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We show that once the effects of valley splitting and intervalley scattering are incorporated,
renormalization group theory consistently describes the metallic phase in silicon metal-oxide-
semiconductor field-effect transistors down to the lowest accessible temperatures.

The two-parameter scaling theory of quantum diffu-
sion in two dimensions [1, 2] has been remarkably suc-
cessful in describing the properties around the metal-
insulator transition (MIT) in electron systems confined
to silicon inversion layers (MOSFETs) [3, 4, 5]. The the-
ory is based on the scaling hypothesis that both the re-
sistivity and the electron-electron scattering amplitudes
become scale dependent in a diffusive system due to the
singular long ranged nature of the diffusive propagators,
D(q, ω) = 1/(Dq2 + ω), in a disordered medium [6, 7].
The predicted scale dependencies calculated using renor-
malization group (RG) theory [1] were recently verified
experimentally in Ref. [3] without any fitting parameters.
Since the theory considered the valleys to be degenerate
and distinct, the experiments were limited to tempera-
tures larger than the characteristic valley splitting and
intervalley scattering rate (T & 500 mK). The effects of
scaling are, however, significant at low temperatures and
it is therefore important to test the scaling hypothesis at
much lower temperatures. We show that when the RG
theory is extended to include valley splitting and inter-
valley scattering [8] the scaling properties in the metallic
phase can be described quantitatively down to the lowest
reliably accessible temperatures, T ≈ 200 mK.

The evolution with scale (temperature) of the two-
parameters, namely, the resistance, ρ, and the electron-
electron interaction strength, γ2, in the spin-triplet chan-
nel were discussed in detail for ρ . 1 (in units of
πh/e2) in terms of RG theory in Ref. [1]. (In Fermi-
liquid notation, γ2 is related to the amplitude F a

0 as
γ2 = −F a

0 /(1 + F a
0 ).) The theory predicts that, while γ2

increases monotonically as the temperature is reduced,
ρ behaves non-monotonically, changing from insulating
behavior (dρ/dT < 0) at high temperatures to metal-
lic behavior (dρ/dT > 0) at low temperatures, with the
crossover occurring when γ2 attains the value γ∗2 = 0.45.
Although the maximum value ρmax occurs at a crossover
temperature T = Tmax, both of which are sample spe-
cific and hence non-universal, the two-parameter scal-

ing theory predicts that the behaviors of ρ(T )/ρmax

and γ2(T ) are universal when plotted as functions of
ξ = ρmax ln(Tmax/T ). The above predictions, including
the value of γ∗2 , were verified experimentally in Refs. [1, 3]
in the temperature range where the two valleys may be
considered to be degenerate and distinct.

For n-(001) silicon inversion layer the conduction band
has two almost degenerate valleys located close to the X-
points in the Brillouin zone. While the sharpness of the
interface of the inversion layer leads to the splitting, ∆v,
of the two valley bands, the atomic scale irregularities
found at the interface gives rise to a finite intervalley
scattering rate, ~/τ⊥ [9]. The singularity of the diffusion
modes, especially those in the valley-triplet sector, are
cut-off at low frequencies as a result [8, 10]. Hence, the
specific form of the RG equations, which is sensitive only
to the number of singular modes, depends on if kBT is
greater than or less than the scales ∆v or/and ~/τ⊥.

The relevant RG equations for the different tempera-
ture ranges may be combined as follows [8]:

dρ

dξ
= ρ2

[
1− (4K − 1)

(
γ2 + 1
γ2

log(1 + γ2)− 1
)]

(1a)

dγ2

dξ
= ρ

(1 + γ2)2

2
(1b)

The parameter K accounts for the number of singular
diffusion modes in each temperature range. For tem-
peratures T & Tv and T⊥, where kBTv = ∆v and
kBT⊥ = ~/τ⊥, the two bands are effectively degener-
ate and distinct; the constant K in this case is propor-
tional to the square of the number of valleys, nv, i.e.,
K = n2

v = 4 (nv = 2 for silicon). In the temperature
range T⊥ . T . Tv, the two bands remain distinct but
are split and hence each valley contributes independently
to ∆σ(b), i.e., K = nv = 2. At still lower temperatures
T . T⊥, intervalley scattering mixes the two valleys to
effectively produce a single valley so that K = 1.

A few important clarifications regarding the use of
Eq. (1) are discussed below. First, for the case K = 2,
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when the bands are split but distinct, it has been shown
that using a single amplitude γ2 to describe the interac-
tion in all the seven (4K−1) modes is an approximation
that is valid only if the temperature range T⊥ . T . Tv

is not too wide [8]. In general, when the bands are split
certain amplitudes evolve differently from γ2, thereby ne-
cessitating the need to go beyond the two-parameter scal-
ing description [8, 11]. The deviation is large when the
RG evolution is allowed to proceed to exponentially large
scales or T � Tv. In our case, however, since T⊥, which
effectively mixes the two bands, is only a fraction smaller
than Tv, the deviation of the amplitudes is quickly lim-
ited by T⊥. We therefore assume that all the amplitudes
remain degenerate and contribute equally to ρ, which
amounts to taking K = 2 in Eq. (1).

The second point concerns the weak-localization (WL)
contribution [12] to Eq. (1). It is seen experimentally that
the phase breaking rate, ~/τϕ, saturates at low electron
densities (n . 1011 cm−2) for T . 500 K. Correspond-
ingly, a strong suppression of the WL correction is also
observed in this regime [13]. These observations are con-
sistent with our results, as is discussed later. We have
therefore neglected the weak-localization contribution in
Eq. (1) when analyzing the cases K = 2 and 1 (these are
the relevant cases at low temperatures).

In Ref. [3] it was shown that γ2 may be determined ex-
perimentally by exploiting the b2 dependence of the mag-
netoconductance ∆σ(b) ≡ ∆σ(B, T ) = σ(B, T )−σ(0, T )
in a weak parallel magnetic field b = gµBB/kBT . 1. In
the weak field limit ∆σ(b) is given as [14, 15]

∆σ(b) = −0.091
e2

πh
Kγ2 (γ2 + 1) b2 (2)

Hence the slope of ∆σ(b2) provides a direct measure of
γ2, given of course that K is known.
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FIG. 1: Upper panels: ρ(T ) traces (in units of πh/e2)
for three different electron densities, ns = 9.87, 9.58 and
9.14 × 1010 cm−2. Lower panels: Extracted values of γ2(T )
using Eq. 2 using K = 4, for the same electron densities. (See
Ref. [3] for further details.) The dashed lines are positioned
at the critical value γ∗2 = 0.45. Note that the maximum in
ρ(T ) occurs when γ2 attains approximately the value γ∗2 .

In the upper panels in Fig. 1, we plot ρ(T ) at zero mag-
netic field for three different electron densities. They

show a characteristic non-monotonic behavior as pre-
dicted in (1). In the lower panels in Fig. 1 we plot the
extracted values of γ2 using Eq. (2) with K = 4, i.e.,
assuming that the valleys are degenerate and distinct.
The dashed horizontal line marks the point γ2 ≈ 0.45
approximately where ρ(T ) attains its maximum value
in remarkable agreement with Eq. (1). (At these tem-
peratures quantum coherence is relevant and its con-
tribution to weak localization, dρ/dξ = nvρ

2, is to be
added to Eq. (1a).) The results of the comparison be-
tween theory and experiment are presented in Fig. 2. The
solid squares (�) are the experimental data points for
ns = 9.1 × 1010 cm−2, reproduced here from Fig. 1(a).
The solid lines are the predicted theoretical curves for
ρ(T ) and γ2(T ) with the parameters K = 4, ρmax = 0.4
and Tmax = 2.3 K. (Here, Tmax is the temperature at
which ρ(T ) attains its maximum value, ρ(Tmax) = ρmax.)
The remarkable agreement between theory and experi-
ment is especially striking given that the theory has no
adjustable parameters.

At temperatures below 0.5 K, the experimentally ex-
tracted values of γ2(T ) in Fig. 2(b) seem to saturate with
further decrease in T . We believe that the saturation
is an artifact of the analysis related to our assumptions
that both the valley splitting and the intervalley scatter-
ing are negligible at the lowest temperatures. As noted
earlier, the large number of valley modes K = n2

v reduces
to just K = nv for temperature T⊥ . T . Tv and to just
K = 1 for T . T⊥. In the following, we recalculate γ2(T )
taking these considerations into account.

The experimentally extracted values of γ2, usingK = 2
and K = 1, are shown in Fig. 2(b) as diamonds (red �)
and stars (blue F), respectively. The procedure used to
extract these values are the same as that used for K = 4,
namely, by fitting the σ(b2) traces in Fig. 1(b) to Eq. (2)
using the appropriate K values. We find very favorable
agreement with theory (solid line) if the crossover scales
are chosen such that Tv ≈ 0.5 K and T⊥ ≈ 0.2 K. (Note
that for these temperatures the WL corrections have not
been included in Eq. (1) for the reasons discussed ear-
lier.) These values are in good agreement with earlier
estimates of Tv [16] and T⊥ [17] obtained at higher den-
sities employing different methods. We checked by di-
rect calculation using Eq. (1) that the theoretical values
of ρ and γ2 are not affected significantly when crossing
these scales, provided that the WL corrections are not
included below T . 500K. Deviations from the solution
for K = 4 taking K = 2 and K = 1 are shown in Fig. 2
as long (red) and short (blue) dashed lines, respectively.
As can be seen, the deviations are insignificant (almost
indiscernible) down to T = 0.2 K.

By comparing with experiments we have extended the
test of the scaling equations (1) down to the lowest re-
liably measurable temperatures T ≈ 0.2 K. Concerning
still lower temperatures, i.e., lower than T = 0.2 K, the
theory predicts (not shown here) that while ρ(T ) satu-
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FIG. 2: The result of the comparison between theory (lines)
and experiment (symbols) for ρ and γ2 are presented in (a)
and (b), respectively. The parameter K = 4 corresponds to
the case when the two valleys (nv = 2) are degenerate, i.e.,
T > Tv, where Tv ≈ 0.5 K is the estimated valley splitting.
K = 2 corresponds to the temperature range T . Tv, and
K = 1 corresponds to the region T . T⊥ ≈ 0.2 K where the
intervalley scattering mixes the two valleys to give one valley.

rates and then begins to drop again at ultra low temper-
atures (T . 50 mK), γ2(T ) rises fast monotonically for
K = 1. Further tests of these predictions are in progress.

To conclude, we have shown that if valley splitting and
intervalley scattering are incorporated into the RG the-

ory, the latter quantitatively describes the metallic phase
down to the lowest readily accessible temperatures. The
extracted values of intervalley scattering time and val-
ley splitting are in good agreement with those previously
obtained at higher densities using different methods.
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