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Photon impingement is capable of liberating electrons in electronic devices and driving the electron
flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the
thermodynamic efficiency of a nano-sized photoelectric converter at maximum power is bounded by
the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric
converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons.
We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by
the couplings of quantum dots (QDs) to sunlight and fermion baths can coexist steadily in nano-
electronic systems. Our analysis indicates that the efficiency at maximum power is no more limited
to ηCA through manipulation of carefully controlled quantum coherences.

I. INTRODUCTION

Carnot’s theorem states that all real heat engines op-
erating between two heat baths undergo irreversible pro-
cesses and are less efficient than a reversible heat engine,
regardless of the working substance used or the opera-
tion details. Numerous studies have attempted to design
more efficient heat engines and improve the work extrac-
tion when quantum effects come into play [1–4]. Most
of quantum thermodynamic studies only emphasized on
achieving a conversion efficiency limit, which is inevitably
accompanied by vanishing power output [5, 6]. More ex-
tensive research needs to be conducted regarding the in-
terdependence of efficiency and power for practical appli-
cations. Based on the Newton heat transfer law, Curzon
and Ahlborn found that the efficiency at maximum power
of an endoreversible Carnot heat engine with irreversible
heat transfer processes is given by ηCA = 1 −

√
Tc/Th ,

where Th is the temperature of the heat source and Tc
is the temperature of the heat sink [7]. Other various
thermodynamic machines indicate that ηCA gives a good
approximation for estimating the efficiency at maximum
power [8–10]. In particular, Rutten et al. proved that the
efficiency at maximum power of a nanosized photoelec-
tric converter can be well predicted by the Curzon and
Ahlborn efficiency [11]. Only in the case of the strong
coupling condition between electron and heat flows and
negligible nonradiative effects, can the efficiency more
closely approach to ηCA.

An interesting question arises here: might quantum
coherence survive stably in nano-electronic systems and
help to increase the efficiency at maximum power beyond
the bound of the Curzon and Ahlborn efficiency? By con-
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sidering a three-level quantum dot (QD) in thermal con-
tact with two boson reservoirs, Li et al. confirmed that
the interferences of two transitions in a non-equilibrium
environment can give rise to non-vanishing steady quan-
tum coherence [12]. Noise-induced coherence is capable
of breaking the detailed balance condition and enhanc-
ing the laser power of a quantum heat engine [13, 14].
The efficiency at maximum power of the laser quantum
heat engine has been shown to depend on the proper ad-
justment of the coherence parameters [15, 16]. In these
previous studies, the interaction between quantum sys-
tems and bosonic baths plays a key role in generating
coherence. However, whether an electronic system in a
fermionic environment enables the realizations of steady
coherence and performance improvement is rarely dis-
cussed.

In this paper, in order to show that coherent transi-
tions induced by the couplings of quantum dots (QDs)
to sunlight and fermion baths can coexist to promote the
potential of light harvesting, we propose a experimentally
feasible model of a nano-photoelectric converter. We will
focus on the condition to effectively increase the efficiency
at maximum power beyond the bound of Curzon-Ahlborn
efficiency. The contents are organized as follows: In Sec-
tion II, the general model of the converter is briefly de-
scribed. In section III, the motion equation of the QD
is analytically computed. In section IV, the thermody-
namic quantities at steady state are derived. In Section
V, the performance characteristics of the photoelectric
converter are revealed by numerical calculation.

II. GENERAL DESCRIPTION OF THE MODEL

The system schematic (Figure 1) of a photoelectric
converter consists of a three-level quantum dot (QD) con-
tacted with two fermionic baths and photons. The three-
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Figure 1. Schematic of a photoelectric converter composed of
a three-level QD. The degenerate ground states |g1〉 and |g2〉
are coupled to the left-fermionic bath, while the excited state
|e〉 is coupled to the right-fermionic bath. The two fermionic
baths are maintained at the same temperature T but have
different chemical potentials µl and µr = µl + qV due to
the applied voltage (q is the elementary charge). Transitions
between the ground states and the excited state are induced
by photons with temperature TS (curved arrow).

level QD is modeled by the Hamiltonian

HS =
∑

i=g1,g2,e,0

εi|i〉〈i|, (1)

with |0〉 being the state for no electron in the QD. |g1〉,
|g2〉, and |e〉 represent one-electron states in levels εg1 ,
εg2 , or εe, respectively. We assume that Coulomb repul-
sions prevent two electrons to be simultaneously present
in the QD [17]. One electron is firstly transferred from
the left-fermionic bath to the ground state |g1〉 or |g2〉
via the QD-bath coupling, and then has a probability to
be pumped to the excited state |e〉 due to the incom-
ing solar radiation. The excited state |e〉 is coupled to
the fermionic bath characterized by temperature T and
chemical potential µr.

The Hamiltonian of the sunlight radiation (RP ) is
given by

HP =
∑
k∈ RP

ωka
†
kak, (2)

where ωk is the eigenfrequency of the radiated electro-
magnetic wave described by the creation (annihilation)
operator a†k (ak). Similarly, the Hamiltonians of the
fermionic baths (Rl and Rr) are given by

H l,r
F =

∑
v∈Rl,r

ωvc
†
vcv. (3)

Here, c†v (cv) is the electron creation (annihilation) oper-
ator of the mode ωv in Rl or Rr. The two ferminoic baths

stand for the n-and p-type semiconductor electrodes of
the photoelectric converter.

The interaction between the QD and the environment
reads HI = H l

I +Hr
I +HP

I with each term defined by

H l
I =

∑
i=1,2

∑
v∈Rl

(Tvicv|gi〉〈0|+ h.c.), (4)

Hr
I =

∑
v∈Rr

(Tvecv|e〉〈0|+ h.c.), (5)

and

HP
I =

∑
i=1,2

∑
k∈RP

(gkiak|e〉〈gi|+ h.c.), (6)

where Tvi , Tve , and gki denote the coupling strength of
the transitions between the QD and the left-fermionic
bath, the right-fermionic bath and photons, respectively.

III. MOTION EQUANTION OF THE
QUANTUM DOT

The three-level QD can be viewed as an open quantum
system vulnerable to interactions with the environment.
Making the Born-Markov approximation, which involves
assuming that the environment is time-independent and
the environment correlations decay rapidly in comparison
to the typical timescale of the system evolution [18], we
derive the equation of motion for the density operator ρ
in a Lindblad-like form

.
ρ = i[ρ,HS ] + LP [ρ] + Ll [ρ] + Lr [ρ]. (7)

The dissipative part in the master equation can be gener-
alized into three individual elements including the damp-
ings through the photons and the two fermionic baths.
For the photon excitation, the dissipation operator LP [ρ]
depends on the Bose-Einstein statistics of the photons
and is given by

LP [ρ] = i[ρ,HCP ]

+

2∑
{[

i,j=1

B+
ij(εj) +B+

ij(εi)][σ
†
PiρσPj −

1

2
{ρ, σPjσ†Pi}+]

+ [B−ji(εj) +B−ji(εi)][σPiρσ
†
Pj −

1
2{ρ, σ

†
PjσPi}+]},

(8)

where σPi = |gi〉〈e|, B+
ij(εj) = γPij(εj)n(xj) and

B−ij(εj) = γPij(εj)[1 + n(xj)] are the dissipation rates
with γPij(ω) = π

∑
gkig

∗
kj
δ(ε − ω) = [γPji(ω)]∗; n(x) =

[exp(x) − 1]−1 is the Bose-Einstein distribution with
scaled energy xj = εj/(kBTP ) and kB is the Boltzmann
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constant. The energy difference of each transition is de-
fined as εj = εe− εgj . The left-fermionic bath is coupled
to the ground states |g1〉 and |g2〉. The corresponding
dissipation operator is then expressed as

Ll [ρ] = i[ρ,HCl]

+

2∑
{[

i,j=1

F l+ij (εgj ) + F l+ij (εgi)][σ
†
liρσlj −

1

2
{ρ, σljσ†li}+]

+ [F l−ji (εgj ) + F l−ji (εgi)][σliρσ
†
lj −

1
2{ρ, σ

†
ljσli}+]}.

(9)

where σli = |0〉〈gi|, F l+ij (εgj ) = γlij(εgj )f(xgj )

and F l−ij (εgj ) = γlij(εgj )[1 − f(xgj )] with γlij(ω) =

π
∑
TviT

∗
vjδ(ε− ω) = [γlji(ω)]∗; f(x) = [exp(x) + 1]−1 is

the Fermi distribution with scaled energies of the ground
states xgj = (εgj − µl)/(kBT ). The dissipation operator
describes the coupling between the right-fermionic bath
and the excited state is

Lr [ρ] = F r+(εe)[2σ
†
reρσre − σreσ†reρ− ρσreσ†re]

+F r−(εe)[2σreρσ
†
re − σ†reσreρ− ρσ†reσre] (10)

where σre = |0〉〈e|. F r+(εe) = γr(εe)f(xr) and F r− =
γr(εe)[1 − f(xr)] with γr(ω) = π

∑
TveT

∗
veδ(ε − ω) =

[γr(ω)]∗. xr = (εe − µr)/(kBT ) is the scaled energy of
the excited state.

Notice that the interference of coherent transitions can
be simultaneously induced by the photons and the left-
fermionic bath, leading to two different non-diagonal cou-
plings given by

HCP =
1

2i

2∑
{[

i,j=1

B+
ij(εi)−B

+
ij(εj)]σPjσ

†
Pi

+ [B−ji(εi)−B
−
ji(εj)]σ

†
PjσPi} (11)

and

HCl =
1

2i

2∑
{

i,j=1

[F l+ij (εgi)− F l+ij (εgj )]σljσ
†
li

+ [F l−ji (εgi)− F l−ji (εgj )]σ†ljσli}. (12)

According to Eqs. (7)-(10), we have a coupled set of
equations describing the dynamics of the populations,
ρi = 〈gi|ρ|gi〉, ρe = 〈e|ρ|e〉, ρ0 = 〈0|ρ|0〉, and the co-
herence, ρij = 〈gi|ρ|gj〉, as follows,

.
ρ1 = −2[B+

11(ε1) + F l−11 (εg1)]ρ1 + 2B−11(ε1)ρe + 2F l+11 (εg1)ρ0

− [B+
12(ε2) + F l−21 (εg2)]ρ12 − [B+

21(ε2) + F l−12 (εg2)]ρ21
(13)

.
ρ2 = −2[B+

22(ε2) + F l−22 (εg2)]ρ2 + 2B−22(ε2)ρe + 2F l+22 (εg2)ρ0

− [B+
12(ε1) + F l−21 (εg1)]ρ12 − [B+

21(ε1) + F l−12 (εg1)]ρ21
(14)

.
ρe = 2B+

11(ε1)ρ1 + 2B+
22(ε2)ρ2 − 2[B−11(ε1) +B−22(ε2)

+ F r−(εe)]ρe + 2F r+(εe)ρ0 + [B+
12(ε1) +B+

12(ε2)]ρ12

+ [B+
21(ε1) +B+

21(ε2)]ρ21 (15)

.
ρ0 = 2F l−11 (εg1)ρ1 + 2F l−22 (εg2)ρ2 + 2F r−(εe)ρe − 2[F l+11 (εg1)

+ F l+22 (εg2) + F r+(εe)]ρ0 + [F l−21 (εg1) + F l−21 (εg2)]ρ12

+ [F l−12 (εg1) + F l−12 (εg2)]ρ21 (16)

and
.
ρ12 = −[B+

21(ε1) + F l−12 (εg1)]ρ1 − [B+
21(ε2) + F l−12 (εg2)]ρ2

+ [B−21(ε1) +B−21(ε2)]ρe + [F l+12 (εg1) + F l+12 (εg2)]ρ0

− [B+
11(ε1) +B+

22(ε2) + F l−11 (εg1) + F l−22 (εg2) + τ ]ρ12

+ i∆21ρ12. (17)

Here, ∆21 = εg2 − εg1 is the energy difference of the
two lower states |g1〉 and |g2〉, and τ is phenomenologi-
cally introduced to describe the decoherence rate due to
the environment effects. The equations for off-diagonal
terms, e.g. 〈gi|ρ|e〉 and 〈e|ρ|0〉, have been omitted ex-
cept ρ12, since those terms only give the decay processes
and do not affect the steady-state solution. It is shown
that the time evolutions of the populations ρi, ρe, and ρ0
are not decoupled from that of the off-diagonal elements
ρ12/ρ21. The coherence ρ12/ρ21 may not vanish even in
the steady state after long time evolution. Specifically,
we find that both QD-photon coupling and QD-fermion
coupling contribute to the coherent transitions.

IV. THERMODYNAMIC QUANTITIES AT
STEADY STATE

For degenerate lower levels εg1 = εg2 = εl and symmet-
ric couplings, we write the rates of transitions |g1〉 ↔ |e〉
and |g2〉 ↔ |e〉 as γP11(ε1) = γP22(ε2) = γP and that
of transitions |g1〉 ↔ |0〉 and |g2〉 ↔ |0〉 as γl11(εg1) =
γl22(εg2) = γl. We also introduce two dimensionless pa-
rameters rP (= γP12/γ

P ) and rl(= γl12/γ
l) to describe the

strengths of coherences, where superscripts P and l imply
the coherent transitions originating from the couplings
to the photons and the left-fermionic bath, respectively.
Note that 0 ≤ rP , rl≤ 1, depending on the relative orien-
tations of transition dipole vectors [15]. Setting

.
ρ= 0 and

combining Eqs. (13)-(17) with the conservative equation
ρ1 + ρ2 + ρe + ρ0 = 1, the steady-state populations and
coherence of the open quantum system is obtained. The
coherence is computed as
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ρ12 = 2γP (rP − rl){n(xg)f(xl)− [1 + n(xg)

− f(xl)]f(xr)}/Ω, (18)

where Ω is the normalization factor that ensures
the sum of probabilities to be equal to unity. Sim-
plifying the numerator of Eq. (18) to 1/2γP (rl −
rP )Csch(xg/2)Sech(xl/2)Sech(xr/2)Sinh[(xg + xl −
xr)/2)], we identify that ρ12 reduces to zero when
rP = rl and the quantum coherence will not affect the
thermodynamics. This phenomenon was observed in a
four-level quantum heat engine for symmetric coupling
condition as well [16].

From the master equation, the changing rate of the
electron number in the three-level QD at time t is

.

N(t) = Tr{nLl [ρ]}+ Tr{nLr [ρ]} := Jl + Jr (19)

with the number operator n = σ†reσre + σ†l1σl1 + σ†l2σl2.
Thus, Jl and Jr are the currents exchanging with the left
and the right fermionic baths, which are given by

Jl = 4γlf(xl)ρ0−2γl[1−f(xl)]{ρ1+ρ2+rlRe[ρ12]} (20)

and

Jr = 2γr[1− f(xr)]ρe − 2γrf(xr)ρ0. (21)

The parameter, xl = (εl − µl)/(kBT ), is the scaled en-
ergy of the degenerate ground states. In the stationary
state (t → ∞),

.

N(t) = 0 such that Jl = −Jr. Eq. (20)
indicates that adjusting the electron current via quan-
tum coherences allows for improving the performance of
the converter. The steady state energy fluxes are de-
termined by energy change of the three-level QD, i.e.
.

E(∞) = Tr{HS
.
ρ(∞)} =

∑
α

Tr{HSLα[ρ(∞)]} (α = P ,

l, and r ). Neglecting the nonradiative recombination
processes [11, 19], the net heat flux coming from the sun-
light

.

QP = Tr{HSLP [ρ(∞)]} = εgJ , where εg = εe − εl
can be regarded as the bandgap energy. The power P
generated by the photoelectric converter to move elec-
trons from the left-fermionic bath to the right-fermionic
bath yields

P = (µr − µl)J = kBTP [xg − (1− ηc)(xr − xl)]J (22)

with xg = εg/(kBTP ). The symbol ηc denotes the Carnot
efficiency and equals 1− T/TP . The efficiency satisfying
this conversion is then given by

η =
P
.

QP
=

(µr − µl)J
εgJ

= 1− (1− ηc)
(xr − xl)

xg
. (23)

V. PERFORMANCE CHARACTERISTIC
ANALYSIS

In the following section, we address the question re-
garding the extent to which the quantum nature of the
converter affects the photoelectric conversion efficiency,
a topic which is beyond the reach of the model presented
in Refs. [11]. The formalism obtained here will allow us
to access how coherences can lead to an enhancement of
the power and the efficiency. To do so, we parameter-
ize the transition rates γP = γl = γr=γ without loss of
generality.

Figures 2a and 2b show the contour plots of the abso-
lute value of coherence | ρ12 | and the efficiency η versus
rP and rl, where the power has been optimized with re-
spect to xl and xr. In accordance with the requirements
set out in the analytical method (Eq. 18), Fig. 2a shows
that the quantum coherence vanishes if rP = rl, result-
ing in low efficiency less than 0.87. To enhance η in the
presence of coherence (| ρ12 |6= 0), rP and rl should be
designed to be different from each other. However, we
notice that η and | ρ12 | may not always increase or de-
crease together, which means that η is not only restricted
by the magnitude of coherence. Comparing Fig. 2a with
Fig. 2b, we find that η can be largely enhanced in the
range of rP > rl. This condition suggests that increasing
the coherence coupling between the QD and the photons
and | ρ12 | will concurrently benefit the performance of
the photoelectric conversion. There exists a perfect pos-
itive correlation between η and | ρ12 | when rP > rl is
satisfied.

Next, we maximize the power with respect to xg , xl ,
and xr. In Figure 3a, the efficiency at maximum power
is plotted as a function of ηc for given values of rP . Fig-
ure 3a shows that the efficiency at maximum power in-
creases with a decrease in the parameter rl, as expected.
When rP = rl = 0.9 (dash-dotted line), the efficiency re-
mains close to the Curzon-Ahlborn efficiency for almost
all values of ηc. Slight lower efficiencies are observed
only far from equilibrium where ηc is large. These fea-
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Figure 2. The absolute value of coherence (a) and the effi-
ciency (b) as a function of the dimensionless parameters rP
and rl, where xg = 2, τ = 0, T = 295K, and TP = 5780K.
The optimal values of xl and xr have been computed numer-
ically to maximize the power output.
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Figure 3. The efficiency at maximum power and the Curzon-
Ahlborn efficiency (green dashed line) as a function of Carnot
efficiency ηc for different values of rl (a) and τ (b). In Fig.
3a, rP = 0.9 and τ = 0. In Fig. 3b, rP = 0.9 and rl = 0.
The inserted figure shows an enlargement of the representative
part of each plot.

tures have also been addressed in other approaches to
non-equilibrium thermodynamics, such as Brownian heat
engine [20, 21], Feynman ratchet model [22], and thermo-
electric device [23], and therefore point to a fundamental
principle that can be associated with the presence of in-
herently irreversible dynamics when device is operated at
maximum power.

Intriguingly, we find that the efficiency at maximum
power is not limited by the Curzon-Ahlborn efficiency.
For example, when rl = 0.3 (short-dashed line) or rl = 0

(solid line), the quantum coherence appears and the ef-
ficiency at maximum power will exceed the bound given
by the Curzon-Ahlborn efficiency. These results are re-
markable in our model with quantum coherence. The
quantum coherence will redistribute the population in
the three-level QD and accelerate the removal of elec-
trons, thus increasing the number of absorbed photons
and reducing recombination losses.

Finally, we consider the typical problem arising due
to the decoherence. Decoherence occurs when a sys-
tem interacts with its environment in a thermodynam-
ically irreversible way. The decoherence processes can
drastically decrease an engine’s efficiency. In Fig. 3b,
the efficiency at maximum power is plotted as a func-
tion of ηc with rP = 0.9 and rl = 0. In the case that
the decoherence rate is extremely large, i.e., τ → ∞,
the efficiency (dashed line) again becomes slightly lower
than the Curzon-Ahlborn efficiency. As τ diminishes, we
find that the efficiency increases monotonically. The ef-
ficiency at maximum power is significantly higher than
the Curzon-Ahlborn efficiency when τ = 0.

VI. CONCLUDSIONS

In summary, we propose a new type of photoelectric
converter, which consists of a three-level QD coupling
to two fermionic baths and sunlight radiation. It fol-
lows from the Born-Markov approximation that the in-
terference due to coherent transitions can be simultane-
ously induced by the sunlight and the left-fermionic bath,
leading to two different non-diagonal Lamb shifts in the
Lindblad-like master equation. The results of the ther-
modynamic analysis show that the quantum coherence
is capable of improving the efficiency beyond the limit
of a system whose quantum effects are absent. The ap-
plication of quantum mechanics will bring new insight to
understand the fundamantal problem in thermodynamics
when it is applied to the nano-electronic systems.
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