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ABSTRACT

We investigate static non-abelian black hole solutions of anti-de Sitter Einstein-Yang-

Mills-Dilaton gravity, which is obtained as a consistent truncation of five-dimensional maxi-

mal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations

of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The

associated first-order equations admit an explicit solution supported by a non-abelian SU(2)

gauge potential, which has a logarithmically growing mass term. In an extremal limit the

horizon geometry becomes AdS2×S3. If the dilaton is also excited, the equations of motion

cannot easily be solved explicitly, but we obtain the asymptotic form of the more gen-

eral non-abelian black holes in this case. An alternative consistent truncation, in which the

Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This

allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain

walls). These solutions may be generalised to dimensions other than five.

http://arxiv.org/abs/0908.0131v2


Explicit analytic solutions for non-abelian black hole or soliton solutions of (gauged)

supergravity theories are rare. The first such example was that of the Chamseddine-Volkov

BPS monopole [1] of four-dimensional N = 4 gauged supergravity. Its type IIB embedding

can be interpreted as D5-branes wrapped on S2, and the D = 4, N = 1 dual field theory

interpretation was given in [2]. This gravitating BPS soliton is supported both by the SU(2)

gauge field and a scalar field. The ground state of this supergravity truncation does not

have a constant scalar and so there is no AdS4 vacuum. (For work on non-abelian BPS

black holes and Dirac-‘t Hooft type monopoles in D = 4, N = 2 ungauged supergravity, see

[3] and references therein.)

Numerical results, which provide evidence for the existence of regular BPS monopole

solutions in D = 5, N = 4 gauged supergravity, were presented in [4]. The lift to type IIB

superstring theory was interpreted as D5-branes wrapped on S3, and the dualD = 3, N = 1

field theory interpretation was given in [2]. (These latter results can also be interpreted as

those of D = 7, N = 2 gauged supergravity and its lifts to type IIB and M-theory, analysed

earlier in [5]. See also the review [6] and references therein.) Again these gravitating BPS

solitons are supported both by the SU(2) gauge field and a scalar field, and thus are not

asymptotic to AdS5. (For further numerical analysis of black hole and soliton solutions

of D = 5, N = 4 gauged supergravityi, see [7] and references therein. Non-abelian BPS

solutions in five-dimensional N = 2 gauged supergravity have been discussed recently in

[8].)

It is believed that maximal (N = 8) gauged supergravity in D = 5 can be obtained from

a Kaluza-Klein reduction of ten-dimensional type IIB supergravity on S5. The only com-

plete demonstrations so far are for the consistency of the maximal abelian U(1)3 truncation

[9], the N = 4 gauged SU(2) × U(1) truncation [10], the scalar truncation in [11, 12] and

the SO(6) truncation [13]. The form of the full metric reduction ansatz was conjectured in

[14].

Non-abelian solutions in any of the five-dimensional gauged supergravities that have a

known embedding in type IIB supergravity are of particular interest because they can be

given a ten-dimensional interpretation within string theory. We can find an exact solution

in the SU(2) × U(1) gauged theory, whose type IIB embedding is given in [10], in which

the SU(2) Yang-Mills fields carry a magnetic charge. Unfortunately, however, the BPS

condition implies that the five-dimensional metric has the wrong signature.

In this paper we consider static non-abelian black hole solutions of five-dimensional

maximal (N = 8) gauged supergravity. We present a consistent truncation of this theory
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whose bosonic sector comprises gravity, SU(2)×SU(2) gauge fields, and a scalar field whose

potential has an AdS5 minimum. A further consistent truncation to just an SU(2) gauge

symmetry, with a fixed cosmological constant (related to the gauge coupling), results in anti-

de Sitter Einstein-Yang-Mills gravity. We show that with the assumption of a spherically-

symmetric ansatz for the metric and SU(2) Yang-Mills potentials, the field equations for

this truncated system may be derived from a superpotential, and hence we can obtain

first-order equations of motion. These give rise to an explicit SU(2) black hole solution

which is asymptotic to AdS5, but which has a logarithimically divergent mass term as a

consequence of the non-vanishing (constant) SU(2) gauge potential. This solution was in

fact obtained previously in [15].1 We find that it admits an extremal limit, for which the

SU(2) gauge-potential remains non-vanishing, and the horizon has the geometry AdS2×S2.

These results are intriguing, since the solutions have an embedding into D = 5 maximal

gauged supregravity, and hence admit a further lift to type IIB string theory.

Although one may expect that with a spherically-symmetric ansatz the more general

system with SU(2) × SU(2) gauge fields and a dilatonic scalar should also admit a de-

scription in terms of a superpotential, we have not succeeded in finding it in this case. We

can, nevertheless, directly study the second-order equations of motion, and investigate the

asymptotic form for the more general solutions with the additional “scalar charge.” We

find evidence that these non-abelian Yang-Mills solutions again describe black holes, albeit

again with logarithmically divergent mass.

We also find wormhole solutions of both D = 4 and D = 5 maximal gauged supergravi-

ties. These are static neutral domain-wall solutions, which are asympotic to AdS4 and AdS5

respectively. However, in the interior a scalar field diverges. We obtain these solutions by

finding a superpotential, and then solving the assoicated first-order equations of motion.

However, these solutions do not have supersymmetric limits.

We start with the SO(6) truncation of D = 5, N = 8 gauged supergravity. It can be

obtained from the S5 reduction of the SL(2,R)-singlet sector of type IIB supergavity, for

which the only bosonic fields in ten dimensions are the metric and the self-dual 5-form.

The full non-linear ansatz was given in [13]. The five-dimensional theory consists of the

metric, twenty scalars, which are in the 20′ respresentation of SO(6) and are represented

by the symmetric unimodular tensor Tij , with i being a 6 of SO(6), together with 15 SO(6)

Yang-Mills gauge fields, represented by the 1-form potentials Aij , antisymmetric in i and

1Other recent works on non-abelian solutions in various other Einstein-Yang-Mills systems can be found

in [16, 17, 18, 19].
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j. The five-dimensional Lagrangian is given by [13]

L5 = R ∗1l− 1
4T

−1
ij ∗DTjk ∧ T−1

kℓ DTℓi − 1
4T

−1
ik T−1

jℓ ∗F ij ∧ F kℓ − V ∗1l (1)

− 1
48 ǫi1···i6

(
F i1i2 F i3i4 Ai5i6 − g F i1i2 Ai3i4 Ai5j Aji6 + 2

5g
2Ai1i2 Ai3j Aji4 Ai5kAki6

)
,

where the potential V is given by

V = 1
2g

2
(
2Tij Tij − (Tii)

2
)
. (2)

The Yang-Mills field strength F ij and covariant derivative DTij are defined by

F ij = dAij + gAik ∧Akj , DTij = dTij + g AikTkj + gAjkTik . (3)

We now perform a further truncation of SO(6) to SU(2)× SU(2), by setting

A12 = A3 , A23 = A1 , A31 = A2 , A45 = Ã3 , A56 = Ã1 , A64 = Ã2

T11 = T22 = T33 = X , T44 = T55 = T66 = X−1 , (4)

with the remaining fields vanishing. This truncation is consistent provided that the addi-

tional constraint

F i ∧ F̃ j = 0 (5)

is imposed, where

F i = dAi + 1
2gǫ

ijkAj ∧Ak , F̃ i = dÃi + 1
2gǫ

ijkÃj ∧ Ãk . (6)

The fields satisfy equations of motion that can be derived from the Lagrangian

L = R∗1l− 3
2X

−2∗dX ∧ dX − 1
2X

−2∗F i ∧ F i − 1
2X

2∗F̃ i ∧ F̃ i

+3
2g

2(X2 +X−2 + 6) , (7)

together with the constaint (5).

We may now look for spherically-symmetric static solutions, by making the ansatz

ds25 = −α2dt2 + dρ2 + 1
4β

2(σ21 + σ22 + σ23) ,

Ai = g−1γσi , Ãi = g−1γ̃σi , (8)

where the functions α, β, γ, γ̃ and the scalar X are taken to depend only on the radial

coordinate ρ. The σi are SU(2) left-invariant 1-forms, satisfying dσi = −1
2ǫ

ijkσj ∧σk. Note
that the metric ansatz is invariant under SO(4) ∼ SU(2)L × SU(2)R rotations of the S3

level surfaces. The Yang-Mills potentials, and field strengths, are invariant under SU(2)L,
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whilst they rotate covariantly under SU(2)R. The energy-momentum tensor is therefore

invariant under the full SO(4) action.

The Yang-Mills equations imply that

(αβγ̇ e−φ)̇− 4α

β
(γ γ − 1)(2γ − 1)e−φ = 0 ,

(αβ ˙̃γ eφ)̇− 4α

β
γ̃ (γ̃ − 1)(2γ̃ − 1)eφ = 0 , (9)

where we have defined

X ≡ e
1
2φ , (10)

and a dot denotes a derivative with respect to ρ. The scalar equation of motion is

(αβ3φ̇)̇

2αβ3
= e−φ

(
g2 − 4γ̇2

g2β2
− 16γ2(γ − 1)2

g2β4

)
− eφ

(
g2 − 4 ˙̃γ2

g2β2
− 16γ̃2(γ̃ − 1)2

g2β4

)
, (11)

and the Einstein equations are given by

α̈

α
+
3α̇β̇

αβ
=

( 2γ̇2

g2β2
+
8γ2(γ−1)2

g2β4

)
e−φ+

( 2 ˙̃γ2

g2β2
+
8γ̃2(γ̃−1)2

g2β4

)
eφ+g2(coshφ+3) ,

α̈

α
+
3β̈

β
= −

( 4γ̇2

g2β2
− 8γ2(γ−1)2

g2β4

)
e−φ−

( 4 ˙̃γ2

g2β2
− 8γ̃2(γ̃−1)2

g2β4

)
eφ+g2(cosh φ+3)+ 3

8 φ̇
2 ,

2

β2
− α̇β̇

αβ
− 2β̇2

β2
− β̈

β
=

8γ2(γ−1)2

g2β4
e−φ+

8γ̃2(γ̃−1)2

g2β4
eφ−g2(cosh φ+3) , (12)

The constraint (5) implies that

γ̇γ̃(γ̃ − 1) + ˙̃γγ(γ − 1) = 0 . (13)

From this, it follows that

γγ̃ = c(γ − 1)(γ̃ − 1) , (14)

where c is an integration constant. Combining (14) and (9), we obtain the first-order

constraint

β2 [c− (c− 1)γ] φ̇ γ̇ = (c− 1)[4γ2(γ − 1)2 − β2 γ̇2] . (15)

Finding the general solution to the equations of motion is likely to be very difficult. We

can, however, obtain explicit exact solutions in some special cases.

We first consider the case where the Yang-Mills fields are non-vanishing, and the inte-

gration constant c in (14) is chosen to be c = 1. Equation (15) then implies that either

γ̇ = 0 or φ̇ = 0. For γ̇ = 0, it follows from (14) that γ̃ = 1− γ, and from (9) that the only

non-trivial solution is γ = 1
2 = γ̃, in which case the scalar equation (11) implies that we
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can also set φ = 0. The reduced equations of motion can now be derived from an effective

Lagrangian L = T − U with

T =
6α′β′

αβ
+

6β′2

β2
,

U = − 3
32α

2β2
(
− 1

2g2
+ β2 + 2g2β4

)
, (16)

where a prime denotes a derivative with respect to η, defined by dρ = 1
8αβ

3dη.

Expressing the kinetic terms T as

T = 1
2gij

dXi

dη

dXj

dη
, (17)

whereXi = (α, β), we find that the potential U can be written in terms of a “superpotential”

W as

U = −1
2g

ij ∂W

∂Xi

∂W

∂Xj
, (18)

where

W = 3
4αβ

√

−M + β2 + g2β4 − log(gβ)

g2
. (19)

The parameterM is an integration constant, which can be chosen arbitrarily. The existence

of the superpotential implies that the second-order equations of motion are satisfied if the

first-order equations dXi/dη = gij∂W/(∂Xj) hold. Thus we obtain the equations

α̇ =
α(−1 + 2g2M + 2g4β4 + 2 log(gβ))

2g2β2
√

−M + β2 + g2β4 − g−2 log(gβ)

β̇ = β−1
√

−M + β2 + g2β4 − g−2 log(gβ) . (20)

These can be solved, giving

ds2 = −fdt2 + dr2

f
+ 1

4r
2(σ21 + σ22 + σ23) ,

Ai =
1

2g
σi = Ãi , f = 1 + g2r2 − M + g−2 log(gr)

r2
. (21)

Note that because the superpotential W itself has the arbitrary constant of integration M ,

the solution (21) of the first-order equations is in fact the most general solution also of the

original second-order field equations. The solution describes an SU(2) Yang-Mills black

hole with logarithmically divergent mass. The horizon is located at the largest root of the

function f .

The solution has an extremal limit, for which f(r) and f ′(r) vanish simultaneously at

r = r0, when

M =
1 +

√
5 + log(8(7 + 3

√
5))

8g2
, (22)
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and

g2r20 = 1
4 (
√
5− 1) . (23)

The near-horizon geometry is then a direct product of AdS2×S3, with the metric given by

ds2 = α2ds22 + β2dΩ2
3 ,

α2 =
5−

√
5

40g2
, β2 =

√
5− 1

4g2
. (24)

It is worth pointing out that it is the Yang-Mills fields that are responsible for the occurrence

of the logarithmic term in the metric (21). If the Yang-Mills fields are instead set to zero, the

logarithmic term disappears and the solution becomes the AdS-Schwarzschild black hole.

That non-supersymmetric solutions such as the Schwarzschild black hole can be obtained

from first-order equations derived from a superpotential was previously observed in [21].

The solution can be lifted back to D = 10, by using the reduction ansatz given in [13].

The ten-dimensional metric is given by

dŝ210 = ds25 +
1

g2

{
[dµ1 +

1
2(µ2σ3 − µ3σ2)]

2 + [dµ2 +
1
2(µ3σ1 − µ1σ3)]

2

+[dµ3 +
1
2(µ1σ2 − µ2σ1)]

2 + [dµ4 +
1
2(µ5σ3 − µ6σ2)]

2

+[dµ5 +
1
2(µ6σ1 − µ4σ3)]

2 + [dµ6 +
1
2(µ4σ2 − µ5σ1)]

2
}
, (25)

where µiµi = 1. The RR 5-form field takes a somewhat involved structure, supported by

the five-sphere coordinates; it can be readily derived from the expressions given in [13].

Thus the Type IIB solution is supported by the RR 5-form with a specific non-abelian

deformation of the five-sphere coordinates, resulting in an asymptotically AdS5 space-time

supported by D3-brane fluxes. This structure is different from those of [22, 6] where a

five-brane wraps a 2-cycle in the internal Ricci-flat space, resulting in a D = 4 N = 1 dual

field theory on the world-volume of the five-brane.

We may also consider the more general case of non-abelian solutions where the dilatonic

scalar is also excited. For simplicity, we consider only the case for γ = γ̃ = 1
2 , so that the

Yang-Mills equations are trivially satisfied. The equations of motion for the spherically-

symmetric ansatz can then be derived from the Lagrangian L = T − U , with

T =
6α′β′

αβ
+

6β′2

β2
− 3

8φ
′2 ,

U = − 3
32α

2β2
(
− 1

2g2
cosh φ+ 1

2g
2β4 coshφ+ β2 + 3

2g
2β4

)
. (26)

Reading off gij using (17), and then expressing U in terms of a superpotential W as in (18),

we find that W is determined by the equation

β
∂Ŵ 2

∂β
− 8

(∂Ŵ
∂φ

)2
= 3g2β4 + 2β2 +

(
g2β4 − 1

g2

)
cosh φ , (27)
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where

W (α, β, φ) =
3αβ

4
Ŵ (β, φ) . (28)

We have not been able to solve this equation explicitly.

Although we are unable to obtain the exact solution, we may nevertheless consider its

large r expansion, which we find to be given by

ds2 = −N2dt2 +
dr2

f
+ 1

4r
2(σ21 + σ22 + σ23) , Ai =

1

2g
σi = Ãi ,

N2 = 1 + g2r2 − ξ − 1

g2r2
+
q2(8ξ − 3)

32g2r6
− q2(40ξ − 1)

800g4r8

+
q2
(
1200ξ2 − 60(13 + 20g4q2)ξ − 13 + 550g4q2

)

9600g6r10

−
q2
(
4492320ξ2 − 56(56713 + 25200g4q2)ξ + 3(63461 + 64400g4q2)

)

39513600g8r12
+ · · · ,

f

N2
= 1 +

q2

r4
+
q2(24ξ − 1)

32g4r8
− q2(120ξ − 13)

225g6r10

+
q2
(
2016ξ2 − 48(3 + 8g4q2)ξ − 1 + 160g4q2

)

3072g8r12
+ · · · ,

sinh 1
2φ =

q

r2

[
1 +

ξ

4g4r4
− 12ξ − 1

72g6r6
+

288ξ2 − 128g4q2ξ − 1 + 32g4q2

2048g8

631200ξ2 − 40(8053 + 3600g4q2)ξ + 9(4303 + 4400g4q2)

2880000g10r10
1

82944000g12r12

(
8100000ξ3 + 28800(256 − 285g4q2)ξ2

+15(−508631 + 141600g4q2 + 172800g8q4)ξ

1093091 + 18000g4q2 − 756000g8q4
)
+ · · ·

]
, (29)

where ξ is given by

ξ = 1 + g2M + log(gr) . (30)

Although we have not obtained the exact solution, the form of the large-r expansion indi-

cates that it describes a black hole, at least provided that q is sufficiently small or that M is

sufficiently large. To see this, we note that for the case q = 0, the solution reduces to the ex-

act one that we discussed earlier. The horizon is located at r+, whereM = r2++r4+− log r+.

(Here we set g = 1 for simplicity.) With q 6= 0, the horizon is shifted to r′+ where r′+ is

defined by N(r′+) = 0. It is straightforward to see that

r′+ − r+ = O
( q2
r3+

)
. (31)

We may alternatively consider a special case where the Yang-Mills fields are set to zero,

so that the solution then involves only the metric and a scalar field. The scalar potential
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fits into the general pattern discussed in the appendix. Following the discussion in the

appendix, we find that there exists a domain wall solution

ds25 = −(k + g2r2)dt2 +
dr2

(k + g2r2)(1 + q2

r4
)
+ r2dΩ2

3,k ,

sinh 1
2φ =

q

r2
, (32)

where k = 1, 0 or = −1 for spherical, flat or hyperbolic spatial sections. This solution can

also be lifted back to D = 10, giving rise to a solution of type IIB supergravity, using the

results of [13]:

dŝ210 =
(
Xc2 +

s2

X

)2{
ds25 + g−2

(
dθ2 +

c2

X2c2 + s2
dΩ2

2 +
s2

s2X−2 + c2
dΩ̃2

2

)}
,

Ĝ(5) = g(X2c2 +X−2s2 + 3) ǫ(5) −
2sc

g
X−1 ∗dX ∧ dθ ,

X =
q

r2
+

√
1 +

q2

r4
, c = cos θ , s = sin θ , (33)

where the self-dual 5-form is given by F̂(5) = Ĝ(5) + ∗̂Ĝ(5).

The domain wall solution (32) is massless and has a naked singularity at r = 0. As we

have shown in the appendix for general class of such a domain walls in arbitrary dimensions,

we can also add a mass term. The exact form of the solution is unknown, but the large r

expansion can be obtained straightforwardly. Here we present the solution in higher orders:

N2 = k + g2r2 − M

r2
+
Mq2

4r6
− kMq2

20g2r8
+
Mq2(4k2 + 15g2M − 15g4q2)

120g4r10
+ · · · ,

f

N2
= 1 +

q2

r4
+

3Mq2

4g2r8
− 8kMq2

15g4r10
+ · · · ,

sinh 1
2φ = 1 +

M

4g2r4
− kM

6g4r6
+
M(8k2 + 9g2M − 4g4q2)

64g6r8

−kM(120 + 263g2M − 60g4q2)

1200g8r10
+ · · · . (34)

As in our previous discussion of the non-abelian black holes, since the q = 0 solution here

describes the Schwarzschild-AdS black hole, and the effect of the q parameter is to modify

terms at higher orders in 1/r, it follows that the solution with q 6= 0 will still describe a

black hole, at least if q is sufficiently small.

In summary, we have in this paper studied the system of equations that arises from

a consistent trunction of five-dimensional maximal gauged supergravity, in which just the

metric, a dilatonic scalar, and the gauge fields of SU(2)× SU(2) are retained. Consistency

requires that the gauge fields satisfy the constraint (5). Our focus has been on seeking

spherically-symmetric solutions to this system. In the two special cases where either the
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dilaton is set to zero and a further truncation to SU(2) gauge symmetry is performed,

or where the dilaton is retained but the gauge fields are set to zero, we have been able

to describe the system in terms of a superpotential. This allows us to obtain first-order

equations of motion, which can be straightforwardly solved analytically. The first of these

cases leads to a non-abelian black-hole solution, with logarithmically-diverging mass, which

was first obtained in [15]. The second case gives rise to a spherically-symmetric domain wall

solution. In the more general situation where both the Yang-Mills fields and the dilaton

are excited, we have not succeeded in describing the system in terms of a superpotential.

Nevertheless, we have studied the asymptotic behaviour of spherically-symmetric solutions,

and found that more general non-abelian black holes arise here also. This discussion is

extended, in an appendix, to gravity plus dilaton systems in arbitrary dimensions.
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A A spherically symmetric domain wall solution

In this appendix, we consider a general class of D-dimensional Lagrangians, given by

LD = e(R − 1
2(∂φ)

2 − V ) ,

V = −(D − 2)g2
[
D − 2 + cosh

(√2(D − 3)

D − 2
φ
)]
. (35)

The scalar potential can be expressed in terms of a superpotential w as

V =
(dw
dφ

)2
− D − 1

2(D − 2)
w2 , w =

√
2 (D − 2)g cosh

(√ D − 3

2(D − 2)
φ
)
. (36)

Consider the spherically-symmetric ansatz

ds2 = −α2dt2 + dρ2 + β2dΩ2
n,k , (37)

where n = D − 2, and k = −1, 1 and 0, corresponding to hyperbolic, flat and sphere. The

scalar and Einstein equations of motion are given by

(αβnφ̇)̇

αβn
− dV

dφ
= 0 ,
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α̈

α
+
n α̇β̇

αβ
+
V

n
= 0 ,

− α̈
α
− n β̈

β
− 1

2
φ̇2 − V

n
= 0 ,

(n− 1)k

β2
− α̇β̇

αβ
− (n− 1)β̇2

β2
− β̈

β
− V

n
= 0 . (38)

These can be derived from the Lagrangian L = T − U , where the kinetic and potential

terms are given by

T =
2(D − 2)α′β′

αβ
+

(D − 2)(D − 3)β′2

β2
− 1

2φ
′2 ,

U = α2β2(D−3)(β2V − (D − 2)(D − 3)k) . (39)

Here, a prime denotes a derivative with respect to a new radial coordinate η, which is

defined by dη = αβndρ. We find that with U given by (39), there exists a superpotential

W , à la (18), given by

W = 2(D − 2)αβD−3
√
k + g2β2 cosh

(√ D − 3

2(D − 2)
φ
)
. (40)

The resulting first-order equations of motion are

α̇ =
g2αβ cosh

(√
D−3

2(D−2) φ
)

√
k + g2β2

, β̇ =
√
k + g2β2 cosh

(√ D − 3

2(D − 2)
φ
)
,

φ̇ = −
√

2(D − 3)(D − 2)

β

√
k + g2β2 sinh

(√ D − 3

2(D − 2)
φ
)
. (41)

Their solution gives

ds2D = −(k + g2r2)dt2 +
dr2

(k + g2r2)
(
1 + q2

r2(D−3)

) + r2dΩ2
D−2,ǫ ,

sinh
(√ D − 3

2(D − 2)
φ
)
=

q

rD−3
. (42)

The supersymmetry transformation rules for such a system are given by

δψM = DMε−
1

2
√
2 (D − 2)

w ε , δλ =
1

2
√
2
∂MφΓ

Mε+
1

2

dw

dφ
ε . (43)

It follows from δλ = 0 that the existence of supersymmetry would imply that

φ̇ = ±
√

2(D − 3)(D − 2) g sinh
(√ D − 3

2(D − 2)
φ
)
. (44)

Comparing this to the last equation in (41), the only solution with supersymmetry is when

k = 0. In fact it is easy to see that (43) cannot be supersymmetric for k 6= 0. If it were,

11



there would be a smooth limit when g = 0, and this would lead to a solution supported by

the metric and a free scalar only, which could not possibly be supersymmetric.

The scalar potential for D = 4 occurs in four-dimensional N = 4, SO(4) gauged super-

gravity. The explicit reduction ansatz that gives this theory from D = 11 supergravity was

found in[23]. We can use the ansatz to lift the (k = 1) solution back to D = 11, giving

dŝ211 = ∆
1
3

{
− (1 + g2r2)dt2 +

dr2

(1 + g2r2)(1 + q2

r2
)
+ r2dΩ2

2

+
4

g2

(
dξ2 +

c2

c2X2 + s2
dΩ2

3 +
s2

s2X−2 + c2
dΩ̃2

3

)}
,

F̂(4) = −g(2 +X2c2 +X−2s2)ǫ(4) −
4sc

g
X−1∗dX ∧ dξ ,

∆ = (c2X2 + s2)(s2X−2 + c2) , X =
q

r
+

√
1 +

q2

r2
, (45)

The domain wall solutions we obtained so far have zero mass, and a naked singularity. It

is possible to add mass term, such that the second-order equations of motion (but no longer

the first-order equations (41) following from the superpotential (40)) are still satisfied. The

solution then develops a horizon. We are unable to find the exact solution for this case.

However, the large r expansion of the solution can be obtained, and is given by

ds2D = −N2dt2 +
dr2

f
+ r2dΩ2

D−2,k ,

N2 = k + g2r2 − M

rD−3
+

(D − 1)Mq2

2(3D − 7)r3(D−3)
+ · · · ,

f

N2
= 1 +

q2

r2(D−3)
+

4(D − 2)(D − 3)Mq2

(D − 1)(3D − 7)r3D−7
+ · · ·

sinh
(√ D − 3

2(D − 2)
φ
)
=

q

rD−3

(
1 +

(D − 3)M

2(D − 1)g2rD−1
+ · · ·

)
. (46)

For vanishing q, the solution becomes the Schwarzschild AdS black hole, whilst for vanishing

M , it reduces to the singular domain wall described earlier. Since the effect of introducing

q is to modify the behaviour only at higher inverse powers of r, it is clear that for large

enough M or small enough non-zero q, the solution still describes a black hole.
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[9] M. Cvetič, M.J. Duff, P. Hoxha, James T. Liu, H. Lü, J.X. Lu, R. Martinez-Acosta,
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