9 and 20–21 respec-

tively). This estimated seasonality does not appear to be as strong

as that seen in the NYC estimate, but this could be due to the high

degree of under-reporting in this data set. Our estimates show that

only about 1% of cases are reported at the beginning of the time

horizon and that this fraction increases to only about 5% of the

cases being reported by the end of the time horizon. This low

reporting fraction allows for significant noise to be present in the

available data which could reduce our ability to estimate

seasonality. The complete set of parameter estimation results

and confidence intervals for the SVTP estimates using NYC and

Bangkok data are given in Table 2.

In an effort to investigate seasonality in other model parameters,

the SVEP model formulation is used to estimate seasonal

exponential parameters a using data from both New York City

and Bangkok. This formulation includes a time-invariant trans-

mission parameter and seasonal exponential parameters a (5).

Similar to the estimated profiles using SVTP, these estimations

show a seasonal profile for a that appears strongly correlated with

the school holiday schedule.

The seasonal a estimated using the New York City measles data

is shown in Figure 12, and the seasonal a estimated using the

Bangkok measles data is shown in Figure 13. After scaling, the

estimated seasonality in a is almost identical to the profiles

estimated for the seasonal b’s. This demonstrates that while

seasonality provides a mechanism to capture the dynamics seen in

the data, the actual implementation of the seasonality into the

model can vary. This also shows that a and b could be describing

some combination of several physical phenomena, and care must

be taken when interpreting the underlying cause of the seasonality.

To compare these results numerically, Spearman correlation

coefficients are computed to compare our estimated seasonality

with school holidays. For the school term profile we construct a 0/

1 sequence where a 1 indicates that school is in session for a

particular biweek and a 0 indicates that school is on holiday.

Figure 14 shows the Spearman correlation coefficient compute

using reported holiday schedules and the estimated seasonal b
parameters for New York City. We also computed the Spearman

correlation coefficient using a holiday schedule that is shifted

forward by one biweek, and this coefficient is even higher. This

shift is not unreasonable given that the data was reported monthly

but was resampled into a biweekly form suitable for our

formulation. The histogram in this figure shows the distribution

of correlations that were computed between the reported holiday

schedule and 1,000 randomly ordered vectors from our estimated

b values. This histogram demonstrates that the correlation

between school holidays and random seasonality in the parameters

is normally distributed about zero, while the correlation between

Figure 16. New York City estimates of seasonal weight on
births, nt.
doi:10.1371/journal.pone.0074208.g016 Figure 17. Bangkok estimates of seasonal weight on births, nt.

doi:10.1371/journal.pone.0074208.g017
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the holidays and our estimated seasonality is very strong (above the

95% confidence level). Figure 15 displays the same calculations as

Figure 14 except using Bangkok school holidays and parameter

estimates.

The same calculations are performed using the estimated

seasonal a values with almost identical results. The Spearman

correlation coefficients for New York City and Bangkok using the

unshifted holidays and seasonal a’s are 0.62 and 0.61 respectively.

Using shifted holidays, these correlation coefficients are 0.76 and

0.72 for New York City and Bangkok respectively. These results

strongly support our belief that our estimated seasonality is

correlated with school holidays. Furthermore, the estimated

seasonality in a and b are strongly correlated with each other.

The correlation coefficient between the estimated seasonal a and

seasonal b for New York City is 0.99, and the correlation

coefficient between the estimated seasonal a and seasonal b for

Bangkok is 0.97.

For the time periods under consideration, we have only yearly

birth data. For the previous estimation results (SVTP and SVEP)

we assumed that the birth rates were constant throughout the year.

Formulation SVIS estimates seasonality in the introduction of

susceptibles into the S compartment. The SVIS model formula-

tion is used for estimates using data from New York City and

Bangkok. This formulation contains time-invariant transmission

and exponential parameters and considers seasonality in births by

including a weighting factor nt that must be estimated.

The seasonal profile for n estimated using the New York City

measles data is shown in Figure 16, and the seasonal profile for n
estimated using the Bangkok measles data is shown in Figure 17.

Just as with previous estimates, these results show strong

correlation between the seasonality observed in measles case data

and school term holidays. For New York City, n is essentially zero

except at the end of September which is immediately following the

start of the fall semester of school. For Bangkok, n is essentially

zero except at the beginning of June. These results do not show a

seasonal variation that is consistent with estimated seasonal profiles

for the other two parameters, however, these profiles are very

interesting in that they are still highly correlated with the school

schedules in both settings. The seasonal profiles providing an

optimal fit to the data show complete introduction of the new

susceptible immediately following the major holiday at the start of

the school year. This is consistent with the idea that susceptible

children impact the observed measles dynamics when they enter

the school population.

Conclusions

The development of inference tools for infectious disease models

remains an important challenge to better understand disease

dynamics and develop more effective control strategies. This work

has demonstrated the flexibility inherent in large-scale NLP

techniques and the ability of these techniques to efficiently

estimate transmission parameters in multiple disease models using

measles case count data. We demonstrated this efficiency and

flexibility using three model formulations and four data sets. In all

cases, including for time-series data sets of over 20 years, we were

able to perform the estimations in less than 6 seconds. This

computational efficiency and flexibility opens the door for

investigating many alternative model formulations and encourages

use of these techniques for estimation of larger, more complex

time-discretized models like those with age-dependent dynamics,

more complex compartment models, and spatially distributed

data.

We validated our estimation approach by performing 10,000

estimations using simulated case data, and to demonstrate the

flexibility of our approach, we presented estimations using measles

case data from 3 different models. The first model we presented

used a seasonally varying transmission parameter b. We first

validated our approach by estimating seasonal transmission

parameters using both simulated data and real measles data from

London. We performed 10,000 estimations on simulated data

(with different noise realizations) and showed that the approach

was able to effectively recover the true seasonal transmission

parameter. Furthermore, this approach estimates seasonal trans-

mission parameters for London that are consistent with other

estimates in the literature [23,35].

Using real measles case data from both New York City and

Bangkok, we estimated using 3 formulations, SVTP, SVEP, and

SVIS, considering seasonality in the transmission parameter, the

exponential parameter, and the introduction of new susceptibles.

In all cases, the estimated seasonality showed correlation with

school schedules. This is especially important given that the school

schedules differ significantly for these two locations. The profile

estimated using seasonal a’s was practically identical to that

estimated using seasonal b’s. This result might not be too

surprising, but this does highlight that care must be taken when

relating the estimated seasonality to particular system phenomena

(e.g., contact rate).

Perhaps more interesting are the estimation results for the

model with a seasonal weighting of the births. Here, instead of

assuming that new susceptibles always entered the population

uniformly throughout the year, the model was formulated so that

susceptibles could enter the population in any seasonal pattern.

These estimation results show that all new susceptibles were

introduced to the population immediately following long school

holidays to best capture the dynamics observed in reported

measles cases. Since all births clearly do not actually occur at this

time, this result is consistent with the idea that the susceptible

children impact observed measles dynamics when they enter the

school population.

Future Work
The flexibility and efficiency of our solution approach will allow

us to tackle more difficult problems. Along with disease case

counts, some data sets also include age of infection information.

This additional information could be used in a model with

seasonal and age dependent transmission. A model of this type

would not only give an age of infection distribution more

consistent with the actual data, but could also allow the

incorporation of the age of infection data in a natural way.

Additionally, while measles can be endemic in larger cities, it is

seen to die out in smaller communities with re-emergence arising

from infections imported from surrounding metropolitan areas.

Spatially distributed models have been used to estimate the impact

of disease transmission from large cities to surrounding areas, but

these problems can be very large, making it impractical to also

estimate seasonality in model parameters. The power of large-scale

NLP solvers could allow for simultaneous estimation of seasonality

and spatio-temporal effects over large spatially distributed data

sets.
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