
A POLYNOMIAL TIME APPROXIMATION SCHEME FOR
GENERAL MULTIPROCESSOR JOB SCHEDULING∗

JIANER CHEN† AND ANTONIO MIRANDA‡

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 1–17

Abstract. Recently, there have been considerable interests in the multiprocessor job scheduling
problem, in which a job can be processed in parallel on one of several alternative subsets of processors.
In this paper, a polynomial time approximation scheme is presented for the problem in which the
number of processors in the system is a fixed constant. This result is the best possible because of
the strong NP-hardness of the problem and is a significant improvement over the past results: the
best previous result was an approximation algorithm of ratio 7/6 + ε for 3-processor systems based
on Goemans’s algorithm for a restricted version of the problem.

Key words. job scheduling, approximation algorithm, polynomial time approximation scheme,
multiprocessor processing

AMS subject classifications. 68Q20, 68Q25, 90B35, 90C27, 90C39

PII. S0097539798348110

1. Introduction. One of the assumptions made in classical scheduling theory is
that a job is always executed by one processor at a time. With advances in parallel
algorithms, this assumption may no longer be valid for job systems. For example, in
semiconductor circuit design workforce planning, a design project is to be processed
by a group of people. The project contains n jobs, and each job can be worked
on by one of a set of alternatives, where each alternative consists of one or more
persons in the group working simultaneously on the particular job. The processing
time of each job depends on the subgroup of people being assigned to handle the
job. Note that the same person may belong to several different subgroups. Now the
question is how we can schedule the jobs so that the project can be finished as early
as possible. Other applications include (i) the berth allocation problem [23], where
a large vessel may occupy several berths for loading and unloading, (ii) diagnosable
microprocessor systems [22], where a job must be performed on parallel processors in
order to detect faults, (iii) manufacturing, where a job may need machines, tools, and
people simultaneously (this gives an example for a system in which processors may
have different types), and (iv) scheduling a sequence of meetings where each meeting
requires a certain group of people [11]. In the scheduling literature [17], these kinds
of problems are called multiprocessor job scheduling problems.

Among the others, two types of multiprocessor job scheduling problems have
been extensively studied [7, 24]. The first type is the Pm|fix|Cmax problem, in which
the subset of processors and the processing time for parallel processing each job are
fixed. The second type is a more general version, the Pm|set|Cmax problem, in which
each job may have a number of alternative processing modes and each processing

∗Received by the editors December 2, 1998; accepted for publication (in revised form) December
22, 2000; published electronically May 31, 2001. A preliminary version of this paper appeared in
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC’99), Atlanta,
1999, pp. 418–427.

http://www.siam.org/journals/sicomp/31-1/34811.html
†Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

(chen@cs.tamu.edu). This author was supported in part by the National Science Foundation un-
der grants CCR-9613805 and CCR-0000206.

‡Department of Computer Science, Bucknell University, Lewisburg, PA 17837 (amiranda@eg.
bucknell.edu).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/231872006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 JIANER CHEN AND ANTONIO MIRANDA

mode specifies a subset of processors and the job processing time on that particular
processor subset. The objective for both problems is to construct a scheduling of
minimum makespan on the m-processor system for a given list of jobs. The jobs are
supposed to be nonpreemptive.

Approximability of the multiprocessor job scheduling problems has been stud-
ied. The P2|set|Cmax problem is a generalized version of the classical job scheduling
problem on a 2-processor system [13]; thus it is NP-hard. Hoogeveen, van de Velde,
and Veltman [18] showed that the P3|fix|Cmax problem (thus also the P3|set|Cmax

problem) is NP-hard in the strong sense; thus it does not have a fully polynomial
time approximation scheme unless P = NP (see also [4, 5]). Blazewicz et al. [4]
developed a polynomial time approximation algorithm of ratio 4/3 for the problem
P3|fix|Cmax, which was improved later by Dell’Olmo, Speranza, and Tuza [10], who
gave a polynomial time approximation algorithm of ratio 5/4 for the same problem.
Both algorithms are based on the study of a special type of schedulings called normal
schedulings. Goemans [14] further improved the algorithms by giving a polynomial
time approximation algorithm of ratio 7/6 for the P3|fix|Cmax problem. More re-
cently, Amoura et al. [1] developed a polynomial time approximation scheme for the
problem Pm|fix|Cmax for every fixed integer m.

Approximation algorithms for the Pm|set|Cmax problem were not as successful as
that for the Pm|fix|Cmax problem. Bianco et al. [3] presented a polynomial time
approximation algorithm for the Pm|set|Cmax problem whose approximation ratio is
bounded by m. Chen and Lee [8] improved their algorithm by giving a polynomial
time approximation algorithm for the Pm|set|Cmax problem with an approximation
ratio m/2 + ε. Miranda [25] showed that the problem P3|set|Cmax can be approx-
imated in polynomial time with a ratio 7/6 + ε. Before the present paper, it was
unknown whether there is a polynomial time approximation algorithm with ratio c
for the problem Pm|set|Cmax, where c is a constant independent of the number m of
processors in the system.

In this paper, we present a polynomial time approximation scheme for the problem
Pm|set|Cmax. Our algorithm combines the techniques developed by Amoura et al.
[1], who split jobs into large jobs and small jobs, and the techniques developed by
Dell’Olmo, Speranza, and Tuza [10] and Goemans [14] on normal schedulings, plus the
standard dynamic programming and scaling techniques. More precisely, based on a
classification of large jobs and small jobs, we introduce the concept of (m, ε)-canonical
schedulings, which can be regarded as a generalization of the normal schedulings. We
show that for any job list, there is an (m, ε)-canonical scheduling whose makespan
is very close to the optimal makespan. Then we show how this (m, ε)-canonical
scheduling can be approximated. Combining these two steps gives us a polynomial
time approximation scheme for the Pm|set|Cmax problem.

Our result is the best possible in the following sense: because the problem
Pm|set|Cmax is NP-hard in the strong sense, it is unlikely that our algorithm can
be further improved to a fully polynomial time approximation scheme [13]. More-
over, the polynomial time approximation scheme cannot be extended to the more
general problem P |set|Cmax, in which the number m of processors in the system is
given as a parameter in the input: it can be shown that there is a constant δ > 0
such that the problem P |set|Cmax has no polynomial time approximation algorithms
whose approximation ratio is bounded by nδ [25].

The paper is organized as follows. Section 2 gives necessary background and
preliminaries for the problem. In section 3 we introduce (m, ε)-canonical schedulings

MULTIPROCESSOR JOB SCHEDULING 3

and study their properties. Section 4 presents the polynomial time approximation
scheme for the problem Pm|set|Cmax and section 5 concludes with some remarks and
further research directions.

2. Preliminaries. We assume readers’ familiarity with the basic concepts in
approximation theory [13], such as approximation algorithms, approximation ratios,
polynomial time approximation schemes, and fully polynomial time approximation
schemes.

The Pm|set|Cmax problem is a scheduling problem minimizing the makespan for
a set of jobs, each of which may have several alternative processing modes. More
formally, an instance J of the problem Pm|set|Cmax is a list of jobs: {J1, J2, . . . , Jn},
where each job Ji is associated with a list of alternative processing modes: Ji =
[Mi1, . . . ,Mipi

]. Each processing mode (or simply mode) Mij is specified by a pair
(Qij , tij), where Qij is a subset of processors in the m-processor system and tij is an
integer indicating the parallel processing time of the job Ji on the processor set Qij .
In case there is no ambiguity, we also say that the processor set Qij is a mode for
the job Ji. For each job Ji = [Mi1, . . . ,Mipi

], where Mij = (Qij , tij), we let mini be
the minimum tij over all j, 1 ≤ j ≤ pi. The value mini will be called the minimum
parallel processing time for the job Ji.

Given a list J = {J1, . . . , Jn} of jobs, a scheduling Γ(J) of J on the m-processor
system consists of two parts: (1) determination of a processing mode for each job
Ji in J and (2) determination of the starting execution time for each job under the
assigned mode so that at any moment, each processor in the system is used for (maybe
parallel) processing at most one job (assuming that the system starts at time τ = 0).
The makespan of the scheduling Γ(J) is the latest finishing time of a job in J under
the scheduling Γ(J). Let Opt(J) denote the minimum makespan over all schedulings
for J . The Pm|set|Cmax problem is for a given instance J to construct a scheduling
of makespan Opt(J) for J .

Let Pm be the set of the m processors in the m-processor system. A collection
{P ′

1, . . . , P
′
k} of k nonempty subsets of Pm is a k-partition of Pm if Pm =

⋃k
i=1 P

′
i and

P ′
i ∩ P ′

j = ∅ for all i �= j. A collection of subsets of Pm is a partition of Pm if it is
a k-partition for some integer k ≥ 1. The total number Bm of different partitions of
the set Pm is called the mth Bell number [16]. It can be proved easily by induction
that Bm ≤ m!.

Another combinatorial fact we need for analysis of our scheduling algorithm is
the “cut-index” in a nonincreasing sequence of integers.

Lemma 2.1. Let T = {t1, t2, . . . , tn} be a nonincreasing sequence of integers, let
m ≥ 2 be a fixed integer, and let ε > 0 be an arbitrary real number. Then there is an
index j0 (with respect to m and ε) such that

(1) j0 = (3mBm + 1)k, where k ≤ �m/ε� is an integer and
(2) for any subset T ′ of at most 3j0mBm integers tq in T with q > j0, we have

∑
tq∈T ′

tq ≤ (ε/m)

n∑
i=1

ti.

Proof. To simplify expressions, let bm = 3mBm + 1. Decompose the sum t1 +
t2 + · · ·+ tn into subsums

A1 = t1 + · · ·+ tbm ,

A2 = tbm+1 + · · ·+ tb2m ,

4 JIANER CHEN AND ANTONIO MIRANDA

· · · · · ·
Aj = tbj−1

m +1 + · · ·+ tbjm ,

· · · · · ·
Ah = tbh−1

m +1 + · · ·+ tn,

where h = �log n/ log bm�.
Since

∑h
j=1Aj =

∑n
i=1 ti, there are at most �m/ε� subsums Aj larger than

(ε/m)
∑n

i=1 ti. Let Ak+1 be the first subsum such that Ak+1 ≤ (ε/m)
∑n

i=1 ti; then
k ≤ �m/ε�.

Let j0 = bkm = (3mBm + 1)k. Since the sum of the first bk+1
m − bkm = 3j0mBm

integers tq in T with q > j0 = bkm is bounded by (ε/m)
∑n

i=1 ti,

Ak+1 = tbkm+1 + · · ·+ tbk+1
m

≤ (ε/m)

n∑
i=1

ti,

and the sequence T = {t1, t2, . . . , tn} is nonincreasing, we conclude that for any subset
T ′ of T of at most 3j0mBm integers tq with q > j0, we must have

∑
tq∈T ′

tq ≤ (ε/m)

n∑
i=1

ti.

This completes the proof.
For the nonincreasing sequence T of integers, we will denote by jm,ε the smallest

index that satisfies conditions (1) and (2) in Lemma 2.1. The index jm,ε will be called
the cut-index for the sequence T .

3. On (m, ε)-canonical schedulings. In this section, we first assume that the
mode assignment for each job in the instance J is decided and discuss how we schedule
the jobs in J under the mode assignment to the processor set Pm. By this assumption,
the job list J is actually an instance for the Pm|fix|Cmax problem (recall that the
Pm|fix|Cmax problem is the problem Pm|set|Cmax with the restriction that every job
in an instance has only one processing mode).

Let J = {J1, . . . , Jn} be an instance for the Pm|fix|Cmax problem, where each
job Ji requires a fixed set Qi of processors for parallel execution with processing time
ti for i = 1, 2, . . . , n. Without loss of generality, assume that the processing time
sequence T = {t1, t2, . . . , tn} is nonincreasing.

For the fixed numberm of processors in the system and for an arbitrarily given real
number ε > 0, let jm,ε be the cut-index for the sequence T as defined in Lemma 2.1.
That is, jm,ε = (3mBm + 1)k, where k is an integer bounded by �m/ε�, and for any
subset T ′ of at most 3jm,εmBm integers tq in T with q > jm,ε, we have

∑
tq∈T ′ tq ≤

(ε/m)
∑n

i=1 ti. We split the job set J into two subsets

JL = {Ji | i ≤ jm,ε}, JS = {Ji | i > jm,ε}.(3.1)

The jobs in JL will be called large jobs and the jobs in JS will be called small jobs.
Let Γ(J) be a scheduling for the job set J . Consider the nondecreasing sequence

{τ1, τ2, . . . , τh} of integers, where τ1 = 0, τh = +∞, h = 2jm,ε + 2, and τi, 1 < i < h,
are the starting or finishing times of the jm,ε large jobs in Γ(J). A small job block
χ in Γ(J) consists of a subset P ′ ⊆ Pm of processors and a time interval [τp, τp+1],

MULTIPROCESSOR JOB SCHEDULING 5

1 ≤ p ≤ h− 1, such that the subset Pm − P ′ of processors are exactly those that are
executing large jobs in the time interval [τp, τp+1]. The value τp+1 − τp will be called
the height and the processor set P ′ will be called the type of the small job block χ.

Therefore, the subset P ′ of processors associated with the small job block χ are
those processors that are either idle or used for executing small jobs in the time
interval [τp, τp+1]. Note that the small job block χ can be of height 0 when τp = τp+1.
The small job block of time interval [τh−1,+∞], where τh−1 is the latest finish time
of a large job, will be called the “last small job block.” Note that the last small job
block has type Pm.

Let χ be a small job block associated with a processor set P ′ and a time interval
[τp, τp+1]. The small job block at any time moment τ in the time interval [τp, τp+1]
can be characterized uniquely as a collection [Q1, . . . , Qs] of pairwise disjoint subsets
of the processor set P ′ such that at the time τ , for i = 1, . . . , s, all processors in
the subset Qi are used for parallel execution on the same small job (thus, the subset
P ′ −⋃s

i=1Qi is the subset of idle processors at time τ). The collection [Q1, . . . , Qs]
will be called the type of the time moment τ . A layer in the small job block χ is a
maximal time interval [τ ′, τ ′′] in [τp, τp+1] such that all time moments τ between τ ′

and τ ′′ are of the same type. The type of the layer is equal to the type of any time
moment in the layer and the height of the layer is τ ′′ − τ ′.

Let L1 and L2 be two layers in the small job block χ of types [Q1, . . . , Qs] and
[R1, . . . , Rt], respectively. We say that layer L1 covers layer L2 if {R1, . . . , Rt} ⊆
{Q1, . . . , Qs}. In particular, if L1 and L2 are two consecutive layers in the small job
block χ such that layer L2 starts right after layer L1 finishes and L1 covers L2, then
layer L2 is actually a continuation of the layer L1 with some of the small jobs finished.

Definition 3.1. A floor σ in the small job block χ is a sequence {L1, L2, . . . , Lz}
of consecutive layers such that (1) for i = 2, . . . , z, layer Li starts right after layer
Li−1 finishes, and layer Li−1 covers layer Li; and (2) all small jobs interlacing layer
L1 start in layer L1 and all small jobs interlacing layer Lz finish in layer Lz.

An example of a floor is given in Figure 3.1(a). Note that a small job block may
not have any nonempty floor at all, as shown in Figure 3.1(b).

Remark 1. There are a few important properties of floors in a small job block.
Suppose that the layer L1 starts at time τ ′ while layer Lz finishes at time τ

′′. Then
by property (2) in the definition, no small jobs cross the floor boundaries τ ′ and τ ′′.
Therefore, the floor σ can be regarded as a single job that uses the processor set P ′,
starts at time τ ′, and finishes at time τ ′′. The height of the floor σ is defined to be
τ ′′ − τ ′, which is equal to the sum of the heights of the layers L1, . . ., Lz. Second,
since all floors in the small job block χ are for the same processor subset P ′ and
there are no small jobs crossing the starting and finishing times of any floors, the
floors in the same small job block χ can be rearranged in any order but can still fit
into the small job block without exceeding the height of the small job block. Finally,
property (1) in the definition ensures that no matter how the small jobs in a floor
are rearranged, a simple greedy algorithm is sufficient to refit the small jobs into the
floor without exceeding the floor height. The greedy algorithm is based on the idea
of the well-known Graham’s list scheduling algorithm for the classical job scheduling
problem [15].

Definition 3.2. Let J be an instance of the problem Pm|fix|Cmax and let π be
any permutation of the jobs in J . The list scheduling algorithm based on the ordering
π is to schedule each job Ji of mode Qi in J , following the ordering of π, at the earliest
time when the processor subset Qi becomes available.

6 JIANER CHEN AND ANTONIO MIRANDA

L 2

L 3

(b)

L

L

L

L

L

L

1

2

3

4

5

6

χsmall job block

(a)

small job block χ

L 1

floor σ

Fig. 3.1. (a) a floor {L1, L2, L3}; (b) a small job block with no floor.

.

Lemma 3.3. Let Jσ be the set of small jobs in the floor σ. The list scheduling
algorithm based on any ordering π of the jobs in Jσ will always reconstruct the floor
σ.

Proof. Suppose that the first layer in the floor σ is of type [Q1, . . . , Qs]. Every
job in Jσ must have a mode Qi for some i, and no processor subset Qi can become
idle before its final completion time. The jobs of each mode Qi in Jσ can be executed
by the processor subset Qi in any order without changing the completion time of Qi.
Since the list scheduling algorithm starts each job at its earliest possible time (thus
no subset Qi can become idle before its final completion time), the completion time
for each subset Qi will not be changed. Therefore, the list scheduling algorithm will
construct a floor with exactly the same layers.

Definition 3.4. Let [Q1, . . . , Qs] be a partition of the processor subset P
′. We

say that we can assign the type [Q1, . . . , Qs] to a floor σ = {L1, . . . , Lz} if the type of
the layer L1 is a subcollection of {Q1, . . . , Qs}.

It is possible that several different types can be assigned to the same floor as long
as the type of the floor is a subcollection of the assigned floor types. For example, let
[Q1, . . . , Qs] be a partition of the processor subset P ′. If the first layer L1 in a floor
σ is of type [Q3, . . . , Qs], then we can assign either type [Q1, Q2, Q3, . . . , Qs] or type
[Q1 ∪Q2, Q3, . . . , Qs] to the floor σ.

Definition 3.5. A small job block χ is a tower if it is constituted by a sequence
of floors such that we can assign types to the floors so that no two floors in the tower
χ are of the same type.

Note that since each floor type is a partition of the processor subset P ′, a tower
contains at most Bm floors, where Bm ≤ m!, the mth Bell number, is the number of
different partitions of a set of m elements.

In our discussion, we will be concentrating on schedulings of a special form in the
following sense.

Definition 3.6. Let J be an instance of the problem Pm|fix|Cmax, which is
divided into large job set JL and small job set JS as given in (3.1) for a fixed integer
m > 2 and a fixed constant ε > 0. A scheduling Γ(J) of J is (m, ε)-canonical if every

MULTIPROCESSOR JOB SCHEDULING 7

small job block in Γ(J) is a tower.

Remark 2. Note that in an (m, ε)-canonical scheduling, no small jobs cross the
boundary of a tower. Therefore, a tower of height t and associated with a processor
set Q can be simply regarded as a job of mode (Q, t).

We first show that an (m, ε)-canonical scheduling Γ(J) of J can be constructed
by the list scheduling algorithm when large jobs and towers in Γ(J) are given in a
proper order.

Lemma 3.7. Let Γ(J) be an (m, ε)-canonical scheduling for the job set J . Let
π be the sequence of the large jobs and towers in Γ(J), ordered in terms of their
starting times in Γ(J). Then the list scheduling algorithm based on the ordering π,
which regards each tower as a single job, constructs a scheduling of J with makespan
not larger than that of Γ(J).

Proof. Let Ji = {J1, . . . , Ji} be any prefix of the ordered sequence π, where each
Jj is either a large job or a tower. Let Γ(Ji) be the scheduling of Ji obtained from
Γ(J) by removing all large jobs and towers that are not in Ji and let Γ′(Ji) be the
scheduling by the list scheduling algorithm on the jobs in Ji. By induction, it is not
difficult to prove that the completion time of each processor in Γ′(Ji) is not larger than
the completion time of the same processor in Γ(Ji). For Ji = J , this implies that
the makespan of the scheduling constructed by the list scheduling algorithm based
on the ordering π is not larger than the makespan of the (m, ε)-canonical scheduling
Γ(J).

Thus, once the ordering of large jobs and towers is decided, it is easy to construct
a scheduling that is not worse than the given (m, ε)-canonical scheduling. In the
following, we will prove that for any instance J for the problem Pm|fix|Cmax, there is
an (m, ε)-canonical scheduling whose makespan is very close to the optimal makespan.

Theorem 3.8. Let J be an instance for the problem Pm|fix|Cmax. Then for
any ε > 0, there is an (m, ε)-canonical scheduling Γ(J) of J such that the makespan
of Γ(J) is bounded by (1 + ε)Opt(J).

Proof. Let Γ1(J) be an optimal scheduling of makespan Opt(J) for J . We
construct an (m, ε)-canonical scheduling for J based on the optimal scheduling Γ1(J).
Let JL and JS be the set of large jobs and the set of small jobs in J , respectively,
according to the definition in (3.1). Consider a small job block χ in the scheduling
Γ1(J).

Assume that the small job block χ is associated with a processor set P ′ of r
processors, r ≤ m, and a time interval [τp, τp+1]. Let [T1, . . . , Ty] be the list of all
partitions of the processor set P ′, where y = Br ≤ Bm. We divide the layers in the
small job block χ into groups, each corresponding to a partition of P ′, as follows.
A layer of type T ′ is put in the group corresponding to a partition Tj if T ′ is a
subcollection of Tj . Note that a layer type T ′ may be a subcollection of more than
one partition of P ′. In this case, we put the layer arbitrarily into one and only one of
the groups to ensure that each layer belongs to only one group.

For each partition Tj of P
′, we construct a floor frame σj whose type is Tj and

height is equal to the sum of heights of all layers belonging to the group corresponding
to the partition Tj . Note that so far we have not yet actually assigned any small jobs
to any floor frames σ1, . . ., σy. Moreover, since each layer belongs to exactly one of
the groups, it is easy to see that the sum

∑y
j=1 height(σj) of the heights of the floor

frames σ1, . . ., σy is equal to the sum of the heights of all layers in the small job block
χ, which is equal to the height of the small job block χ.

The construction for the floor frames for the last small job block in Γ1(J) is

8 JIANER CHEN AND ANTONIO MIRANDA

slightly different: we group layers only in which not all processors are idle. Thus, the
sum of the heights of all floor frames in the last small job block is equal to Opt(J)−τ0,
where τ0 is the latest finish time for some large job in the scheduling Γ1(J).

After the construction of the floor frames for each small job block in the scheduling
Γ1(J), we assign the small jobs in JS to the floor frames using the following greedy
method. For each small job J that requires a parallel processing by a processor subset
Q, we assign J to an arbitrary floor frame σ in a small job block as long as the floor
frame σ satisfies the following conditions: (1) the type of the floor frame σ contains
the subset Q and (2) adding the job J to σ does not exceed the height of the floor
frame σ (if there are more than one floor frames satisfying these conditions, arbitrarily
pick one of them). Note that we assign a job to a floor frame only when the mode
of the job is contained in the type of the floor frame. Therefore, this assignment will
never leave a “gap” between two jobs in the same floor frame.

The above assignment of small jobs in JS to floor frames stops when none of the
small jobs left in JS can be assigned to any of the floor frames according to the above
rules. Now each floor frame becomes a floor.

For each small job block χ in Γ1(J), let Sχ be the set of floor frames in χ. Since
the height of a resulting floor is not larger than the height of the corresponding floor
frame, the sum of the heights of the floors resulting from the floor frames in Sχ is
not larger than the height of the small job block χ. Therefore, we can put all these
floors into the small job block χ (in an arbitrary order) to make χ a tower. Doing this
for all small job blocks in Γ1(J) gives an (m, ε)-canonical scheduling Γ2(JL ∪J ′

S) for
the job set JL ∪ J ′

S , where J ′
S is the set of small jobs that have been assigned to the

floor frames in the above procedure. The makespan of the scheduling Γ2(JL ∪ J ′
S)

is bounded by Opt(J). Now the only thing left is that we still need to schedule the
small jobs that have not been assigned to any floor frames. Let J ′′

S = JS −J ′
S be the

set of small jobs that are not assigned to any floor frames by the above procedure.
We want to demonstrate that there are not many jobs in the set J ′′

S .

By the definition, the number of small job blocks in the scheduling Γ1(J) is
2jm,ε+1 ≤ 3jm,ε. Since each small job block is associated with at most m processors,
the number of floor frames constructed in each small job block is bounded by Bm.
Therefore, the total number of floor frames we constructed from the scheduling Γ1(J)
is bounded by 3Bmjm,ε. Moreover, each floor type is a collection of at most m
processor subsets.

If the set J ′′
S contains more than 3mBmjm,ε small jobs, then there must be a

subset Q of processors such that the number of small jobs of mode Q in J ′′
S is larger

than the number of the constructed floor frames whose type contains the subset Q.
Let {σ1, . . . , σd} be the set of floor frames whose type contains the subset Q.

By our assignment rules, assigning any job of mode Q in J ′′
S to a floor frame in

{σ1, . . . , σd} would exceed the height of the corresponding floor frame. Since there
are more than d small jobs of mode Q in J ′′

S , the sum of processing times of all small

jobs of mode Q in JS is larger than
∑d

i=1 height(σi). On the other hand, by our
construction of the floor frames in each small job block χ, the sum of the heights of
the floor frames in χ whose type contains Q should not be smaller than the sum of
the heights of the layers in χ whose type contains Q. Summarizing this over all small
job blocks, we conclude that the sum

∑d
i=1 height(σi) is not smaller than the sum

of processing times of all small jobs of mode Q in JS (since each small job of mode
Q must be contained in consecutive layers whose type contains Q). This derives a
contradiction. The contradiction shows that there are at most 3mBmjm,ε small jobs

MULTIPROCESSOR JOB SCHEDULING 9

in the set J ′′
S .

Now we assign the small jobs in J ′′
S to the floor frames in the last small job block

in the scheduling Γ2(JL ∪J ′
S). For each small job J of mode Q in J ′′

S , we arbitrarily
assign J to a floor frame whose type contains Q in the last small job block, even if
this assignment exceeds the height of the floor frame. Note that the last small job
block is associated with the whole processor set Pm, so for any mode Q, there must
be a floor frame in the last small job block whose type contains the processor subset
Q. This procedure stops with all small jobs in J ′′

S assigned to floor frames in the last
small job block. It is easy to see that the resulting scheduling is an (m, ε)-canonical
scheduling Γ(J) of the original job set J . Moreover, since the makespan of the
scheduling Γ2(JL ∪ J ′

S) is bounded by Opt(J), the makespan of the (m, ε)-canonical
scheduling Γ(J) is bounded by

Opt(J) +
∑

J∈J ′′
S

t(J),

where t(J) is the parallel processing time of the small job J . Since there are at most
3mBmjm,ε small jobs in the set J ′′

S , by Lemma 2.1,

∑

J∈J ′′
S

t(J) ≤ (ε/m)

n∑
i=1

ti.

It is easy to see that Opt(J) ≥ (
∑n

i=1 ti)/m. Therefore, the makespan of the (m, ε)-
canonical scheduling Γ(J) is bounded by (1+ ε)Opt(J). This completes the proof of
the theorem.

Before we close this section, we introduce one more definition.
Definition 3.9. Let σ be a floor of type [Q1, . . . , Qs] and height l, where Q1,

. . ., Qs are pairwise disjoint subsets of processors in the processor set Pm. Then each
subset Qi plus the height l is called a room of type Qi in the floor σ.

4. The approximation scheme. Now we come back to the original problem
Pm|set|Cmax. Recall that an instance J of the problem Pm|set|Cmax is a set of jobs
{J1, J2, . . . , Jn}, where each job Ji is given by a list of alternative processing modes
[Mi,1, . . . ,Mi,pi

] in which each processing modeMi,j = (Qi,j , ti,j) specifies the parallel
processing time ti,j of the job Ji on the subset Qi,j of processors in the m-processor
system.

In order to describe our polynomial time approximation scheme for the problem,
let us first discuss why this problem is more difficult than the classical job scheduling
problem.

In the classical job scheduling problem, each job is executed by one processor in
the system. Therefore, the order of executions of jobs in each processor is not crucial:
the running time of the processor is simply equal to the sum of the processing times
of the jobs assigned to the processor. Therefore, the decision of which job should
be assigned to which processor, in any order, will uniquely determine the makespan
of the resulting scheduling. This makes it possible to use a dynamic programming
approach that extends a scheduling for a subset of jobs to that for a larger subset.

The situation in the general multiprocessor job scheduling problem Pm|set|Cmax,
on the other hand, is more complicated. In particular, the makespan of a scheduling
depends not only on the assignment of processing modes to jobs but also on the order
in which the jobs are executed. Therefore, the techniques of extending a scheduling

10 JIANER CHEN AND ANTONIO MIRANDA

for a subset of jobs in the classical job scheduling problem are not directly applicable
here.

Theorem 3.8 shows that there is an (m, ε)-canonical scheduling whose makespan
is very close to the optimal makespan. Therefore, constructing a scheduling whose
makespan is not larger than the makespan of a good (m, ε)-canonical scheduling will
give a good approximation to the optimal schedulings.

Nice properties of an (m, ε)-canonical scheduling are that within the same tower,
the order of the floors does not affect the height of the tower and that within the same
floor, the order of the small jobs does not affect the height of the floor (see Remarks
1 and 2 in the previous section). Therefore, the only factor that affects the heights of
towers and floors is the assignments of jobs to towers and floors. This makes it become
possible, at least for small jobs, to apply the techniques in classical job scheduling
problems to our current problem. This is described as follows.

First, suppose that we can somehow divide the job set J into large job set JL

and small job set JS . Let us start with an (m, ε)-canonical scheduling Γ(J) of the
job set J . The scheduling Γ(J) gives a nondecreasing sequence {τ0, τ1, . . . , τp+1} of
integers, where τ0 = 0, τp+1 = +∞, p = 2jm,ε, and τi, 0 < i < p+ 1, are the starting
or finishing times of the jm,ε large jobs in JL. Let the p + 1 corresponding towers
be {χ0, χ1, . . . , χp}, where the tower χj consists of a subset P

′
j of processors and the

time interval [τj , τj+1].
We suppose that the subset P ′

j of processors associated with each tower χj is
known and that the large jobs and towers of the scheduling Γ(J) are ordered into a
sequence π in terms of their starting times. However, we assume that the assignment
of small jobs to the rooms of the scheduling Γ(J) is unknown. We show how this
information can be recovered.

For each tower χj associated with the processor set P ′
j , the number of floors in

the tower χj is qj = Br ≤ Bm, where r is the number of processors in the set P ′
j .

Let σj,1, . . ., σj,qj be the floors of all possible different types in the tower χj . For
each floor σj,q, let γj,q,1, . . ., γj,q,rjq be the rooms in the floor σj,q, where rjq ≤ m.
Therefore, the configuration of the small jobs in the (m, ε)-canonical scheduling Γ(J)
can be specified by a ((2jm,ε + 1)Bmm)-tuple

[t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m],

where tj,q,r specifies the running time of the room γj,q,r (for index {j, q, r} for which
the corresponding room γj,q,r does not exist, we can simply set tj,q,r = −1).

Suppose that an upper bound T0 for the running time of rooms is derived; then
we can use a Boolean array D of (2jm,ε + 1)Bmm + 1 dimensions to describe the
configuration of a subset of small jobs in a scheduling

D[0..nS ; 0. .T0, , 0.︸ ︷︷ ︸
(2jm,ε+1)Bmm

.T0],

where nS = n− jm,ε is the number of small jobs in J such that

D[i; t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m] = True

if and only if there is a scheduling on the first i small jobs to the floors in Γ(J) such
that the running time of the room γj,q,r is tj,q,r (recall that the running time of a
room is dependent only on the assignment of small jobs to the room and independent

MULTIPROCESSOR JOB SCHEDULING 11

of the order in which the small jobs are executed in the room). Initially, all array
elements in the array D[· · · · · ·] have value False.

Suppose that a configuration of a scheduling for the first i− 1 small jobs is given:

D[i− 1; t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m] = True.(4.1)

We say that the ith small job J ′
i under mode Qi is addable to a room γj,q,r in the

configuration in (4.1) if the room γj,q,r is of type Qi and adding the job J ′
i to the

room does not exceed the upper bound T0 of the running time of the room γj,q,r.
Now we are ready to present our dynamic programming algorithm for scheduling

small jobs into the rooms in the (m, ε)-canonical scheduling Γ(J). The algorithm is
given in Figure 4.1.

Note that the algorithm Schedule-Small may not return an (m, ε)-canonical
scheduling for the job set J . In fact, there is no guarantee that the height of the
towers constructed in the algorithm does not exceed the height of the corresponding
towers in the original (m, ε)-canonical scheduling Γ(J). We first show below that the
scheduling constructed by the algorithm Schedule-Small has its makespan bounded
by the makespan of the original (m, ε)-canonical scheduling Γ(J).

The following lemma can be proved by induction on the index i.
Lemma 4.1. For all i, 0 ≤ i ≤ nS, the array element D[i; . . . , tj,q,r, . . .] = True

if and only if there is a way to assign modes to the first i small jobs and arrange them
into the rooms such that the room γj,q,r has running time tj,q,r for all {j, q, r}.

Lemma 4.1 gives us directly the following corollary.
Corollary 4.2. If the sequence π of large jobs and towers is ordered in terms

of their starting times in the (m, ε)-canonical scheduling Γ(J), then the algorithm
Schedule-Small constructs a scheduling for the job set J with makespan bounded
by the makespan of the (m, ε)-canonical scheduling Γ(J).

Proof. Note that the (m, ε)-canonical scheduling Γ(J) gives a way to assign
and arrange all small jobs in JS into the rooms. According to Lemma 4.1, the
corresponding array element in the array D must have value True:

D[nS ; . . . , tj,q,r, . . .] = True.

For this array element, step 3 of the algorithm will construct the towers that have ex-
actly the same types and heights as their corresponding towers in the (m, ε)-canonical
scheduling Γ(J). (This may not give exactly the same assignment of small jobs to
rooms. However, the running times of the corresponding rooms must be exactly the
same.) Now since the sequence π is given in the order sorted by the starting times of
the large jobs and towers in the (m, ε)-canonical scheduling Γ(J), by Lemma 3.7, the
call in step 3 to the list scheduling algorithm based on the order π and this configu-
ration will construct a scheduling whose makespan is not larger than the makespan
of the (m, ε)-canonical scheduling Γ(J).

Finally, since step 4 of the algorithm returns the scheduling of the minimum
makespan constructed in step 3, we conclude that the algorithm returns a scheduling
whose makespan is not larger than the makespan of Γ(J).

We analyze the algorithm Schedule-Small.
Lemma 4.3. Let T0 be the upper bound used by the algorithm Schedule-Small

on the running time of the rooms. Then the running time of the algorithm Schedule-

Small is bounded by O(n2mλm,εT
λm,ε

0), where λm,ε = (2jm,ε + 1)Bmm.
Proof. The number nS of small jobs in JS is bounded by the total number n of

jobs in J ; each small job may have at most 2m− 1 ≤ 2m different modes. Also, as we

12 JIANER CHEN AND ANTONIO MIRANDA

Algorithm. Schedule-Small
Input: The set JS of small jobs and an order π of the large jobs and

towers in Γ(J).
Output: A scheduling for the job set J .
1. D[0; 0, . . . , 0] = True;
2. for i = 1 to nS do

for each mode Qij of the small job J ′
i with processing time tij

for each D[i− 1; . . . , tj,q,r, . . .] = True such that the job J ′
i

under mode Qij is addable to the room γj,q,r
D[i; . . . , tj,q,r + tij , . . .] = True;

3. for each D[nS ; . . . , tj,q,r, . . .] = True
call the list scheduling algorithm based on the order π to
construct a scheduling for J in which the room γj,q,r has
running time tj,q,r for all tj,q,r ≥ 0;

4. return the scheduling constructed in step 3 with the minimum makespan.

Fig. 4.1. Scheduling small jobs in floors.

indicated before, the number of rooms is bounded by λm,ε = (2jm,ε + 1)Bmm. Since
the running time for each room is bounded by T0, for each fixed i, there cannot be more

than T
λm,ε

0 elements D[i−1; ∗, . . . , ∗]. Finally, for each D[i−1; . . . , tj,q,r, . . .] = True,
we can check each of the λm,ε component values tj,q,r to decide if the job J ′

i under
mode Qij is addable to the room γj,q,r. In conclusion, the running time of step 2 in
the algorithm Schedule-Small is bounded by

O(n · 2m · Tλm,ε

0 · λm,ε).

We will also attach the mode assignment and room assignment of the job J ′
i

to each element D[i; . . . , tj,q,r, . . .] = True. With this information, from a given
configuration D[nS ; · · · , tj,q,r, · · ·] = True, a corresponding scheduling for the small
jobs in the rooms can be easily constructed by backtracking the dynamic programming
procedure and its makespan can be computed in time λm,ε. Therefore, step 3 of the
algorithm takes time

O(n · Tλm,ε

0 · λm,ε).

In conclusion, the running time of the algorithm Schedule-Small is bounded

by O(n2mλm,εT
λm,ε

0), where λm,ε = (2jm,ε + 1)Bmm.
We now discuss how an upper bound T0 for the running time of rooms can

be derived. Given an instance J = {J1, J2, . . . , Jn} of the problem Pm|set|Cmax

and a positive real number ε > 0, where each job Ji is specified by a list of al-
ternative processing modes, Ji = [Mi1, . . . ,Mipi] and Mij = (Qij , tij). Recall that
mini = min{tij | 1 ≤ j ≤ pi}. Then the sum T0 =

∑n
i=1 mini is obviously an up-

per bound on the makespan of the (m, ε)-canonical schedulings for J . (T0 is the
makespan of a straightforward scheduling that assigns each job Ji the mode corre-
sponding to mini, then starts each job Ji when the previous job Ji−1 finishes. There-
fore, if no (m, ε)-canonical scheduling has makespan better than T0, we simply return
this straightforward scheduling.) In particular, the value T0 is an upper bound for the
running time for all rooms. Moreover, since the job set J takes at least T0 amount of
“work” (the work taken by a job is equal to the parallel processing time multiplied by
the number of processors involved in this processing) and the system hasm processors,

MULTIPROCESSOR JOB SCHEDULING 13

the value T0 also provides a lower bound for the optimal makespan Opt(J):

Opt(J) ≥ T0/m.

In order to apply algorithm Schedule-Small, we first need to decide how the
set J is split into large job set JL and small job set JS , what are the modes for the
large jobs, what are the types for the towers, and what is the ordering π for the large
jobs and towers on which the list scheduling algorithm can be applied. According to
Lemma 2.1, the number of large jobs is of form jm,ε = (3mBm +1)k for some integer
k ≤ �m/ε� and by the definition, the number of towers is 2jm,ε + 1. When m and
ε are fixed, the number of large jobs and the number of towers are both bounded
by a constant. Therefore, we can use any brute force method to exhaustively try all
possible cases.

To achieve a polynomial time approximation scheme for the problem Pm|set|Cmax,
we combine the standard scaling techniques [20] with the concept of (m, ε)-canonical
schedulings as follows.

Let J = {J1, . . . , Jn} be an instance of the Pm|set|Cmax problem, where Ji =
[Mi1, . . . ,Mipi] and Mij = (Qij , tij). We let K = ε · T0/(nm) and construct another
instance J ′ = {J ′

1, . . . , J
′
n} for the problem, where J ′

i = [M ′
i1, . . . ,M

′
ipi
] and M ′

ij =
(Qij , �tij/K�). In other words, the jobs in J ′ are identical to those in J except
that all processing times tij are replaced by �tij/K�. We say that the job set J ′

is obtained from the job set J by scaling the processing times by K. We apply the
algorithm described above to the instance J ′ to construct a scheduling for J ′ from
which a scheduling for J is induced. The formal algorithm is presented in Figure 4.2.

We explain how step 5 converts the scheduling Γ0(J ′) for the job set J ′ into a
scheduling Γ0(J) for the job set J . We first multiply the processing time and the
starting time of each job J ′

i in the scheduling Γ0(J ′) by K (but keeping the processing
mode). That is, for the job J ′

i of mode Qij and processing time �tij/K� that starts at
time τi in Γ0(J ′), we replace it by a job J ′′

i of modeQij and processing timeK ·�tij/K�
and let it start at time Kτi. This is equivalent to proportionally “expanding” the
scheduling Γ0(J ′) by a factor K. Now on this expansion of the scheduling Γ0(J ′),
following the order in terms of their finish times, we do “correction” on processing
times by increasing the processing time of each job J ′′

i from K · �tij/K� to tij . (Note
that this increase in processing time may cause many jobs in the scheduling to delay
their starting time by (tij −K · �tij/K�) units. In particular, this increase may cause
the makespan of the scheduling to increase by (tij − K · �tij/K�) units.) After the
corrections on the processing time for all jobs in J , we obtain a scheduling Γ0(J) for
the job set J .

Lemma 4.4. For fixed m ≥ 2 and δ > 0, the running time of the algorithm
Approx-Scheme for the problem Pm|set|Cmax is bounded by O(n

λm,ε+jm,ε+1), where
ε = δ/2, jm,ε ≤ (3mBm + 1)�m/ε	 and λm,ε = (2jm,ε + 1)Bmm.

Proof. Since the integer k is bounded by �m/ε�, the number j0 of large jobs in J ′
L

is bounded by jm,ε ≤ (3mBm+1)
�m/ε	. Therefore, there are at most

(
n

jm,ε

)
= O(njm,ε)

ways to choose the large job set J ′
L. Since each job may have up to 2m − 1 < 2m

alternative mode assignments, the total number of mode assignments to each large
job set J ′

L is bounded by (2m)jm,ε = 2mjm,ε . Each tower is associated with a subset
of the processor set Pm of m processors. Thus, each tower may be associated with
2m − 1 ≤ 2m different subsets of Pm. Therefore, the number of different sequences of
up to 2jm,ε+1 towers is bounded by (2m)2jm,ε+1 = 22mjm,ε+m. Finally, the number of
permutations of the j0 large jobs and 2j0+1 towers is (3j0+1)!. Summarizing all these

14 JIANER CHEN AND ANTONIO MIRANDA

Algorithm. Approx-Scheme
Input: An instance J for the problem Pm|set|Cmax and δ > 0.
Output: A scheduling of J .
1. ε = δ/2; T0 =

∑n

i=1
mini; K = ε · T0/(nm);

2. let J ′ be the job set obtained by scaling the job set J by K;
3. for k = 0 to �m/ε	 do

j0 = (3mBm + 1)k;
3.1. for each subset J ′

L of j0 jobs in J ′
3.2. for each mode assignment A to the jobs in J ′

L
3.3. for each possible sequence of 2j0 + 1 towers
3.4. for each ordering π of the j0 jobs in J ′

L and the 2j0 + 1 towers
J ′
S = J ′ − J ′

L;
call Schedule-Small on small job set J ′

S and the ordering π
to construct a scheduling for the job set J ′ (use T ′

0 =
T0/K�
as the upper bound for the running time of rooms);

4. let Γ0(J ′) be the scheduling constructed in step 3 with the minimum
makespan;

5. replace each job J ′
i in Γ0(J ′) by the corresponding job Ji to obtain a

scheduling Γ0(J) for the job set J ;
6. return the job scheduling Γ0(J).

Fig. 4.2. The approximation scheme.

together, we conclude that the number of times that the algorithm Schedule-Small
is called is bounded by

O(�m/ε� · njm,ε · 2mjm,ε · 22mjm,ε+m · (3jm,ε + 1)!).(4.2)

When the algorithm Schedule-Small is applied to the job set J ′
S , the upper

bound on the running time of the rooms is

T ′
0 = �T0/K� = �(nm)/ε� ≤ (nm)/ε+ 1.

According to Lemma 4.3, each call to the algorithm Schedule-Small takes time

O(n2mλm,ε(T
′
0)

λm,ε) = O(n2mλm,ε((nm)/ε+ 1)λm,ε),(4.3)

where λm,ε = (2jm,ε + 1)Bmm.
Combining (4.2) and (4.3) and noting that m and δ thus ε are fixed constants,

we conclude that the running time of the algorithm Approx-Scheme is bounded by
O(nλm,ε+jm,ε+1).

Now we are ready to present our main theorem.
Theorem 4.5. The algorithm Approx-Scheme is a polynomial time approxi-

mation scheme for the problem Pm|set|Cmax.
Proof. As proved in Lemma 4.4, the algorithm Approx-Scheme runs in poly-

nomial time when m and δ are fixed constants. Therefore, we need only to show
that the makespan of the scheduling Γ0(J) constructed by the algorithm Approx-
Scheme for an instance J of the problem Pm|set|Cmax is at most (1 + δ) times the
optimal makespan Opt(J) for the instance J . Again let ε = δ/2.

Let Γ(J) be an optimal scheduling of makespan Opt(J). Under the scheduling
Γ(J), the mode assignments of the jobs are fixed. Thus, this particular mode assign-
ment makes us able to split the job set J into large job set JL and small job set JS in
terms of job processing time. According to Theorem 3.8, there is an (m, ε)-canonical

MULTIPROCESSOR JOB SCHEDULING 15

scheduling Γ1(J) for the instance J , under the same mode assignments, such that
the makespan of Γ1(J) is bounded by (1 + ε)Opt(J).

Consider a room γj,q,r in the (m, ε)-canonical scheduling Γ1(J). Suppose that
Jp1 , . . ., Jpq are the small jobs assigned to the room γj,q,r by the scheduling Γ1(J).
Then

∑q
i=1 tpi ≤ T0, where tpi is the processing time for the job Jpi under Γ1(J),

which is the same as under Γ(J). Thus we must have

q∑
i=1

�tpi/K� ≤
q∑

i=1

tpi
/K ≤ T0/K ≤ T ′

0.

Therefore, under the same mode assignments (with processing time tij replaced by
�tij/K�) and the same room assignments, the corresponding scheduling Γ1(J ′) for the
job set J ′ has no rooms with running time exceeding T ′

0. Thus, by Lemma 4.1, when
step 3 of the algorithm Approx-Scheme loops to the stage in which the large job set
and their mode assignments, the tower types, and the ordering of the large jobs and the
towers all match that in the scheduling Γ1(J ′), the array element D[nS ; . . . , tj,q,r, . . .]
corresponding to the room configurations of the scheduling Γ1(J ′) must have value
True. Thus, a scheduling Γ′

1(J ′) based on this configuration is constructed and its
makespan is calculated. Note that the scheduling Γ′

1(J ′) may not be exactly the
scheduling Γ1(J ′). However, they must have exactly the same makespan.

Since step 4 of the algorithm Approx-Scheme picks the scheduling Γ0(J ′) that
has the smallest makespan over all schedulings for J ′ constructed in step 3, we con-
clude that the makespan of the scheduling Γ0(J ′) is not larger than the makespan of
the scheduling Γ′

1(J ′), thus not larger than the makespan of the scheduling Γ1(J ′).
As we described in the paragraph before Lemma 4.4, to obtain the corresponding

scheduling Γ0(J) for the job set J , we first expand the scheduling Γ0(J ′) by K (i.e.,
multiplying the job processing times and starting times in Γ0(J ′) by K). Let the
resulting scheduling be Γ0(J ′′). Similarly we expand the scheduling Γ1(J ′) by K to
obtain a scheduling Γ1(J ′′). The makespan of the scheduling Γ0(J ′′) is not larger
than the makespan of the scheduling Γ1(J ′′) since they are obtained by proportionally
expanding the schedulings Γ0(J ′) and Γ1(J ′), respectively, by the same factor K.

Moreover, the makespan of Γ1(J ′′) is not larger than the makespan of the (m, ε)-
canonical scheduling Γ1(J). To see this, observe that these two schedulings use the
same large job set under the same mode assignment, the same small job set under the
same mode assignment and room assignment, and the same order of large jobs and
towers. The only difference is that the processing time tij of each job Ji in Γ1(J) is
replaced by a possibly smaller processing time K ·�tij/K� of the corresponding job J ′′

i

in Γ1(J ′′). In consequence, we conclude that the makespan of the scheduling Γ0(J ′′)
is not larger than the makespan of the (m, ε)-canonical scheduling Γ1(J), which is
bounded by (1 + ε)Opt(J).

Finally, to obtain the scheduling Γ0(J) for the job set J , we make corrections on
the processing times of the jobs in the scheduling Γ0(J ′′). More precisely, we replace
the processing time K · �tij/K� for job J ′′

i by tij , which is the processing time of the
job Ji in the job set J . Correcting the processing time for each job J ′′

i in Γ0(J ′′)
may make the makespan of the scheduling increase by

tij −K · �tij/K� < K.

Therefore, after the corrections of processing times for all jobs in J ′′, the makespan of
the finally resulting scheduling Γ0(J) for the job set J , constructed by the algorithm

16 JIANER CHEN AND ANTONIO MIRANDA

Approx-Scheme, is bounded by

the makespan of Γ1(J) + n ·K ≤ (1 + ε)Opt(J) + εT0/m

≤ (1 + 2ε)Opt(J)

= (1 + δ)Opt(J).

Here we have used the fact that Opt(J) ≥ T0/m.
This completes the proof of the theorem.

5. Conclusion and remarks. In this paper, we have developed a polynomial
time approximation scheme for the Pm|set|Cmax problem for any fixed constant m.
The result is achieved by combinations of the recent techniques developed in the area
of multiprocessor job schedulings plus the classical dynamic programming and scaling
techniques. This result is a significant improvement over the previous results on the
problem: no previous approximation algorithms for the problem Pm|set|Cmax have
their approximation ratio bounded by a constant that is independent of the number
m of processors in the system. Our result also confirms a conjecture made by Amoura
et al. [1]. In the following we make a few remarks on further work on the problem.

The multiprocessor job scheduling problem seems an intrinsically difficult prob-
lem. For example, if the number m of processors in the system is given as a variable
in the input, then the problem becomes highly nonapproximable: there is a constant
δ such that no polynomial time approximation algorithm for the problem can have
an approximation ratio smaller than nδ unless P = NP [25]. Observing this plus the
difficulties in developing good approximation algorithms for the problem, people had
suspected whether the Pm|set|Cmax problem for some fixed m should be MAX-NP
hard [8]. The present paper completely eliminates this possibility [2].

Our study shows that there are very “normalized” schedulings whose makespan
is close to the optimal ones and that these “good” normalized schedulings can be
constructed systematically. We are interested in investigating the tradeoff between
the degree of this kind of normalization and the time complexity of approximation
algorithms.

The current form of our polynomial time approximation scheme may not be prac-
tically useful, yet. Even for a small integer m and a reasonably small constant ε, the
time complexity of our algorithm is bounded by a polynomial of very high degree.
More recently, Jansen and Porkolab [21] use the approach of Amoura et al. [1] and
are able to develop a linear time approximation scheme for the Pm|set|Cmax prob-
lem, which still does not seem practical because of the huge constant factor in the
complexity of the algorithm.

We are especially interested in developing more practical polynomial time approx-
imation algorithms for systems with small number of processors, such as P4|set|Cmax.
In particular, we would like to develop practical approximation algorithms for the
Pm|set|Cmax problem with approximation ratio better than m/2, which is still the
best known bound for the problem [8]. Some progress has recently been made toward
this direction for systems of four processors [19].

Acknowledgment. The authors would like to acknowledge the helpful and stim-
ulating discussions with Nancy Amato, Don Friesen, Klaus Jansen, Chung-Yee Lee,
Lorant Porkolab, and Roberto Solis-Oba. Frank Ruskey has helped in the formula
for the Bell numbers. The authors would especially like to thank two anonymous
referees whose comments and suggestions have greatly improved the presentation of
the paper.

MULTIPROCESSOR JOB SCHEDULING 17

REFERENCES

[1] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling independent mul-
tiprocessor tasks, in Proceedings of the 5th Annual European Symposium on Algorithms,
Graz, Austria, Lecture Notes in Comput. Sci. 1284, Springer-Verlag, Berlin, 1997, pp. 1–12.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[3] L. Bianco, J. Blazewicz, P. Dell’Olmo, and M. Drozdowski, Scheduling multiprocessor
tasks on a dynamic configuration of dedicated processors, Ann. Oper. Res., 58 (1995), pp.
493–517.

[4] J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and M. Speranza, Scheduling multiprocessor
tasks on three dedicated processors, Inform. Process. Lett., 41 (1992), pp. 275–280.

[5] J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and M. Speranza, Erratum, Scheduling
multiprocessor tasks on three dedicated processors, Inform. Process. Lett., 49 (1994), pp.
269–270.

[6] J. Blazewicz, M. Drozdowski, and J. Weglarz, Scheduling multiprocessor tasks to minimize
scheduling length, IEEE Trans. Comput., 35 (1986), pp. 389–393.

[7] J. Blazewicz, W. Drozdowski, and J. Weglarz, Scheduling multiprocessor tasks—a survey,
Internat. J. Microcomput. Appl., 13 (1994), pp. 89–97.

[8] J. Chen and C.-Y. Lee, General multiprocessor tasks scheduling, Naval Res. Logist., 46 (1999),
pp. 57–74.

[9] J. Chen and A. Miranda, A polynomial time approximation scheme for general multipro-
cessor job scheduling, in Proceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC’99), Atlanta, 1999, pp. 418–427.

[10] P. Dell’Olmo, M. G. Speranza, and Zs. Tuza, Efficiency and effectiveness of normal sched-
ules on three dedicated processors, Discrete Math., 164 (1997), pp. 67–79.

[11] G. Dobson and U. Karmarkar, Simultaneous resource scheduling to minimize weighted flow
times, Oper. Res., 37 (1989), pp. 592–600.

[12] J. Du and J. Y.-T. Leung, Complexity of scheduling parallel task systems, SIAM J. Discrete
Math., 2 (1989), pp. 473–487.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[14] M. X. Goemans, An approximation algorithm for scheduling on three dedicated machines,
Discrete Appl. Math., 61 (1995), pp. 49–59.

[15] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966),
pp. 1563–1581.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 1994.

[17] L. A. Hall, Approximation algorithms for scheduling, in Approximation Algorithms for NP-
Hard Problems, D. S. Hochbaum, ed., PWS, Boston, 1997, pp. 1–45.

[18] J. A. Hoogeveen, S. L. van de Velde, and B. Veltman, Complexity of scheduling multipro-
cessor tasks with prespecified processor allocations, Discrete Appl. Math., 55 (1994), pp.
259–272.

[19] J. Huang, J. Chen, and S. Chen, A simple linear time approximation algorithm for multi-
processor job scheduling on four processors, in Proceedings of the 11th Annual International
Symposium on Algorithms and Computation (ISAAC 2000), Lecture Notes in Comput. Sci.
1969, Springer-Verlag, New York, 2000, pp. 60–71.

[20] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the Knapsack and sum of
subset problems, J. Assoc. Comput. Mach., 22 (1975), pp. 463–468.

[21] K. Jansen and L. Porkolab, General multiprocessor task scheduling: Approximate solutions
in linear time, in Proceedings of the 6th Workshop on Algorithms and Data Structures
(WADS ’99), Lecture Notes in Comput. Sci. 1663, Springer-Verlag, New York, Berlin, 1999,
pp. 110–121.

[22] H. Krawczyk and M. Kubale, An approximation algorithm for diagnostic test scheduling in
multicomputer systems, IEEE Trans. Comput., 34 (1985), pp. 869–872.

[23] C.-Y. Lee and X. Cai, Scheduling multiprocessor tasks without prespecified processor alloca-
tions, IIE Transactions, to appear.

[24] C.-Y. Lee, L. Lei, and M. Pinedo, Current trends in deterministic scheduling, Ann. Oper.
Res., 70 (1997), pp. 1–42.

[25] A. Miranda, Approximation Algorithms in Multiprocessor Task Scheduling, Ph.D. thesis, De-
partment of Computer Science, Texas A&M University, College Station, TX, 1998.

