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Abstract

Neuropeptides and their receptors play vital roles in controlling the physiology and behavior of animals. Short neuropeptide
F (sNPF) signaling regulates several physiological processes in insects such as feeding, locomotion, circadian rhythm and
reproduction, among others. Previously, the red imported fire ant (Solenopsis invicta) sNPF receptor (S. invicta sNPFR), a G
protein-coupled receptor, was immunolocalized in queen and worker brain and queen ovaries. Differential distribution
patterns of S. invicta sNPFR protein in fire ant worker brain were associated both with worker subcastes and with presence
or absence of brood in the colony. However, the cognate ligand for this sNPFR has not been characterized and attempts to
deorphanize the receptor with sNPF peptides from other insect species which ended in the canonical sequence
LRLRFamide, failed. Receptor deorphanization is an important step to understand the neuropeptide receptor downstream
signaling cascade. We cloned the full length cDNA of the putative S. invicta sNPF prepropeptide and identified the putative
‘‘sNPF’’ ligand within its sequence. The peptide ends with an amidated Tyr residue whereas in other insect species sNPFs
have an amidated Phe or Trp residue at the C-terminus. We stably expressed the HA-tagged S. invicta sNPFR in CHO-K1 cells.
Two S. invicta sNPFs differing at their N-terminus were synthesized that equally activated the sNPFR, SLRSALAAGHLRYa
(EC50 = 3.2 nM) and SALAAGHLRYa (EC50 = 8.6 nM). Both peptides decreased the intracellular cAMP concentration,
indicating signaling through the Gai-subunit. The receptor was not activated by sNPF peptides from other insect species,
honey bee long NPF (NPY) or mammalian PYY. Further, a synthesized peptide otherwise identical to the fire ant sequence
but in which the C-terminal amidated amino acid residue ‘Y’ was switched to ‘F’, failed to activate the sNPFR. This discovery
will now allow us to investigate the function of sNPY and its cognate receptor in fire ant biology.
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Introduction

Neuropeptides and their receptors play critical roles in almost

every aspect of insect life [1]. Therefore, they are of great interest

to researchers in insect neurobiology and physiology and also to

those interested in target validation for pesticide discovery and pest

management. The red imported fire ant (Solenopsis invicta Buren)

is a eusocial insect species native to South America. Because of its

extraordinary capacity to adapt to different environmental

conditions and its aggressiveness, the species is invasive and

successfully establishes affecting the habitat of native animals; this

has occurred in the United States, Australia, New Zealand,

mainland China and Taiwan [2–5]. S. invicta colonies can recover

even after destruction of 90% of their workers [6] making their

management very difficult. In addition to their high reproductive

output and aggressiveness, fire ants are an interesting model for

the study of social organization and behavior because colonies are

present in monogyne (single queen) and polygyne (multiple

queens) forms [7,8].

We are systematically studying fire ant receptors involved in

critical physiological functions, especially signaling receptors, to

gain knowledge of physiological mechanisms in fire ants that

perhaps collectively contribute to their success, life history, high

reproductive output and colony growth. The neuropeptide Y

(NPY) signaling system is recognized as evolutionarily conserved in

animals and regulates several physiological processes such as

feeding behavior, obesity, stress, blood pressure, anxiety, memory

and circadian rhythms [9–14]. Vertebrate NPY is structurally and

functionally related to the NPF family in invertebrates [15–19]. In

insects, the neuropeptide F (NPF) peptide family is represented by

two forms, the long NPF (NPF) and short NPF (sNPF) [20]. NPFs

are commonly 28–45 amino acids long with C-terminal conserved

sequences being RxRFamide or GRxRYamide, while sNPFs are

the short peptide sequences of 6–19 amino acid residues ending in

RFamide or RWamide [21].
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sNPF has been identified exclusively in arthropods [21]. sNPF

peptides have been isolated from several insect species including

the Colorado potato beetle [22], the American cockroach [23], the

desert locust [24], and the fruit fly [25]. The peptide predicted

sequence has also been identified by genomic and EST analyses in

fruit fly and mosquito [25,26]. In most of the species, a single sNPF

gene encodes multiple sNPF isoforms [27–31], whereas in the

honey bee the single sNPF gene encodes a single form of sNPF

[32].

In solitary insects, sNPF is involved in various insect physiolog-

ical functions such as locomotion, circadian rhythms, reproduction

and feeding behavior [20,33–35]. In Drosophila sNPF is also

involved in the regulation of sleep homeostasis through the

modulation of the cAMP-PKA-CREB signaling pathway [36,37].

sNPF seems to have a species specific effect in feeding behavior

and several studies indicate the positive relationship of activation

of the sNPF signaling system (increased expression) and food

searching and feeding behavior. In Drosophila, the over expression

of sNPF increases adult body size and the number of feeding flies

[35,38]. Further, in adult flies, expression of sNPF in olfactory

receptor neurons mediates the enhancement of starvation-depen-

dent food-searching behavior [39]. Starvation increases expression

of sNPF in cockroach [40] and sNPF receptor (sNPFR) in honey

bee [41]. Transcript levels of the sNPF and cognate receptor in the

honey bee, are interpreted as associated with worker division of

labor and nutritional status, because increases in both transcripts

were observed in foragers from nutritionally poor colonies [41].

Peptidomics of the honey bee (Apis mellifera) brain identified the

sNPF abundance changed in association with nectar and pollen

foraging [42]. In other insect species such as the lepidopteran

silkworm, Bombyx mori, and the red imported fire ant queens,

sNPF and sNPFR transcript levels, respectively, decrease with

food-deprivation, pointing to a negative correlation of sNPF

activation and fed status. Similarly, an inverse relation of sNPF

signaling and feeding behavior was also observed in the desert

locust. Injection of sNPF peptides decreases food uptake while

knock down of sNPF prepropeptide and sNPFR genes stimulates it

[27,28]. Some of these generalizations, however, are made on the

basis of transcript levels alone, and not peptide and/or receptor

protein, so caution is needed when interpreting them.

In fire ant, the full length cDNA of the sNPFR was originally

cloned from queen ovaries [43]. Detection of the sNPFR proteins

both in brain and in oocytes of fire ant queens [44] strongly

suggests a link between feeding and reproductive functions of

sNPF in fire ants. A reduction of sNPFR transcript expression was

observed in starved mated queen brain, implying a negative

relationship between sNPFR transcript expression and fed status

[43]. It must be noted that these queens were only given water and

they had been isolated from the colony. In workers of the fire ant,

sNPFR immunoreactive cells in the brain were higher in number

in the minor subcaste (workers that were involved in queen and

brood care), followed by medium and major worker subcastes. In

addition, the number of sNPFR expressing neurons changed in the

worker brain, decreasing in all worker subcastes when brood was

absent. It was speculated that higher number of sNPFR

immunoreactive neurons in the presence of brood may reflect

the detection of protein, or the need for protein when larvae of the

4th instar, which digest protein actively for the rest of the colony,

are present [45].

sNPFRs have been functionally characterized only in solitary

insects, flies (mosquitoes and fruit fly) and locust [25,27,46]. For

this study our attempts to deorphanize the sNPF receptor using the

orthologous peptide from the honey bee and those from

Drosophila failed: none of these activated the receptor. We thus

cloned the full length cDNA of the elusive sNPF ligand.

Unexpectedly, the fire ant sNPF peptide ends with ‘Y’ (tyrosine),

differing from other known insect sNPF sequences ending in F

(phenylalanine) or W (tryptophan). Two predicted peptides, when

C-terminally amidated, activated the S. invicta recombinant

sNPFR, which behaves as a Gi-coupled receptor in CHO-K1 cells,

decreasing intracellular cAMP. Ligand identification will allow

testing new hypothesis on the role of sNPY in social organization

and overall fire ant biology.

Materials and Methods

Fire ant collection and tissue isolation
Newly mated, dealate, fire ant queens were collected after

mating flights in the campus area of Texas A&M University,

College Station, Texas. Queens were abundantly found around 4–

5 PM the day after a heavy rain when sunny and warm conditions

were present, as is known [8,47]. After collection, queens were

placed in humidified tubes until dissection, as described [48].

Whole brains were dissected in phosphate buffer saline (PBS)

under a dissection microscope and kept in RNAlater solution

(Ambion, Life Technologies, Carlsbad, CA, USA) at 220uC until

use.

RNA isolation
Total RNA and mRNA were isolated to synthesize two different

cDNA types. For total RNA isolation from fire ant brain,

RNAlater solution was removed and 1 ml of TRIzol reagent

(Invitrogen, Life Technologies) was added. Brains were homoge-

nized with a disposable polypropylene pestle homogenizer (VWR,

Radnor, PA, USA); chloroform (200 ml) was added to the

homogenate and vortexed for 15 s. The chloroform/TRIzol

reagent mixture was incubated at room temperature (RT) for

10 min followed by centrifugation at 12,000 g at 4uC for 10 min.

The total RNA pellet was obtained by conventional isopropanol/

ethanol precipitation, washed in 70% ethanol, air dried briefly and

dissolved in nuclease free water and stored at 280uC until use.

mRNA was isolated from the newly mated fire ant queen brains

using the DynaBeads mRNA direct kit (Invitrogen) following the

manufacturer’s protocol. In brief, RNAlater solution was removed

from the tubes containing brains, and 500 ml of lysis/binding

buffer was added. After tissue homogenization, additional lysis/

binding buffer was added up to 1 ml. The Dynabead solution

(250 ml) was placed in an Eppendorf-tube and washed with lysis/

binding buffer. Tissue homogenate was mixed with the Dynabeads

and incubated with continuous mixing at RT for 10 min to allow

binding of the poly (A) tail of the mRNA to the bead-oligo(dT)25.

After incubation, the tube was placed on the magnet for 2 min and

the supernatant was removed. The beads/mRNA complex was

washed two times with 500 ml of washing buffer A provided with

the kit at RT, followed by washing with buffer B once. The

magnet was used to separate the beads-mRNA from the washing

buffers in each washing step. Elution of mRNA from the beads was

by incubating bead/mRNA complex with 19 ml of 10 mM Tris-

HCl (elution buffer) at 75uC for 2 min. RNaseOUT recombinant

ribonuclease inhibitor (Invitrogen) (1 ml) was added to the

collected mRNA to avoid mRNA degradation. The mRNA was

stored at 280uC until use.

cDNA synthesis
To clone the cDNA for the sNPF, cDNA was synthesized from

0.5 mg of total RNA using SuperScript III First-Strand Synthesis

System (Invitrogen) following the manufacturer’s specification.

Oligo(dT)20 (1 ml of 50 mM) and random hexamers (1 ml of 50 ng/
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ml) were added to the total RNA. DEPC-treated water was added

to 10 ml and the mixture was incubated at 65uC for 5 min and

chilled on ice. A reverse transcription reaction master mix

containing 2 ml of 106RT buffer, 4 ml of 25 mM MgCl2, 2 ml

of 0.1 M DTT, 1 ml of RNase OUT (40 U/ml) and 1 ml of

SuperScript III reverse transcriptase (200 U/ml) was added, mixed

and centrifuged. The mixture was incubated at 25uC for 10 min

followed by 50uC for 1 h and the reaction was terminated at 85uC
for 5 min and chilled on ice. The synthesized cDNA was

incubated with 1 ul of RNase H at 37uC for 20 min and stored

at 220uC until use. For cloning of the 59 and 39 region of the

sNPF peptide cDNA sequence, RACE ready cDNA was

synthesized from 11 ng of mated queen brain mRNA using the

SMARTer RACE cDNA Amplification Kit (Clontech laborato-

ries, Mountain View, CA, USA) following the manufacturer’s

protocol. The synthesized RACE ready cDNA (10 ml) was stored

at 220uC until use.

Figure 1. Nucleotide and deduced amino acid sequence of Solenopsis invicta short neuropeptide F (GenBank accession number
KJ812404). Arrowhead indicates the predicted post-translational cleavage site for processing the prepropeptide to active peptide(s). The predicted
signal peptide is shaded in gray and boxed, the predicted active peptide sequence is in bold and the polyadenylation signal sequences in the 39UTR
are boxed [49]. Poly (A) tail of the shorter cDNA begins after nucleotide ‘C’ shaded black.
doi:10.1371/journal.pone.0109590.g001
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Cloning of S. invicta sNPF
The honey bee sNPF prepropeptide sequence [32] was blasted

against the ant genome portal (http://hymenopteragenome.org/

ant_genomes/). This blast search identified other similar ant

sequences from Camponotus floridanus, Harpegnathos saltator,
Acromyrmex echinatior and Solenopsis invicta. Alignment of these

sequences revealed divergence for the S. invicta predicted peptide

region. This was initially suspected as perhaps a sequencing error

and we sought access to the assembled RNA sequence, which

facilitated the sNPF cloning process (RNAseq data provided by

Yannick Wurm, Hugh Robertson, Oksana Riba-Grognuz and

Laurent Keller). To clone the central region of the sNPF cDNA,

forward (Si sNPF-F1) and reverse (Si sNPF-R1) specific primers

were designed (Table S1). The initial fragment of sNPF was

amplified from cDNA template with primers Si sNPF-F1 and Si
sNPF-R, following the PCR condition as: 94uC for 5 min followed

by 40 cycles of 94uC 30 s, 64uC 30 s and 72uC 3 min. To obtain

the 59 and 39 region of the sNPF, three specific primers (Table S1)

were designed for the amplification using the 59- and 39- RACE

ready cDNA as the templates, respectively. Conditions of RACE

PCR were as follows: 5 cycles of 94uC 30 s and 72uC 3 min

followed by 5 cycles of 94uC 30 s, 70uC 30 s and 72uC 3 min, and

40 cycles of 94uC 30 s, 68uC 30 s and 72uC 3 min. PCR products

were analyzed by agarose gel electrophoresis and bands were cut

and cloned using the TOPO TA cloning kit (Invitrogen) and sent

for sequencing at the Gene Technologies Laboratory (Texas A&M

University, College Station, TX, USA).

Sequence and phylogenetic analyses
The cDNA sequence obtained was analyzed with the Lasergene

software (DNASTAR, Madison, WI, USA) and the prepropeptide

open reading frame (ORF) was predicted by the ‘‘ORF finder’’

tool in the same. In addition, the initiation site (AUG) was also

confirmed through analysis using ATGpr (atgpr.dbcls.jp) that

identified the Kozak consensus sequence. Detection of poly (A)

signal sequences by the poly(A) signal miner http://dnafsminer.

bic.nus.edu.sg/PolyA.html [49]. The BLAST search algorithms at

NCBI were used to identify the sNPF prepropeptide sequences

from other insect species and alignment of the S. invicta sNPF

prepropeptide to those was with ClustalW included in Megaline

(Lasergene, DNASTAR). The sNPF prepropeptide sequence was

analyzed with the prediction server (cbs.dtu.dk/services/SignalIP/

) to determine the signal peptide sequence. Subsequently, to

determine the first cleavage site for the active peptide sequence, a

sequence of two basic amino acids (RK) was localized by eye-

gazing in the propeptide because these are the common cleavage

sites in insect neuroendocrine peptides [24]. However, Southey et

al. [50] have also identified ‘R’ in addition to ‘RK’ as a potential

cleavage site. The sNPF sequence has an ‘R’ residue downstream

of RK, which could also be a first cleavage site. To determine the

C-terminal sequence the alignment to other peptides and the

orthologous neuropeptide of Apis mellifera sequence were also

compared to the S. invicta sNPF sequence. Based on these

comparative analyses and the amidation signal at the C-terminus,

the putative active peptides were predicted as SLRSALAAGHL-

RYa (sNPF1) or SALAAGHLRYa (sNPF2) (Figure 1). The

evolutionary relationships of the insect sNPF prepropeptide amino

acid sequences were analyzed by MEGA (version 5.05) [51] and

neighbor-joining method with 1000 bootstrap replicates. The

resulting tree was exported to Newick and then to FigTree 1.4.0

(http://tree.bio.ed.ac.uk/software/figtree/) for creating the un-

rooted phylogenetic tree figure.

Matrix assisted laser desorption ionization time of flight
mass spectrometry (MALDI-TOF MS)

To identify the endogenous sNPF peptides, 0.3 g in total of

eggs, and larvae and pupae (brood) were collected from a

laboratory maintained mature polygyne colony. These were

homogenized and sonicated in 500 ml of a methanol: water:

trifluoroacetic acid (TFA) solution (90:9:1). The homogenate was

centrifuged at 9,600 g, 4uC for 10 min. The homogenization,

sonication and centrifugation were repeated. The supernatant was

pooled with the previously collected supernatant. Peptides were

isolated according to Boerjan et al. [52], except that an equal

amount of hexane was then added to the latter homogenate to

remove the lipid. This mix was vortexed and centrifuged at

9,600 g, 4uC for 10 min. The lipid-free aqueous phase was

collected for MALDI-TOF MS. The samples were concentrated

Table 1. Amino acid sequences of the ligands tested on the SisNPFR-C6E8 cell line and S. invicta peptides EC50 values.

Peptide ligands Amino acid sequences (a= amidated at C-terminus) Activity (EC50)
% identity to S. invicta
sNPF1

S. invicta sNPF1 SLRSALAAGHLRYa 3.2 nM 100

S. invicta sNPF2 SALAAGHLRYa 8.6 nM 100

Analogous sNP(F) SLRSALAAGHLRFa not active
1 mM

92.3

Drome sNPF1 AQRSPSLRLRFa not active
1 mM

50

Drome sNPF2 WFGDVNQKPIRSPSLRLRFa not active
1 mM

40

Drome sNPF2
12–19

SPSLRLRFa* not active
1 mM

42.9

Mouse PYY AKPEAPGEDASPEELSRYYASLRHYLNLVTRQRYa not active
1 mM

30.8

Apime NPY EPEPMARPTRPEIFTSPEELRRYIDHVSDYYLLSGKARYa not active
1 mM

38.5

S. invicta (Solenopsis invicta), Analogous sNP(F) (Analog of S. invicta sNPF1), Drome (Drosophila melanogaster), Apime (Apis mellifera).
*Sequence identical to Apime sNPF.
All other peptides tested were not active at 1 mM.
doi:10.1371/journal.pone.0109590.t001
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Figure 2. Alignment of insect sNPF sequences. A. The unique amino acid sequence of the S. invicta short neuropeptide F active peptide(s) is
compared to those of other insect species. Aligned sNPF sequences are from (top to bottom): three ant species Solin (Solenopsis invicta KJ812404),
Acrec (Acromyrmex echinatior EGI59536.1), and Camfl (Camponotus floridanus EFN66516.1); the honey bee, Apime (Apis mellifera XP_003250155.1); a

sNPY Ligands Activate the Fire Ant sNPF Receptor
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and desalted (ZipTip C18, Millipore, Billerica, MA). The

concentrated sample (1 ml) was placed on a MALDI steel plate

and covered by the matrix (5 mg/ml of Alpha-Cyano-4-hydro-

xycinnamic acid in 70:30 acetonitrile: water). After air drying the

matrix for a few seconds, the sample was analyzed by MALDI-

TOF MS with an Applied Biosystems 4800 TOF Analyzer (AB

SCIEX, Framingham, MA, USA) at the Laboratory for Biological

Mass Spectrometry, Department of Chemistry, Texas A&M

University, College Station, TX, USA.

Establishment of stable CHO-K1 cell line expressing the
fire ant sNPF receptor

Originally, the fire ant sNPFR (S. invicta sNPFR) cDNA

(GenBank AAY88918.1) was cloned from queen ovary in 2006.

Upon re-sequencing of this clone and comparison with the

submitted sequence we discovered typing errors in the GenBank

sequence [the fifth residue was reported as D (GAC) while the

correct residue is N (ACC), the 42nd residue was V (GTG), the

correct is M (ATC), and the 456th nucleotide as C, while the

correct nucleotide is T]. The correctness of the sequence was also

reconfirmed by additional amplification, cloning and sequencing

of the sNPFR ORF from nine brains of newly mated queens. The

correct sequence of the receptor expressed in CHO-K1 cells

herein is reported as supplementary information (Figure S1).

For expression of this receptor cDNA in CHO-K1 cells, the

clone designated pSisNPFR#16 (in the TOPO vector pCR2.1,

Invitrogen) containing the full-length cDNA of the SisNPFR was

used as the template for a PCR to add a nine amino acid residue

haemaglutinin tag (HA-tag; YPYDVPDYA) at the receptor N-

terminus, following published procedures [53–55]. For this, three

overlapping forward primers were designed (Table S1). The first

forward primer (primer #129), includes a XhoI restriction site for

directional cloning, the Kozak sequence, a start codon, and a

partial sequence of the HA-tag. The second primer (sNPFR-f1)

contains the full HA-tag sequence. The third primer (sNPFR-f2)

contains the terminal HA-tag sequence and a S. invicta sNPFR

sequence corresponding to the N-terminus. A reverse primer

(sNPFR-r1) was designed with an EcoRI restriction site for

basal ant, Harsa (Harpegnathos saltator EFN85447.1); the locust, Schgr (Schistocerca gregaria AHH85823.1); the flour beetle, Trica (Tribolium castaneum
EEZ97763.1); dipterans, Anoga (Anopheles gambiae ABD96048.1), Aedae (Aedes aegypti ABE72968.1), and Drome (Drosophila melanogaster
AAN11060.1); the brown planthopper, Nillu (Nilaparvata lugens BAO00976.1), and three lepidopterans, Helar (Helicoverpa armigera AGH25568.1),
Danpl (Danaus plexippus EHJ63336.1), and Bommo (Bombyx mori NP_001127729.1). Identical amino acid residues are shaded black. In the alignment,
active peptides corresponding to the location of S. invicta sNPFs are underlined with a solid line, and additional orthologous peptides encoded in
cDNAs from other species are underlined with dashed lines. Arrowheads indicate the predicted post-translational cleavage sites for processing the
prepropeptide to active peptide(s). B. Alignment of partial sNPF nucleotide sequences encoding the active peptide in four ant species. Identical
nucleotides are shaded black. Amino acid residues for the active sNPF peptide (shaded gray) are in the middle of the respective codon; for S. invicta
are at the top and for the other three ant species, at the bottom. The arrowhead indicates a transversion from C to G in the codon first position in S.
invicta resulting in Ala (A), and not Pro (P) as in other ants, and the insertion of six additional nucleotides also extends the peptide length. There is a
conservative replacement of R for H in S. invicta and F (TTT or TTC) is replaced with Y (TAC). The sequence for C-terminal a-amidation of Y or F is X-
Gly-basic residue (R), and Gly provides the nitrogen for the same [70].
doi:10.1371/journal.pone.0109590.g002

Figure 3. Phylogenic tree of insect short neuropeptide F prepropeptide sequences from different insect species. Amino acid
sequences were analyzed by MEGA (version 5.05); the phylogenetic tree was constructed using the neighbor-joining method. The number 86
indicates the bootstrap confidence level. Abbreviations on branches correspond to the genus and species name, and these are identical to those
described in the legend of Figure 2, with the addition of the Southern house mosquito, Culqu (Culex quinquefasciatus EDS32332.1) sNPF and the
predicted sNPF from the ant species Attce (Atta cephalotes), Linhu (Linepithema humile), and Pogba (Pogonomyrmex barbatus). The honey bee, Apime
NPY (NP_001161192.1) was also included in the analysis.
doi:10.1371/journal.pone.0109590.g003
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directional cloning. The three forward primers and the reverse

primer were simultaneously used in a PCR amplification reaction.

The concentration of the second and the third 59 primers (4 nM

for each) was 1% of that of the first forward primer (400 nM) to

favor the synthesis of the longest, complete product. The reverse

primer was at the same concentration (400 nM) as the first

forward primer. PCR amplifications contained 350 ng template

plasmid, the four mentioned primers, 0.2 mM of dNTPs, 1x

Advantage 2 buffer and 1 ml Advantage 2 Taq DNA polymerase

(Clontech) in a final volume of 50 ml. The PCR settings were as

follows: 94uC for 3 min; followed by 40 cycles: 94uC for 30 s,

65uC for 1 min, 72uC for 1.5 min; 72uC extension for 10 min.

The PCR product was digested with XhoI and EcoRI (Promega,

Madison, WI, USA) and the band was recovered after gel

electrophoresis. The retrieved XhoI-EcoRI fragment DNA was

ligated with T4 DNA ligase (Promega) to the linearized

pcDNA3.1(-) vector (Invitrogen) previously digested with XhoI

and EcoRI. The ligation mix was transformed into One Shot Top

10F’ E. coli competent cells (Invitrogen). Positive clones were

identified by restriction analysis of recombinants with XhoI and

EcoRI and gel electrophoresis. The correctness of the expression

plasmid (pcDNA3.1(-) SisNPFR) for receptor expression was

confirmed by sequencing.

For the functional characterization of S. invicta sNPFR, stably

transformed cell lines were established as described [56]. In brief,

CHO-K1 cells were obtained from the American Type Culture

Collection (ATCC, Manassas, VA, USA) and grown as described

[57] in a 5% CO2 humidified incubator at 37uC. For transfection,

CHO-K1 cells were seeded into T-25 tissue culture flasks and

allowed to grow overnight until 50% confluent. Cells were

transfected in serum-free Opti-MEM medium (Life Technologies,

Gaithersburg, MD, USA) with the cationic lipid reagent Lipofectin

(Life Technologies) (6 ml) and 2 mg of the expression construct

according to the manufacturer’s protocol. After 6 h, the lipofectin-

containing medium was removed and replaced with F12K (Sigma,

St. Louis, MO, USA) medium plus 10% fetal bovine serum

(EquiTech Bio, Kerrville, TX, USA) without antibiotic. After 48 h

of growth, the cells were split into the same medium but with

antibiotic Geneticin (Invitrogen) (800 mg/ml), and selection

continued for 5 weeks followed by isolation of clonal lines. A total

of 14 clonal cell lines were obtained by dilution and selection of

single cells distributed in a 96-well plate (96 theoretical single cells).

Presence of S. invicta sNPFR transcript was verified by screening

by RT-PCR by pooling aliquots from clonal cell lines. For this,

total RNA was isolated by RNeasy Mini kit (Qiagen) and used for

cDNA synthesis with SuperScript III First-Strand Synthesis

System followed by RT-PCR with receptor forward sNPFRf1

and reverse sNPFRr1 primers (Table S1). The cell lines from

groups that generated the RT-PCR product of the expected size

were further screened. Single positive clonal cell lines were

subjected to functional assay using S. invicta sNPF1 and sNPF2 as

ligands. Cell line C6 was further selected to obtain a line

designated SisNPFR-C6E8, which was the best performing cell

line and was chosen for receptor functional characterization.

Immunocytochemistry of SisNPFR-C6E8 cell line to detect
HA-tagged sNPF-receptor

For immunocytochemistry experiments, 16105 cells were sown

over sterile circular coverslips (Fisher Scientific, Pittsburgh, PA,

USA), that were placed in, 12-well plates. Cells, mock-transfected

with vector pcDNA3.1(-) only, and SisNPFR-C6E8, were allowed

to attach onto the coverslip after incubation, for 24 h. Cells were

then processed for immunolocalization of the HA-tag-labeled

receptor according to methods in Yang et al. [55]. Briefly, cells

were prefixed in freshly prepared 4% paraformaldehyde (PFA) in

F12 K culture medium with 10% fetal bovine serum and

Geneticin. This prefixative solution was removed and then cells

were washed with PBS and fixed with 4% PFA for 15 min. Fixed

cells were permeabilized in PBST (0.25% Triton X-100 in PBS)

for 5 min, washed with PBS and covered with Image-IT FX signal

enhancer (Invitrogen). The plate was incubated in a humid

chamber for 30 min. Cells were then incubated in blocking

solution [5% normal goat serum (NGS; Jackson ImmunoRe-

search, West Grove, PA, USA) in PBS] at 4uC, overnight. Then,

Figure 4. Detection of the fire ant sNPF (Partial sequence: ALAAGH) by MALDI-TOF MS. The Y-axis represents % intensity (as % of the
highest charge detected) and the X-axis represents mass. The agarose electrophoresis analysis shows the amplified expected size band (377 bp) of
the fire ant sNPF from the fire ant larvae cDNA. The peptide sequence analysis performed with the PeptideCutter tool at ExPASy Bioinformatics
Resource Portal revealed several potential protease cleavage sites, such as those for proteinase K (thin arrows), thermolysin (thick arrows), and Arg-C
proteinase, Clostripain, and trypsin (black arrow head). The detected fragment is predicted after thermolysis digestion.
doi:10.1371/journal.pone.0109590.g004
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cells were stained with a rabbit antiHA-tag primary antibody (Cell

Signaling Technology, Danvers, MA, USA) solution (0.23 mg/ml)

in 2% NGS in PBS at 4uC, overnight. The cells were washed with

PBS and incubated with goat anti-rabbit IgG Alexa Fluor 546

(10 mg/ml) (Jackson ImmunoResearch) at 4uC, overnight. Cover

slips were placed onto slides and mounted with VectaShield

containing DAPI (Burlingame, CA, USA). SisNPFR-C6E8 cells

were incubated with preimmune rabbit serum (1:2000) as negative

controls, and also incubated with rabbit anti a-tubulin IgG (1:50

dilution; Abcam, Cambridge, MA, USA) as a positive control for

immunostaining. As negative and positive controls for the HA-tag

antibody staining, mock-transfected cells and RmCAP2bCCL#19

[55] cell line expressing an HA-tag neuropeptide receptor were

incubated with the anti HA-tag primary antibody, respectively.

Cell membranes preparation and western blot analysis
A cell membrane enriched preparation of SisNPFR-C6E8 cells

was obtained as reported [44]. Briefly, SisNPFR-C6E8 cells were

grown in a T-75 flask and once they were 90–95% confluent, the

culture medium was discarded and cells were washed with PBS.

The cells were harvested using a cell scrapper on 1 ml of buffer A

(25 mM Tris HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 mM

DTT) with 16cOmplete protease inhibitor cocktail tablets (Roche

Diagnostics Ltd, Mannheim, Germany). All the following steps

were performed on ice. The cells were homogenized and the cell

nuclear fraction was removed by centrifugation at 800 g at 4uC for

5 min. The supernatant containing soluble cytosolic and insoluble

membrane fractions was collected. Homogenization was repeated

by adding 500 ml of buffer A, followed by centrifugation and

collection of the supernatant. The process was repeated for a total

of four times. The final collected supernatant was centrifuged at

100,000 g at 4uC for 1 h. The supernatant with soluble cytosolic

protein was discarded and the membrane-containing pellet was

dissolved in 200 ml of buffer B (50 mM Tris/HCl, pH 7.5, 2 mM

CaCl2) with 16cOmplete protease inhibitor cocktail. Protein was

Figure 5. Detection of Solenopsis invicta short neuropeptide F receptor (Solin sNPFR) in stably transformed CHO-K1 cell line SisNPFR-
C6E8. The HA-tagged Solin sNPFR was detected by fluorescence immunocytochemistry using an anti-HA-tag antibody. The cell line names are
shown on the left panel, and the antibody used labels the top of the first column. For each row, the images on the center show the nuclear staining
with DAPI (blue) of the same cells on the left, and those on the right are merged images of the two previous. The HA-tag (red signal) is detected in
Solin sNPFR cells (A–C) but not in the vector-only transformed cells (D–F). Rhimi-CAP2b-R cells (G–I) showing red signal were used as positive controls
for the HA-tag labeling. No red signal was detected in Solin sNPFR cells incubated with pre-immune rabbit serum (J–L). An anti-a-tubulin antibody
was used as positive control for the labeling of a cytoplasmic structural protein (M–O); the red pattern is different than for the HA-tag (contrast A and
G to M). Scale bar, 50 mm.
doi:10.1371/journal.pone.0109590.g005
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quantified by the BCA (Pierce, Rockford, IL, USA) method and

stored at 280uC until use.

For western blot analysis, membrane proteins (50 mg) from

SisNPFR-C6E8 cells and mock (vector pcDNA3.1(-) only)

transfected cells and mated queen ovary were resolved by SDS-

PAGE in a 10% Mini-PROTEAN TGXTM precast gels (Bio-Rad

Laboratory, Hercules, CA, USA) and transferred onto 0.2 mM

Immun-Blot PVDF membrane (Bio-Rad Laboratory) [44]. To

block unspecific binding, the PVDF membrane was incubated

with 5% skim milk (Walmart) in Tris buffer saline with 0.1% tween

20 (TBST) for 1 h, at RT. After rinsing three times with TBST,

the membrane was incubated with 0.4 mg/ml of affinity-purified

rabbit polyclonal anti-sNPF receptor antibody [44] at 4uC,

overnight. The unbound primary antibody was washed from the

membrane with TBST three times for 10 min each. The

membrane was then incubated with HRP-conjugated goat anti-

rabbit IgG (1:40,000) (Jackson ImmunoResearch) for 1 h, at RT.

The membrane was washed with TBST three times for 10 min

each. The membrane was then incubated with SuperSignal West

Pico Chemiluminescent substrate (Pierce) for 5 min, exposed to

Kodak X-OMAT LS film (Carestream Health, Rochester, NY)

and developed with a Konica medical film processor (Konica

Corporation, Japan).

Peptide Synthesis
The sNPF predicted peptides SLRSALAAGHLRYa and

SALAAGHLRYa, and an analogous peptide SLRSA-

LAAGHLRFa were commercially synthesized (Genscript, Piscat-

away, NJ, USA). In addition to these, Drosophila sNPF peptides

(AAN11060.1), Drome sNPF1 and Drome sNPF2 were kindly

provided by Dr. Joe W. Crim (Department of Cellular Biology,

University of Georgia, Athens, GA, USA), and Drome sNPF2 12–

19 was received as a gift from Dr. Liliane Schoofs (Department of

Biology, KU Leuven, Belgium). Honey bee (A. mellifera) NPY

(NP_001161192.1) was commercially synthesized (Lifetein, NJ,

USA) and mouse PYY (AAH10821.1) was purchased from Tocris

Bioscience (UK).

Intracellular measurement of cAMP
To quantify changes in intracellular cAMP, 16105 cells of

SisNPFR-C6E8 were seeded in each well of a 6-well plate and

incubated at 37uC in presence of 5% CO2 for 24 h to allow cell

attachment. Cell culture medium [F12 K medium with 10% fetal

bovine serum and 400 mg/ml of Geneticin] was then replaced

with the same fresh medium as above and the cells were grown for

additional 48 h until they reached 90–100% confluence. The cells

were rinsed twice with F12 K medium only (serum and antibiotic

free) and then incubated in 50 mM Ro-20-1724 phosphodiesterase

inhibitor (Santa Cruz Biotechnology, Santa Cruz, CA, USA) in

F12 K medium. Forskolin (10 mM) (Cayman Chemical, Ann

Arbor, MI, USA) or forskolin (10 mM) with 0–10 mM solutions of

ligands (10 concentrations), respectively, were added to the cells

and incubated at 37uC in the presence of 5% CO2 for 1 h. Cells

were rinsed once with F12 K medium, serum- and antibiotic-free,

followed by lysis with 274 ml of 0.1 M HCl at RT for 20 min and

centrifugation at 1000 g for 10 min. The supernatant was used for

cAMP measurements using the cyclic AMP EIA Kit (Cayman

Chemical) following the manufacturer’s protocol. In brief, 50 ml of

supernatants and cAMP standards were loaded in a 96-well plate,

and the cAMP EIA buffer was used as blank. cAMP AChE tracer

(50 ml) (cAMP bound to acetylcholinesterase for competition) and

50 ml of anti-cAMP specific antiserum were added. Then the

mixture was incubated at 4uC for 18 h. The mixture was removed

and the plate was rinsed five times with wash buffer containing

0.05% polysorbate-20. After washing, the plate was developed at

RT for 2 h using the Ellman’s reagent and the OD (412 nm) was

measured in a VersaMax tunable microplate reader (Molecular

Devices, Sunnyvale, CA, USA). cAMP level was calculated using

Cayman provided formulas and aided by software located at

http://www.myassays.com/(MyAssays Ltd., Haywards Heath,

West Sussex, UK) for the output standard line graph and cAMP

concentration calculations. In brief, the standard curve as

‘‘Percentage (standard bound/maximum bound) [(%). (B/B0)]

versus log concentrations’’ was created and a linear regression fit

was performed. For this, the average absorbance readings for non-

specific binding (NSB) and B0 wells were obtained, and the NSB

average was deducted from the B0 average to generate the

corrected B0 maximum binding value. For the remaining

standards’ wells, the B/B0 value was calculated by subtracting

the average NSB absorbance from the standards’ absorbance and

dividing the obtained value by the corrected B0. To obtain (%).

(B/B0) the obtained value was multiplied by 100. The cAMP

concentration of each sample was determined on the basis of the

standard curve. Concentration-response curves were obtained by

nonlinear regression-curve fit analysis (sigmoid dose–response

equation with variable slope) using Prism 5.0 (GraphPad software

Inc., San Diego, CA, USA). Normalized maximal responses from

individual replicates at each of 10 concentrations from 0 to 10 mM

were used for calculation of the EC50s. The percentage of cAMP

production for each treatment was expressed as that of the control

maximal forskolin cAMP stimulation, and values were obtained

from three independent biological replicates, each of which was

the average of three technical replicates (pseudoreplicates). The

Figure 6. Detection of S. invicta sNPF receptor in cell
membranes prepared from the SisNPFR-C6E8 cell line by
western blot analysis. Numbers in the left indicate the marker’s
protein mass (kDa). Lane 1, the membrane fraction of the fire ant mated
queen ovary (Ov) as a positive control; lane 2, the membrane fraction of
SisNPFR-C6E8 (C6E8) and lane 3, the membrane fraction of the vector-
only (VO) (pcDNA3.1(-)) transfected CHO-K1 cells probed with the
specific anti-sNPF receptor anti-peptide antibody [44]. Membrane
protein (50 mg) was loaded in each lane. The antibody detects the
55 kDa receptor protein in lanes 1 and 2, as expected.
doi:10.1371/journal.pone.0109590.g006
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data was statistically analyzed by one-way analysis of variance

(ANOVA) followed by Tukey’s multiple comparison test, included

in the Prism 5.0 software. To compare the activity of the

analogous peptide (SLRSALAAGHLRFa) assays were run simi-

larly except that only two concentrations were tested (10 nM and

1 mM).

Figure 7. sNPF peptides inhibition of forskolin-stimulated cAMP accumulation in CHO-K1 cells stably transformed with the S. invicta
sNPF receptor (SisNPFR-C6E8). A. Independent dosage-response curves of S. invicta sNPF1 [SLRSALAAGHLRYa (13 a.a. residues); dashed line] and
sNPF2 [SALAAGHLRYa (ten a.a. residues); solid line]. Cells were treated with a phosphodiesterase inhibitor previous to the simultaneous application of
peptide and forskolin (10 mM), which was applied to elicit maximal cAMP production. The Y-axis represents the cAMP production as a percentage of
the forskolin-stimulated maximum cAMP level, considered 100%. The X-axis shows the log molar (Log (M)) concentrations of peptides applied. Values
indicate means 6 S.E. of three independent biological replicates Half maximal effective concentration values (EC50 values) are given on the graph. B.
In the fire ant sNPF1 sequence, the change of the C-terminal amidated residue ‘Y’ to ‘F’ [sNP(F)] eliminates the ligand activity on the receptor. S.
invicta sNPF1 (1 mM) decreased cAMP as expected (*, significantly different at p#0.05 level). Data were analyzed by ANOVA followed by Tukey’s
multiple comparison test. Each value is the average of three biological replicates with the error bars showing standard deviation of the average for
each treatment. The standard error of the analysis is 19.8.
doi:10.1371/journal.pone.0109590.g007
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Results

Cloning of S. invicta sNPF and prediction of the active
peptide(s)

Two cDNAs of S. invicta sNPF precursor (GenBank accession

no# KJ812404 and KJ812405) were cloned from S. invicta mated

queen brain, both encoding a protein of 112 amino acid residues

(Figure 1). The longer cDNA is 3,732 bp and the shorter is

3,033 bp long. The 59 untranslated region (UTR) (120 bp) and the

ORF region are identical in both cDNA forms, differing only in

the length of the 39 UTR. The longer cDNA 39 UTR is 3,273 bp

and the shorter is 2,574 bp without poly (A) tail; the latter form

arising from the usage of an earlier polyadenylation signal

sequence (Figure 1, boxed). A Blast search with the deduced

amino acid sequence predicted this protein as a sNPF from insects

and, therefore, it was aligned to those. The alignment shows that

arginine (R) at position 76, serine (S) at position 77, leucine (L) at

position 84 and arginine (R) at position 85 are conserved in all

aligned insect sequences (Figure 2A). The signal peptide prediction

tool identified the prepropeptide signal peptide cleavage site

between amino acid residues 24 (A) and 25 (T), yielding an 88-

amino acid residue propeptide (Figure 1). The active peptides

predicted were SLRSALAAGHLRYa (sNPF1) and SALAAGHL-

RYa (sNPF2) (Figure 1). These peptides end in an amidated

tyrosine (Y) unlike phenylalanine (F) amine in other aligned insect

species (Figure 2A). The fire ant sequence SLRSALAAGHLRYa

is 30% identical to the genomic predictions of sNPF ligands from

the other ant species SQRSPSLRLRFa (Figure S2). Closer

analysis of the nucleotide sequences of sNPF ORFs from S.
invicta and three ant species revealed that the sequences begin to

differ just before those encompassing the active peptide. The

amino acid sequences of the active peptide change by the

additional downstream insertion of the nucleotides ‘TAGCTG’,

which results in a sequence in frame. This results in the addition of

two amino acid residues in the fire ant sNPF active peptide in

comparison to the canonical sequence in other ants (Figure 2B).

The prepropeptide sequences are somewhat similar in both

percentage of sequence identity and structure within species of

the same order (Figure 2A, Table S2), and this is especially true

among the Hymenoptera (Figure S2, Table S2). Neighbor-joining

phylogenetic analyses of the identified S. invicta sNPF prepropep-

tide with insects’ sNPFs and the honey bee long NPF (NPY)

prepropeptides formed order-specific clusters (Figure 3), S. invicta
sNPF grouping with the other hymenopterans sNPFs and honey

bee long NPF (NPY). Similar to sNPF, the long NPF in most insect

species ends in an amidated F, however, the honey bee NPF ends

in an amidated Y (Table 1), and for this reason was included in the

tree.

The sNPF peptide signature was detected in eggs and
brood

MALDI-TOF MS detected a partial sequence of the sNPF

peptide, ‘ALAAGH’, from the eggs and brood extract (Figure 4).

To further support this finding, we also amplified a sNPF product

from larvae cDNA. The expected sized band was obtained with a

set of specific primers, SisNPF F2 and SisNPF R2 (Table S1)

(Figure 4). The nucleotide sequence of the amplified PCR product

was identical to that of the sNPF cDNA cloned from the fire ant

queen brain. This verifies the expression of sNPF cDNA in brood,

in agreement with the finding of the peptide signature. The

analysis of the sNPF peptide sequence by PeptideCutter at

ExPASy Bioinformatics Resource Portal predicts preferred cleav-

age sites for insect proteases such as trypsin and other endopep-

tidases of bacterial origin such as thermolysin (Figure 4). Two

thermolysin sites flank the detected sequence ALAAGH, which is

present in both sNPF1 and sNPF2.

Development of a stable cell line expressing the HA-
tagged S. invicta sNPF receptor

To deorphanize the S. invicta sNPFR, a CHO-K1 cell line

stably expressing the receptor was selected. Expression of S.
invicta sNPFR in the cell line SisNPFR-C6E8 was verified by

immunocytochemistry with an anti-HAtag antibody (Figure 5A–

C). Negative controls, mock transfected (Figure 5D–F) and the

stable cell line SisNPFR-C6E8 incubated with pre-immune rabbit

serum (Figure 5J–L) did not show any signal, as expected. The

Rhimi-CAP2b-R #19 cell line which stably expresses a HA-tagged

tick CAP2b receptor [55], was used as positive control (Figure 5G–

I). The SisNPFR-C6E8 cell line was also stained with an anti-a
tubulin antibody as an additional positive control; this showed the

distinctive filamentous signal in the cell cytoplasm. Western blot

analysis of the cell membrane preparation of SisNPFR-C6E8 cells

using a specific anti-peptide antibody against S. invicta sNPFR

detected the specific band (55 kDa), verifying the expression of the

full length receptor in the cells (Figure 6). A positive control with

mated queen ovary tissue showed a band of the same size

(Figure 6, lane 1, arrow).

sNPY inhibited intracellular forskolin-stimulated cAMP in
SisNPFR-C6E8 cell line

A pilot study showed that S. invicta sNPF ligands, sNPF1 and

sNPF2, did not stimulate production of intracellular cAMP in the

SisNPFR-C6E8 cell line. We then determined that both ligands

inhibited forskolin-stimulated cAMP (Figure 7A). In addition, a

concentration-dependent inhibition of intracellular cAMP was

observed, with EC50s values of 3.2 and 8.6 nM for sNPF1 and

sNPF2, respectively (Table 1 and Figure 7A), although there is no

significant difference between the two ligands curves (Figure 7A).

To determine if the particular ending of the fire ant peptide (Ya)

has functional significance, the analogous sNP(F) peptide was

tested, in which the C-terminal amidated Y was replaced by

amidated F, and showed no activity on the receptor (Figure 7B).

Other peptides, Drosophila sNPFs, Apime NPY and mouse PYY

also failed to change the cAMP production indicating they did not

activate the sNPFR (Table 1).

Discussion

We cloned two S. invicta sNPF cDNAs that differ only in the

length of 39 UTR but not in the 59 UTR or coding region

(Figure 1). The ORF of sNPF was flanked by a relatively long 39

UTR (3.2 kb in the longer cDNA and 2.5 kb in shorter cDNA,

which is identical to the longer cDNA). The length of the 39 UTR

is important in post-transcriptional regulation of gene expression

such as mRNA degradation and stability, nucleo-cytoplasmic

transport and mRNA localization, and regulation of translation

initiation [58,59]. Longer 39 UTRs facilitate the formation of

secondary structural intra-folding, which hinder miRNA-binding

sites which might be accessible in shorter 39UTRs, conferring

greater stability to the mRNA [60]. The short cDNA arises from

the utilization of an alternate poly (A) site (Figure 1). Multiple poly

(A) signal sequences ‘AAUAAA’ were predicted on the 39 UTR

region of the sNPF longer cDNA. The differential expression of a

number of genes that undergo alternative poly (A) site choice

(polyadenylation) or splicing competition could be regulated at the

level of tissue-specific polyadenylation factors [61,62]. The use of

alternative poly (A) sites can impact the final amount of protein

product per unit precursor of RNA transcribed [61]. It would be

sNPY Ligands Activate the Fire Ant sNPF Receptor

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e109590



interesting to know if the length of the sNPF 39 UTR varies also

according to fire ant caste, developmental stage and/or neuron-

specific manner. Since we cloned it from queens, it is possible that

39 UTR length could be neuron-specific.

In fruit fly, the African malaria mosquito, the yellow fever

mosquito, and the silkworm Bombyx mori, the sNPF gene encodes

a single prepropeptide which is processed to yield four to five

individual sNPFs [21,24–26,30] (Table S2). The S. invicta sNPF

gene encodes a prepropeptide which may yield, only alternatively,

two possible active sNPF peptides that may differ only in length by

three amino acid residues at the N-terminal region (Figure 2A).

Alignment of sNPF prepropeptide of different insect species

revealed that fire ant prepropeptide is more similar to those of

other social insects such as other ant species (from which genomic

information allowed sNPF peptide prediction [63]), and the honey

bee than to solitary insects in the Diptera, Coleoptera and

Lepidoptera (Table S2). In most arthropods studied so far, sNPFs

are 6–11 amino acid residues in length with the C-terminal

consensus sequence xPxLRLRFamide [21]. Interestingly, S.
invicta sNPF has an amidated tyrosine at the C-terminus, which

is more similar to the honey bee ‘‘long NPF’’ (which ends in Y)

(Table 1) and the vertebrate NPY. Phylogenetic analysis of the

prepropeptide amino acid sequence showed that sNPF prepropep-

tides are different among different insect orders; it is known that

regions with high variability indicate fast peptide sequence

evolution [30], so it may be that sNPFs are evolving rapidly in

insects.

Detection of the signature sequence of S. invicta sNPF from fire

ant eggs and brood (Figure 4) supports the uniqueness of the

amino acid sequence of the S. invicta sNPF compared to the other

insect species (Figure 2; Figure S2). sNPFs are also present in the

central nervous system of Drosophila larvae [35]. In fire ant

colonies, fourth instar larvae have a critical role in dietary protein

digestion, and peptides so processed are shared by the colony

members, mainly given to other larvae and queen, through

trophalaxis. These larvae perform extraoral digestion in addition

to digestion that occurs in their gut. Therefore, is very likely that

these abundant proteases may have digested the propeptide and

the active ligand during their homogenization, because we did not

add protease inhibitors to the homogenate. This explains the

detection of only a partial sNPF sequence. A search of the fire ant

genome for other potential proteins exhibiting the detected

sequence ALAAGH did not yield any protein with that motif,

although proteins with the motifs LAAGH or ALAA were found,

further supporting the detected fragment corresponds to the sNPF

peptide and that the fire ants translate the sNPF cDNA. We

attempted to detect sNPF from intact brain of the newly mated

queen. Availability of the samples was the main limiting factor for

this particular experiment. The problem associated with detection

of low abundant peptides because of limited body and organ size,

physiological stage of the insect species using mass spectrometry

technologies has been described [64].

In western blots of the SisNPFR-C6E8 cell line, the molecular

weight of the receptor band is 55 kDa (higher than expected mass

of ,46 kDa) when probed with the specific anti-sNPF receptor

antibody (Figure 6). A similar analysis using the anti-HA tag

antibody also showed a single band of the same size (not shown).

In the mated queen ovary the receptor also runs at ,55 kDa [44]

(Figure 6). Immunocytochemistry showed that the majority of the

cells expressed the recombinant receptor. In the membrane-

proximal C-termini of many G protein-coupled receptors the

sequence F(X6)LL (where X can be any residue, and L is leucine or

isoleucine) is highly conserved and functions as a common motif

mediating receptor transport from the endoplasmic reticulum to

the cell surface [65]. In the S. invicta sNPFR this motif is

represented by the sequence ‘FRKEFQQIL’ which is likely

involved in the expression of S. invicta sNPFR on the cell surface

(Figure S1). Both ligands (sNPF1 and sNPF2) activate the S.
invicta sNPFR and reduce intracellular cAMP; moreover, a

concentration-dependent inhibition of forskolin-stimulated cAMP

was also observed with both. This indicates that the S. invicta
sNPFR is a Gai protein binding GPCR in CHO-K1 cells. The

only other two similar studies in deorphanization of sNPF receptor

in insects are for solitary insects, mosquito and locust, and these

also showed a concentration-dependent inhibition of forskolin

stimulated cAMP in CHO-K1 cells [27,66]. The EC50 value for

the mosquito sNPF in this recombinant system was reported as

1.5 nM [66], which is comparable with the EC50 values of

3.276 nM and 8.603 nM for S. invicta sNPF1 and sNPF2,

respectively. Whereas the EC50 values were 76.3–95.5 pM for the

inhibition of intracellular cAMP by locust sNPF on the cognate

receptor expressed in HEK 293T cells [27]. In contrast with the

above mentioned results, in Drosophila BG2-C6 cells which are of

neuronal origin and endogenously express the sNPF receptor, the

application of sNPF increases cAMP in a dosage-dependent

manner [36,67]. However, a genetically encoded FRET-based

sensor for cAMP showed that sNPF causes a decrease in cAMP in

Drosophila 3rd instar larval motor neuron [68], suggesting the

presence of tissue (or neuron)-specific sNPF downstream pathways.

Two NPY-family receptors, the NPF- and sNPF-receptor, have

been identified in insects, with respective ligands being NPF and

sNPF, respectively. Extensive searches in the honey bee and wasps

genomes failed to identify the NPF receptor gene, indicating the

loss of the gene in early hymenopteran evolution [41]. However, in

the honey bee genome two NPY-like peptides, NPF (which ends in

an amidated Y) and sNPF (ends in an amidated F) are present

[32]. This finding indicates that the NPY system in the honey bee

is functionally represented by the sNPF signaling system. It is

unknown if the NPY peptide activates the sNPF receptor in honey

bee and this would be interesting to know to determine if two

peptides converged on the same signaling receptor, perhaps

signaling through different G-proteins. We thus speculated that if

the honey bee has one sNPF receptor but two related peptides

(sNPF and NPY), perhaps the fire ant sNPF receptor could be a

‘‘permissive receptor’’ being activated by other NPY-like ligands.

However, neither the honey bee NPY (long NPF; 39 amino acid

residues) nor vertebrate PYY (34 amino acid residues) activated

the fire ant receptor despite the similarity of these ligands to S.
invicta sNPF in having an amidated tyrosine at the C-terminus

and other sequence similarities (Table 1, underlined residues).

Based on these findings it appears that social insects have

significant differences with respect to solitary insects in neuropep-

tide networks controlling the propensity to food searching and

acquisition [69] and of sensing their nutritional status [45]. In

summary, the S. invicta sNPFR has been deorphanized by

identifying a non-canonical sNPF peptide sequence ending at

amidated ‘Y’ from S. invicta, and this residue is critical for

receptor activation and decrease in intracellular cAMP produc-

tion. These conclusions are supported by genomic, RNAseq and

cloning data as well as detection of a signature peptide fragment by

MALDI-TOF MS and by functional cAMP assays. The receptor

exhibits high selectivity for S. invicta sNPF1 and sNPF2 which

have equal potency, in the nanomolar range.

Supporting Information

Figure S1 Corrected open reading frame sequence of S. invicta
sNPF receptor.
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(TIFF)

Figure S2 Alignment of sNPF pre-propeptide sequences from

the seven ant species for which genome sequences are available.

Identical residues to the fire ant sequence are on black

background. The active sNPF peptide for all species is boxed

and the sequence SLRSALAAGHLRYa is 30% identical to the

genomic predictions of sNPF ligands (SQRSPSLRLRFa) from the

other ant species. Solin, Solenopsis invicta; Attce, Atta cephalotes;
Acrec, Acromyrmex echinatior; Camfl, Camponotus floridanus;
Harsa, Harpegnathos saltator, Linhu, Linepithema humile, Pogba,
Pogonomyrmex barbatus.
(TIFF)

Table S1 Primer information.

(DOCX)

Table S2 Percentage of amino acid sequence identity between

the fire ant sNPF pre-propeptide and those from the respective

insect species listed. Insect orders of species listed in descending

order are: Hymenoptera (first 7 species including 6 ants),

Orthoptera, Coleoptera, Diptera (3 species), Hemiptera and

Lepidoptera (3 species).

(DOCX)
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