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ABSTRACT 

 

The high precision timing and positioning messages of GNSS signals are 

indispensable to numerous modern applications. We can call current level of 

integration between GNSS and computation as loosely coupling, as only x, y, z, t are 

being passed across two sides. This work aims to explore the next generation of 

computational GNSS, or tightly coupling based on Time Difference of Arrival (TDOA), 

which may bring benefits in three aspects: cooperative measurements of common events, 

utilization of deterministic physical behaviors, and low latency of hardware-software 

integration. For it, this work presents a novel geometric theory called zero-crossing 

curve/surface (z-curve/surface) to characterize signals, time, and orbits of GNSS 

satellites, in the hope to set a new foundation for more advanced applications of 

situational awareness. A z-surface is the three dimensional surface where pseudorange 

measurements to two satellites are equal. A z-curve is the intersection between z-surface 

and the Earth surface. A z-curve/surface has three main benefits compared to legacy 

GNSS projections: deterministic, wide area, common to multiple receivers. These 

properties are helpful for the design of novel digital applications related to GNSS. 

Starting with characterization of the satellite service areas, this work develops analytical 

forms (static and dynamic) for the z-curve of the GNSS signals, and their 

parameterization schemes using geometric and numerical tools. Theories proposed in 

this dissertation are validated with real world experiments.  
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NOMENCLATURE 

 

Abbreviations 

C/A Coarse acquisition 

CDMA Code Division Multiplexing Addressing 

CORS Continuously Operating Reference Stations 

DSP Digital Signal Processing 

ECEF Earth-Fixed Earth-Centered  

ECI Earth-Centered Inertial 

GEO Geostationary/Geosynchronous earth orbit 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

IGS International GNSS Service 

K-Crossing The crossing of a k-surface 

K-Surface/Curve K-crossing surface/curve 

LEO Low earth orbit 

LOS Line of sight 

MEO Medium earth orbit 

NTRIP Network Transport of RTCM via Internet Protocol 

OOP Order of pseudoranges 

PISI Parametric-Implicit Surfaces Intersection 

PRN Pseudorandom number 
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QSIC Quadratic Surfaces Intersection Curve 

RF Radio frequency 

RINEX Receiver Independent Exchange Format 

RK Runge-Kutta 

RTCM Radio Technical Commission for Maritime Services 

SLAM Simultaneous Localization and Mapping 

SSV Space service volume 

SUPL Secure User Plane Location 

TDOA Time difference of arrivals 

TOA Time of arrival 

TOW  Time of week 

TSV Terrestrial service volume 

UTC Universal Time, Coordinated 

WGS World Geodetic System 

Z-Crossing The crossing of a z-surface 

Z-Surface/Curve Zero-crossing surface/curve 

 

Symbols 

𝑎!, 𝑏! Equatorial and polar radius of the Earth ellipsoid 

𝐝  Direction vector of satellite’s radiation 

E The Earth ellipsoid 

ℝ, ℝ! The set of real numbers, the 3D space of real numbers 
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𝑜 Origin of the ECEF coordinate, i.e. Earth mass center 

ℛ,𝒯  Rotation matrix, and translation vector of 3D object 

𝑆 A satellite 

V Service volume 

𝐱  3D ECEF coordinate, i.e. 𝐱 = (𝑥,𝑦, 𝑧)𝑻 

𝜆, 𝜑, 𝜓 Longitude, geocentric latitude, geodetic latitude 

𝜃 The target point of satellite’s antenna 
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CHAPTER I  

INTRODUCTION  

I.1 Challenges of GNSS Based Digital Applications 

GNSS/GPS has been a mature technology serving as a backbone of modern society, since 

it was firstly launched in 1970s and fully open to the public by President Clinton who cancelled 

the Selective Availability of GPS C/A code [31]. GNSS equipped devices are aware of current 

position and global time, which enables tremendous applications: location based services, 

geographic surveying, precision agriculture, aviation navigation, autonomous driving and flying, 

timestamping of network, finance, and smart grid applications. Billions of devices are involved 

in these and more GNSS based applications [99]. These devices have been improving rapidly in 

terms of computational intelligence, thanks to the Moore’s law and data sharing brought by 

mobile Internet and data mining. I believe the present integration of GNSS technology and 

computational power has not yet fully released their potentials. Position and time values (x, y, z, 

t) are the only information exchanged between the two sides. Even though Assisted GNSS 

(AGNSS) and Differential GNSS (DGNSS) collect accessory information for GNSS equipment 

using Internets, for example, the SUPL protocol [100] and the NTRIP protocol [25], their 

ultimate goal is to quickly and precisely obtain x, y, z, t. We can call this level of integration as 

loosely coupling between GNSS and computing science. 

Loosely coupling treats other sides as if a black box, which would overlook at least three 

potential benefits. First of all, details are ignored or filtered out. Digital applications fail to take 

complete advantage of the highly deterministic behaviors of satellites, and atomic clocks (or the 

most advanced clock now – hydrogen maser [26]). Instead, these insights in each signal channel 

are fused into a single solution, which may have been compromised by some bad or spoofed 
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channel(s). GNSS devices do not fully enjoy the digital resources, such as precise maps, sensors, 

and local environmental specifics. Fortunately, this has been gradually realized in research 

communities related to precise urban positioning, SLAM, and GNSS-Reflection, in order to 

assist the GNSS Time-Of-Arrival (TOA) measurements. Second of all, GNSS receivers can only 

do measurement independently, but not cooperatively. Satellite orbiting, signal broadcasting, 

atmospheric refracting, these are global events common to receivers in respective proximities. 

Cooperatively measuring these common events enables the collection of correlated information 

from different views of many receivers, to calibrate models of event factors. It may also serve as 

a signal to trigger scheduled tasks of remote receivers, or a monitor to find out anomalous 

receivers that do not sense the common event on the right time. These cooperation applications 

are not enabled now, mainly because the TOA projection is specific to each individual receiver. 

The key to enable them is to find a different projection that maps from satellites, clocks, and 

signals to a group of receivers. I believe Time Difference of Arrivals (TDOA) is a good fit for 

this purpose, which will be elaborated further in section I.2. Third of all, the latency of 

computing a solution is high (0.5-1 seconds [25]) and inevitable. The computation time is used 

for waiting all signal channels and smoothing measurements over time, for more precise 

solutions. A low latency integration of computing units and GNSS processing units would enable 

more advanced applications: as soon as measuring a GNSS event, the computing unit can 

immediately react, without waiting for other channels or smoothing. Ideally, the minimal latency 

between sensing and reaction is the correlation time of CDMA (Code Division Multiplexing 

Addressing) codes of GNSS, which should be few cycles of modern DSP (Digital Signal 

Processing) chip.  
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These challenges are asking for a tight coupling scheme of the following features: first, it 

should operate on the level of signal channel rather than the level of solution; second, it should 

be a new projection of satellites, signal, and times to a group of receivers. The traditional 

perspective based on solving a group of TOA measurements is not suitable to tackle these 

challenges. In addition, each TOA measurement from a satellite to a receiver is not an 

independent projection, because it contains the receiver’s clock bias, which is one of the 

unknowns and different from receiver to receiver. As such, this dissertation takes a non-TOA 

perspective (TDOA) to explore possible tightly coupling schemes to mitigate these three 

drawbacks by the traditional loosely coupling between computation and GNSS. 

I.2 TDOA Based GNSS   

Unlike TOA that uses a single pseudorange, TDOA measures the difference of 

pseudoranges from two different satellites. TOA projection is a sphere with receiver-specific 

pseudorange as radius, while TDOA projection is a hyperboloid with two satellites as foci. The 

hyperboloid is non-specific to receiver model, because the difference operation cancels out the 

common term of receiver clock bias in two pseudoranges.  

In this dissertation, I call the TDOA surface as k-surface, or formally as the set of points 

that measures the difference of two pseudoranges to be a real number k. A special case is called 

z-surface, where two pseudoranges are equal (i.e. difference is zero). There are several benefits 

of z-surface versus individual pseudoranges. Firstly, it is independent of receiver models, and 

thus can be precisely modeled into a function of orbits, atmospheric delays, atomic clocks, and 

signal characteristics. Secondly, it spreads inter-continentally so that receivers in a wide area can 

observe such a common phenomenon. Remote scheduling, crowd sourcing checking, and other 

distributed applications can then be developed based on this principle. Thirdly, z-surface’s 
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behavior is highly deterministic, and even periodic. As satellites orbits cyclically over hours (e.g. 

periods of GPS and GLONASS satellites are 11 hours 58 minutes and 11 hours 5 minutes [101]), 

the motion of z-surface is alike whose period should be the common multiple of the periods of 

two incident satellites. This helps applications in terms of repeated observations and look-up 

table implementation. Fourthly, it converts the real value of pseudorange into a discrete value or 

event. Instead of pseudoranges, a z-surface separates receivers into its two sides, where in one 

side a pseudorange is larger than the other and vice versa in the other side. Receivers can know 

the order of pseudoranges (OOP) by figuring out which side of z-surface they are locating at. 

They know the change of OOP at the time when the z-surface comes across them, which is 

termed a zero-crossing event or z-event in this dissertation. This event can be promptly detected 

in the tracking loop of receivers.  
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Figure I-1 Innovation of this dissertation in GNSS research 

Not many studies on TDOA projection were published. The existing researches only use 

it to calculate a user’s position and time. For instance, the Loran-C, eLoran, and the British Gee 

system use TDOA, and are considered as backup for GPS [102]. Books discussing TDOA only 

illustrate it in a planar canvas, without elaborate discussion [25][26][28]. This work aims to 

formalize the theory of z-surface, including its physical models, covering ranges, dynamic 

behaviors, and potential applications.  

Novelty of this dissertation is summarized in Figure I.1. The proposed z-surface theory 

takes advantage of well-established fundamental GNSS models such as receiver design, and 

orbital mechanism. I aim to build fundamental z-surface theory for the exploration of new 

applications based on TDOA beyond traditional positioning and timing. Potential applications 
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include but not limit to GNSS integrity monitoring, crowd sourcing activities, mutual checks of 

receiver networks, satellite orbits, clock, Earth surface, and atmosphere models. 

I.3 Statement of Research Problems 

It is already known that geometric modeling of TDOA can be effectively developed on a 

hyperbolic framework, but most existing work were based on the planar environment, not for 3D 

free space [20]. New geometric modeling techniques and their solution systems are needed to 

characterize TDOA surfaces in 3D space, as well as on the Earth surface. Moreover, even though 

the orbital mechanism is a well-studied field, it is rarely seen any published works for applying 

satellite dynamics on the motion of z-surface.  

This dissertation aims to develop fundamental models to understand the characteristics 

and dynamics of z/k-surface, and its intersection with the Earth surface, in the hope to enable 

development of novel applications based on TDOA of GNSS. I aim to investigate static and 

dynamic properties of GNSS signals derived from their TDOA measures. The investigation starts 

with the notion of Order of Pseudoranges (OOP) that aims to use snapshots of pseudoranges to 

characterize the states of GNSS signals at a position, which will be detailed in Chapter I. Based 

on this raw model in [1], I then continued to develop a simple point-based model to plot all GPS 

z-curves for a time snapshot in Figure 1. When one unfreezes the time, the z-surface/curve will 

move and morph as the satellites fly, and the atmospheric refraction varies, as shown in Figure 2. 
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Figure I-2 All GPS z-curves on 00:00 May 25, 2015  

 

Figure I-3 Moving z-curves of GPS satellites in one hour (15-minute interval) 

I was deeply amazed by these unforeseen pictures generated from my simple model. 

More questions were raised in my mind: what is the bound of each curve at two ends? How 
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“thick” is each curve? Why they have different curvatures? How fast do they move? How long 

will they exist? How can we compactly represent them and use them in computer world? 

Answering these questions may help development of advanced applications based on novel 

properties derived from TDOA measures. On one hand, novel distributed systems may utilize the 

intersecting k-curves to segment ground area, where in each small region is identified by a 

certain OOP. These region identities are naturally incorporated with global time and position 

information, which may be used to design integrity checking, scheduling, communication 

mechanism for wide-area infrastructures, location-based service [18][19] etc. On the other hand, 

precise geodesic and aerospace measurement may benefit from the proposed models. By 

mapping between the precise navigation satellites and a group of ground receivers (instead of 

individual receivers), a good number of correlated measurements can be obtained to build 

statistical profiles of observables including crustal movement, glacier flow, microgravity value, 

precise orbits, etc.  
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Figure I-4 Illustration of system environment and research tasks 

The proposed system of models charactertizes z-curve, z-surface, and the satellite’s 

Terrestrial Service Volume (TSV) at a fixed time, as well as their velocity and morphing patterns 

over time. A system overview is shown in Figure. For simplicity of technical presentations and 

when the context is at no risk of losing their generality, I will use parameters of GPS and the 

ECEF coordinate frame in the following discussions without further elaboration. Specific 

problems are elaborated as follows: 
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P1. Formulate the system environment: time, coordinate systems, and the Earth model 

Appropriate time and coordinate systems need to be chosen to universally index multiple 

entities and activities in the subsequent models. The commonly used UTC time (Universal Time, 

Coordinated) has leap seconds and not continuous. The local clocks on receiver are unstable. 

Instead, the GPS system time maintained by UTC(USNO) is a continuous time scale 

synchronized to the UTC and thus will be adopted. Relativistic effects and clock drifts will be 

compensated accordingly. The Earth-Centered Inertial (ECI) coordinate frame is adequate to 

describe the motion of satellites, but it is time variant as the Earth spins. In order to describe the 

co-motion of satellites, the Earth, and receivers, I plan to use the Earth-Centered Earth-Fixed 

(ECEF) coordinate frame, since most of established models about Earth and ground references 

are defined in ECEF frame. 

P2. Investigate signal processing principle of GNSS receiver, the formations of pseudoranges 

and z-surface 

The z-surface is defined upon pseudorange measurement. The formation of pseudoranges 

is critical to subsequent modeling process, because signal travels in the speed of light and even a 

one-microsecond delay would lead to a 300-kilometer error to pseudorange. Receiver’s signal 

processing includes some heavy computation tasks, such as fourier transform and correlation. A 

non-noticable delay will be introduced in this process, not to mention the delays caused by 

receiver clock bias, atmospheric delays, and quantization error.  

Another issue to be solved in P2 is to select a common timestamp for each z-surface. A z-

surface has two pseudoranges and thus four time marks involved. There are 55-65 milliseconds 

difference between transmited time and received time. Transmitted times from two satellites may 

also be different. To fix this issue, I assume the pseudorange formation method as the common 
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reception time method [20], such that two pseudoranges will share a same arrival time. This 

arrival time will be used to index z-surface, and states of satellites will be computed using 

respective transmitted times after compensation.   

P3. Develop a Cartesian geometric model for z-surface at a fixed time 

A 3D model for z-surface in the ECEF coordinate frame will be developed. The key 

challenge is to transform the signal-domain pseudorange relationship into a geometric model. 

This process needs to be rigorous, to ensure no intermediate step produces extra points that do 

not satisfy the definition of z-surface. Moreover, some variables may be cancelled out under 

certain conditions, so I need to carefully make necessary assumptions.  

The derived analytic model must be mathematically categorized into some kind of primitive 

shapes or their combination. Transformation into a canonical form or a proof process may be 

necessary. With the geometric model, I can then represent the shape using some primitive 

characteristics, like eccentricity. The expressions of these properties in terms of satellite 

positions, signal propagation errors, time stamp will be derived. I will use these expressions to 

profile characteristics of all GPS z-surfaces.  

P4. Extend z-surface to k-surface and derive the valid range of k 

By selecting different k values, one can have a large number of k-surfaces for his/her 

system design. I propose to investigate the minimum resolution, the upper and lower bounds for 

a valid k value. The resolution is in proportion to the granularity of pseudorange that a GNSS 

receiver can identify. For this, I will dig out the answer from Delay Lock Loop (DLL) in a 

receiver [20-23]. The bounds of k are determined by physics of satellite-receiver pair and signal 

propagations. Too large or too small for k values would be physically impossible. 
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P5. Develop a Cartesian geometric model for TSV at a fixed time 

The satellite’s TSV are modeled based on a cone, specified by satellite position and 

radiation beamwidth. Existing TSV models are developed so. However, it is not sufficient to 

precisely contain all necessary 3D space as the TSV is defined. I propose to add more 

mathemetical constraints to a basic cone model, for example, excluding the space behind 

satellites and the dark side of the Earth.  

P6. Develop a parameteric model in terms of latitude and longitude for z-curve at a fixed time 

The Cartesian model of z-curve has limitations in applications like rendering and 

discretization. I will propose a parameterization algorithm to trace z-curve using only one 

parameter, latitude. As such, the algorithm can efficiently generate as many points as required by 

iterating in one-dimension parameter space. The z-curve is essentially a constrained intersection 

of z-surface (a hyperboloid) and the Earth surface (an ellipsoid), which is categorized as a QSIC 

or Quadratric Surfaces Intersection Curve. To parameterize it, methods based on numerical 

approximation are readily available [7][9]. However, an efficient method for algebraic solution 

is rarely studied, but it is highly desirable for precise geodesic and aerospace measurement. I aim 

to develop an algorithm to compute algebraic coordinates of a z-curve given any latitude of 

interest. 

P7. Develop a parameteric model for satellite footprint at a fixed time 

The satellite footprint is also a kind of QSIC, being the intersection of TSV (a cone) and 

the Earth. Its parameterization algorithm can generate a series of footprint points, which delimits 

a z-curve. Existing footprint models assume the Earth as a sphere, for simplicity. I propose to 

directly use the reference ellipsoid for better precision. To deal with the complexity introduced 

by ellipsoid, I plan to first parameterize the cone into a cluster of rotating lines and then compute 
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the intersection of line versus ellipsoid. The reason is that a cone is a ruled surface consisting of 

infinite many lines, wheras an ellipsoid is not. 

P8. Develop migration functions for the TSV and z-surface from time t to t+∆t 

With Cartesian models derived by previous tasks, one can give models of TSV and z-

surface at time 𝑡. This task aims to understand how they are migrating after a time interval ∆𝑡. 

The shapes’ dynamics need to be modeled in such a discrete manner, because there are no 

continuous model that can accurately describe the entire satellite orbit. As illustrated in Figure 4, 

I will take the updated satellite position at time 𝑡 + ∆𝑡 as input, and investigate how they will 

impact the morphing and motion of TSV and z-surface. In the meantime, the signal propagation 

errors should also be considered. The potential behavior include rotation, translation, scaling, and 

termination. I am going to apply knowledge of solid geometry to describe these transformations. 

P9. Develop a migration function for the z-curve from time t to t+∆t 

Z-curve’s migration function will help us understand the formation and morphing 

mechanism of ground areas that are segmented by the combination of k-curves. It may also 

reduce the computations of regenerating a new z-curve at time t+∆t, which is a costly 

computational task to calculate the QSIC. Z-curve migrates along with the z-surface it belongs to. 

However, the migration function of z-surface cannot be applied directly to z-curve, because the 

z-curve may become off the Earth surface after transformation at time t+∆t. Since it is relatively 

hard to obtain an algebraic solution, I propose a migration function based on numerical 

calculations. 
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I.4 Organizations of This Dissertation  

The remainder of this dissertation is organized as follows. In Chapter II, I will discuss the 

starter of this research – recognizing the z-surface from the perspective of an individual receiver. 

In Chapter III, I begin to formalize the models of z-surface at a fixed time, and to develop the 

parameterization algorithm for the static z-curve. In Chapter IV, I discuss the geometric model 

for a satellite’s TSV, and the parameterization of its coverage footprint. In Chapter V, I analyze 

the motion behavior of z-surface, TSV, and z-curve.  
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CHAPTER II  

GNSS DISCRETE EVENT – POINT BASED ORDER OF PSEUDORNAGES1 

II.1 GNSS Discrete Events  

Correct ordering of concurrent system events, e.g., “sensor reading A happened before 

actuator event B”, or vice versa, is essential to guarantee deterministic outcomes of distributed 

computing. This requirement affects essentially all layers of system abstractions, from the basic 

task of interpretation of system states, to high level semantics of system behaviors. In his seminal 

work entitled “Time, Clocks, and the Ordering of Events in a Distributed System” [1], Lamport 

formalized the relationship between time, clocks and ordering of concurrent events among 

networking nodes which run on their own high speed clocks. To resolve the timing ambiguity of 

concurrent messages due to network delays, Lamport proposed the notion of message based 

virtual clocks for interacting nodes to reason about orders of concurrent events. As a result, the 

rate of the virtual clock, not that of local clocks, defines the highest rate of distribution 

interactions with guaranteed outcomes. His work is credited for laying a key theoretical 

foundation to prove correctness of networking protocols and distributed algorithms, e.g., Internet 

protocols, Domain Name System (DNS), distributed databases, etc.  

As the GNSS technology rapidly expands from the standalone receiver architecture to 

networked environments, how to guarantee correct use of the time and position information for 

broad applications is an emerging issue. Different from the assumption of independent clocks in 

                                                

 

11 Reprinted from “Order of Pseudoranges (OOP) of GNSS: Spatial modeling and analysis" by Guoyu Fu 
and Jyh-Charn Liu in Proceedings of the 28th International Technical Meeting of the Satellite Division of 
the Institute of Navigation (ION GNSS+ 2015), pp. 3370-3382. 2015. Copyright 2015 by Guoyu Fu. 
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system nodes [1], GNSS systems are based on a master clock network (ground control and space 

segments) to generate the highly accurate timing signals for space based broadcast. For instance, 

the GPS system time is an extremely precise global time reference aligned with the UTC(USNO) 

or Coordinated Universal Time (U. S. Naval Observatory), which is generated and maintained 

from a network of atomic clocks. How to harmonize the GNSS clocking-timing model with the 

classical distributed system architectures is crucial to the development of the future generation of 

GNSS based systems. Correct ordering of GNSS signals based events is essential to guarantee 

deterministic outcomes when GNSS signals are an integrated part of distributed computing 

systems.  

The clocking sources, transmission delays of the atmosphere, astrophysical effects on the 

clocking subsystems, as well as algorithms for receivers to recover the GNSS time have been 

thoroughly studied for decades. Yet, how to leverage on these high quality signals to create event 

ordering abstractions in the temporal and spatial domains is still a largely untouched issue. 

Knowing that pseudorange is the lowest level of computational abstraction for a receiver to 

acquire its local time and position, I propose the notion of order of pseudoranges (OOP) as a 

type of GNSS system states to create GNSS system ordering events. OOP refers to a sorted order 

of pseudoranges, which represent their measured distances to satellites. Receivers within 

proximity of each other should have the same OOP, but key questions are when and where the 

OOP changes. The OOP changes from one state to another when the order of two or more 

pseudoranges needs to be shuffled. I call such a transition a zero-crossing event because the 

ordering relationship happens in the sequence of 𝜌! − 𝜌! > 0 : 𝜌! − 𝜌! = 0: 𝜌! − 𝜌! < 0, 

where 𝜌!(𝜌!) denotes the pseudorange for satellite A(B). 
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Due to its complexity, this chapter only considers the spatial properties of OOP at a 

snapshot of time. I formalize and derive key properties of OOP. Such properties can be used to 

create a wide area reference grid for event ordering. The discussion starts with a simple model of 

RF signal propagations from satellites to their covered areas. The intersection of the covered 

areas for a set of satellites forms their co-coverage area. Positions that simultaneously observe 2 

or more identical pseudoranges form the natural boundary surface (called 𝑧-surface) between 

geospatial areas defined by orders of pseudoranges. The intersecting curve of a 𝑧-surface and the 

Earth surface is called a 𝑧-curve. Defined by a set of intersecting 𝑧-curves, an 𝑂-zone is a ground 

region where all receivers have the same OOP state. The high speed flights of satellites (~4000 

meters/second) lead to fast sweeping of 𝑧-curves on the ground at rate of hundreds of meters per 

second. As a result, the shape and size of 𝑂-zones also morph with time.  

Using the log data of the CORS (Continuously Operating Reference Stations) network, I 

test the OOP model to show its accuracy within the resolution of the CORS receivers. A direct 

application of OOP is design of wide-area architecture for timing integrity check of GNSS 

signals. Novel applications and computing abstractions can be developed on the basis of OOP, 

e.g., location based routing, wide area check point for GNSS time integrity check, wide area 

sensing and measurement control, or GNSS based coordination and time stamping in wide area 

distributed computing systems, etc. 

The remainder of this chapter is organized as follows. Section II.2 highlights the system 

environment. Sections II.3, II.4, and II.5 describe the pseudorange model, OOP model, and the 

relationship of a single receiver to z-surface, respectively. Section II.6 illustrates experimental 

results with measurement data from the CORS receivers.  
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II.2 System Overview 

A GPS satellite has a radiation beam with width slightly larger than 20º [26]. Referring to 

Fig. 1, circle-like area on the Earth surface represents the coverage zone of a satellite 𝑠, denoted 

as 𝑅!! . Following the typical model on GPS signal transmission, I assume that a receiver 𝑢 can 

receive the signals from a satellite 𝑠 when the elevation angle of 𝑠 to 𝑢 is greater than 5º [27], 

e.g., the receiver marked by a green-dot in Figure II-1. A co-coverage zone 𝑅!!  of a set of 

satellites 𝑆 is defined if all points on this surficial area are visible to all satellites in 𝑆. For 

instance, in Figure II-1, the co-coverage zone for the two satellites is the area with purple 

boundary line. Through a simple deductive process, it is straightforward to prove that the co-

coverage zone is convex, and not fragmented.  

 𝑅!! = 𝑅!!
!

∀!!∈!

 (II.1) 

 

Figure II-1 Co-coverage of two satellites 
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The average orbital altitude of GPS satellites (20229 kilometers) is about three times of 

the Earth radius (6371 kilometers) [26]. As a result, the 𝑧-curve between two satellites is not 

necessarily on the Earth surface. When they do, their 𝑧-curves may or may not be located within 

the co-coverage zone for a particular set of satellites of interest. That being said, overall a large 

number of 𝑧-surfaces are available for the GPS system. Table II-1 illustrates the number of 𝑧-

surfaces formed from a 24-satellite GPS constellation [26]. For more than 30% of time over the 

globe, there will be up to 28 𝑧-surfaces that can be seen in a co-coverage zone of 8 satellites. 

This number will increase significantly, as more satellites are being planned for launching.  

 

Figure II-2 Overview of North America (viewed from the sixth satellite) 
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Next, I use the co-coverage area of 6 randomly positioned satellites 𝑠!!! to discuss their 

OOP on the earth surface. The artwork shown in Figure II-2 is used to facilitate the discussion, 

where 𝑠!!! are drawn at the outskirt of Figure II-2, and 𝑠! is placed at the reader’s eye position 

(and thus not explicitly drawn). This way, the figure and the reader form a 2½-dimensional 

perceptional space for discussion of RF signal transmissions to their co-coverage zone. The 

boundary of the coverage zone is plotted as color-coded dash lines, where the satellite color 

codes are listed in the legend. The coverage zone 𝑅!!
!  is the black circle area with the yellow dash 

line boundary. The co-coverage zone of the 6 satellites 𝑅!! = 𝑅!!
!

!!!,!,…,!   is illustrated as the 

area defined by the white thick surface polygon at the center. Within 𝑅!! , a receiver can measure 

its pseudoranges from the 6 satellites. A few (not to scale) 𝑧-curves, which are marked in two 

colors representing involved satellites, are highlighted to represent the equal-pseudorange curve 

of two satellites. For instance, the green-red line segment with the label of 𝑧!,! represents the 𝑧-

curve between 𝑠!  and 𝑠!. Receivers located at the green (red) side of the line have shorter 

pseudoranges to 𝑠! (𝑠!). The remaining 𝑧-curves are represented by white lines.  

Table II-1 The estimated probability of the number of satellites in view and their number 
of z-curves [26]. 

# satellites in 

view 
5 6 7 8 9 10 11 12 

Probability (%) 0.01-0.1 1-10 10-30 >30 10-30 1-10 0.1-1 0.001-0.1 

# 𝒛-surfaces 10 15 21 28 36 45 55 66 

# 𝑶-zones 120 720 5040 40320 362880 3628800 39916800 479001600 
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The 𝑂𝑂𝑃! is simply the (ascending) order of pseudoranges of a receiver at a position 𝑢 to 

a (sub)set of satellites in its view. For instance, when the 𝑂𝑂𝑃! is defined for two satellites 𝑠! and 

𝑠!(𝑖 and 𝑗 are satellite numbers), 𝑂𝑂𝑃! = [𝑖, 𝑗] when 𝜌! < 𝜌!, where 𝜌! denotes the pseudorange 

to 𝑠!. The receiver observes crossing of a 𝑧!,!-surface (or 𝑧!,!-curve) of 𝑠! and 𝑠! when 𝜌! = 𝜌!. 

The solution of the pseudoranges of equal value may be subject to errors in ephemeris data or 

other nominal noise. The uncertainty in estimation of these nominal errors is translated to the 

width of a 𝑧-curve. In order to have a focused discussion, we assume that all these nominal errors 

to be known during modeling process, and the width of 𝑧-curve is assumed to be zero in the 

geometric modeling process of OOP.  

Each OOP configuration is associated with a three-dimensional (3D) space bounded by 𝑧-

surfaces, where all points (receivers) inside a zone should have the same order of pseudoranges. 

Some of them intersect with the Earth surface, forming 𝑂-zones bounded by 𝑧-curves. As an 

example illustrated in Figure II-2, the receiver (green dot) is surrounded by several 𝑧-curves 

nearby, i.e. 𝑧!,!, 𝑧!,!, 𝑧!,!, 𝑧!,! and 𝑧!,!, and by some 𝑧-curves in farther distance, i.e. 𝑧!,!, 𝑧!,!, 

𝑧!,!, 𝑧!,!, etc. Based on the definition of 𝑧-curves, the receiver knows that its order of 

pseudoranges should be 𝑂𝑂𝑃! = [6, 2, 4, 5, 3,1], which is the signature of the white shaded zone 

(𝑅!).  

II.3 Pseudorange Model 

The subsequent discussions fix the time advancement and assume that pseudoranges are 

measured during the same short period of time (≤ 2𝜖) as defined in (II.2). The pseudorange 

𝜌!(𝑟!)to satellite 𝑠 is a computed approximation of their distances 𝑟! − 𝑟! . The source of 

error in 𝜌 can be categorized into nominal errors 𝐸1 and unexpected error(s) 𝐸2. 𝐸1 is the 



 

22 

 

22 

algebraic sum of ionospheric delay 𝛿!"#", tropospheric delay 𝛿!"#$, satellite clock bias 𝛿!" and 

user clock bias 𝛿!" [25][26][28]. Other small errors with 1-meter or below root-mean-square 

(rms) magnitudes, e.g., receiver noise, are ignored [26]. A formal description of their relationship 

is given as follows: 

 𝜌 = 𝑟! − 𝑟! + 𝑐𝐸1+ 𝑐𝐸2, (II.2) 

 𝐸1 = 𝛿!"#" + 𝛿!"#$ − 𝛿!" + 𝛿!", (II.3) 

where 𝑐 represents the speed of light in vacuum. When 𝐸2 exceeds certain range, e.g., when 

caused by malfunction of the receiver, spoofing [40][41][125], etc., the measured pseudorange 

will exceed a threshold value that is considered to be reasonable. That is to say, an affected 

pseudorange will lead the receiver to an incorrect timing of zero-crossing event. As it will be 

clear later, the range of reasonable errors can be translated as the duration of a zero-crossing 

event. To have a more focused discussion, I assume 𝐸2 = 0 here.  

The magnitudes of 𝛿’s in 𝐸1 are known to be within certain bounds. Atmospheric delays, 

i.e. 𝛿!"#" and 𝛿!"#$, are caused by interference of the widely homogeneous ionosphere and 

troposphere above a broad area of receivers [28]. Satellite clock bias 𝛿!" is inherent in broadcast 

signals and affects all receivers to the same amount in coverage zone. The OOP model benefits 

from the spatial locality (homogeneity) of atmospheric delays and satellite clock drifts, in a way 

similar to that of Differential GPS (D-GPS) [26]. The receiver clock bias 𝛿!" has the largest 

magnitude among different 𝐸1 error terms [28]. It refers to the difference between the GPS 

system time and the reading of receiver clock. As it will be clear later that in the pairwise OOP 

model, receiver clock bias is cancelled out when one takes the difference between two 

pseudoranges for comparison. Being able to eliminate the largest error term greatly reduces the 
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range of uncertainty in OOP modeling and analysis. For the remaining 𝐸1 errors, 𝑐𝛿!"#" , 𝑐𝛿!"#$ 

and 𝑐𝛿!" has non-negligible error size. For example, the satellite clock bias can reach the range 

of 1 millisecond, which will translate to 300-kilometer pseudorange error [27]. Conventional 

models or DGPS techniques could help reduce the error size down to 2-30 meters, 2-25 meters 

and 2 meters in rms, with respect to 𝑐𝛿!"#" , 𝑐𝛿!"#$ and 𝑐𝛿!", respectively [26]. Statistical 

distributions of 𝐸1 errors will help determine the reasonableness of measurement errors. 

II.4 Pairwise OOP Model 

The OOP model can be defined for an arbitrary number of satellites. In this subsection, 

we discuss the OOP model for a pair of satellites 𝑠! and 𝑠! (let 𝑖 < 𝑗 without loss of generality). 

Let a 𝑍 function, 𝑍!,! 𝑟𝑢 = 𝜌! 𝑟𝑢 − 𝜌!(𝑟𝑢), denotes the difference of pseudoranges 𝜌! and 𝜌! 

(measured in the same 2𝜖 period). As it will be clear later, when 𝑍 is equal to zero, the 3D 

solution surface in terms of receiver positions is the hyperboloid zero-crossing surface (called 𝑧-

surface in short) as shown in Figure II-3, which is denoted as  𝑧!,! = 𝑟!∗  𝑍𝑖,𝑗 𝑟!∗ = 0}, where 

𝑟!∗ refers to positions satisfying the equation. I claim that a receiver 𝑢 experiences a zero-

crossing event when 𝑢 is situated on the 𝑧-surface. 𝑢 should measure change of the order for  𝜌! 

and 𝜌! after the zero-crossing event of 𝑧!,!-surface. The distance of 𝑢 to the 𝑧-surface (denoted as 

𝑑!) can be used to determine its relative location to the 𝑧-surface. The relationship between 𝑧-

surface to receiver 𝑢, such as 𝑑!, is analyzed with the aid of the 3D symmetric plane (called ℎ-

plane) between two satellites, as illustrated in the Figure II-3.  
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Figure II-3 Pairwise OOP model  

The ℎ-plane is helpful to reduce the complexity of mathematical expression and to 

visualize the geometry and motion dynamics. I define the 𝐻 function as the difference of 

distances from receiver to 𝑠! and 𝑠!, or 𝐻!,! 𝑟! = 𝑟!! − 𝑟! − 𝑟!! − 𝑟! . The ℎ-plane is then 

the solution plane in terms of receiver positions, denoted as ℎ!,! = 𝑟!∗  𝐻!,! 𝑟!∗ = 0} . 

Receivers on the ℎ-plane have the same distance to the two satellites. The ℎ-plane and 𝑧-surface 
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intersect with the Earth ground respectively to form their ℎ-curve and 𝑧-curve, as illustrated in 

Figure II-3.  

The 𝑍 Function and 𝑍-Surface 

Ordering of 𝜌! and 𝜌! can be determined by the 𝑍!,! function: 

 𝜌! < 𝜌! ,  𝑖𝑓 𝑍!,! > 0,
𝜌! = 𝜌! ,  𝑖𝑓 𝑍!,! = 0,
𝜌! > 𝜌! ,  𝑖𝑓 𝑍!,! < 0.

 (II.4) 

To model the relationship in terms of receiver’s position 𝑟! = (𝑥,𝑦, 𝑧)!, I expand function 

𝑍!,!(𝑟!) according to (I.3) and (I.4): 

𝑍!,! 𝑟! = 𝑟!! − 𝑟! − 𝑟!! − 𝑟! + 2𝑎!,!, (II.5) 

where 𝑟!! = (𝑥! ,𝑦! , 𝑧!)! and 𝑟!! = (𝑥! ,𝑦! , 𝑧!)!. The expression 𝑎!,! =
!!!!!!!!!

!
 is called the semi-

major axis, and  

𝑎!,! =
𝑐(𝛿!!"#" + 𝛿!

!"#$ − 𝛿!!")− 𝑐(𝛿!!"#" + 𝛿!
!"#$ − 𝛿!!")

2 . (II.6) 

Note that 𝛿!!" = 𝛿!!" are in the same 2𝜖 period and they are cancelled out. 𝑎!,! is half of 

difference between nominal errors from two channels 𝑠! and 𝑠!. Because remaining nominal 

errors (𝛿!"#", 𝛿!"#$ and 𝛿!") have a strong spatial homogeneity, I assume that 𝑎 is a function of 

time alone, and is invariant to the receiver positions.  

The zero-crossing surface 𝑧!,! of 𝑠! and 𝑠! is the solution space of the equation 

𝑟!∗  𝑍!,! 𝑟!∗ = 0}. That is, every receiver at 𝑟!∗ on the 𝑧!,!-surface has pseudoranges 

𝜌!(𝑟!∗) = 𝜌!(𝑟!∗), according to (II.5). The satellites 𝑠! and 𝑠! are two foci of surface 𝑧!,!. The 

surface separates the 3D space into two spaces, called left zone and right zone. A receiver in left 

zone, in which 𝑍!,! > 0, measures that  𝜌! > 𝜌!. Otherwise, in right zone, it measures 𝜌! > 𝜌!. 
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When a receiver passed across 𝑧!,!-surface, it should detect a change of the order between 𝜌! and 

𝜌!. It will become clear shortly that one of the left/right zones is convex while the other concave.  

The {𝑧!,!:𝑍!,! 𝑟!∗ = 0} equation can be further expanded as: 

𝑧!,!: 𝑥! − 𝑥
! + 𝑦! − 𝑦

! + 𝑧! − 𝑧
! − 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! =

2𝑎!,!, 

(II.7) 

where 𝑎!,! is an arbitrary constant value. From (II.7), we observe that the distance from a point to 

𝑠! minus that to 𝑠! remains unchanged the position of the point. Recall that a 2D hyperbola is a 

set of points where the absolute value of the difference of the distances to the foci is a constant 

[126]. For 𝑧!,!, traces of moving points under the hyperbola constraint by (II.7) on any fixed 2D 

plane that joins two satellites (for example, the 2D coordinate frame 𝑜𝑥!𝑦′ in Figure II-3, as will 

be defined later), form one branch of the hyperbola. By rotating the 2D plane 180º around the 

major axis connecting two foci, one can observe one sheet of a hyperboloid in the 3D space, 

which is exactly the 𝑧!,!-surface. 

In the hyperbola definition, the constant difference of two distances is twice the length 

from the center to the vertex of each branch. Accordingly, we model the distance from the center 

(point 𝑜) of two foci to the vertex (point 𝑜′) of a sheet of hyperboloid as the semi-major axis 𝑎!,!, 

as illustrated in Figure II-3. Different from general hyperboloid, equation (II.7) does not describe 

the absolute difference of two distances so it represents only one sheet of hyperboloid. In Figure 

II-3, I set 𝑎!,! to be less than zero and thus the right sheet near 𝑠! is drawn. Points in the left zone 

(concave) are slightly more than those in the right zone (convex). If 𝑎!,! > 0, the 𝑧!,!-surface will 

be the left sheet of hyperboloid that is near 𝑠!. The curvature of the 𝑧!,!-surface as well as the 
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offset to ℎ!,! increases with the value of |𝑎!,!|. In practice, |𝑎!,!| is relatively small compared to 

the distance of two satellites. As such, for 𝑧-surface analysis, it is helpful to start with the 

extreme case that when 𝑎!,! is equal to zero, the 𝑧!,!-surface collapses down as the ℎ!,!-plane. As 

a preamble to the analysis of the relationship between 𝑧-surface and receiver, next I discuss 

modeling of the ℎ-plane.  

The ℎ-Plane 

The equal-distance plane ℎ!,! of 𝑠! and 𝑠!  is the solution space of 𝑟!∗  𝐻!,! 𝑟!∗ = 0}, 

or formally: 

ℎ!,!: 𝑥! − 𝑥
! + 𝑦! − 𝑦

! + 𝑧! − 𝑧
! = 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 !. (II.8) 

All points on ℎ!,! have equal distances to two foci 𝑠! and 𝑠!. The center point is 

𝑜 = (!!!!!
!

, !!!!!
!

, !!!!!
!
)!. The space of points which are near 𝑠! have is called the positive space 

(because 𝜌! > 𝜌!),  while the other space is the negative space.  Now that ℎ!,! is a plane in 3D 

space, it has the form: 

ℎ!,!:𝐴!,!𝑥 + 𝐵!,!𝑦 + 𝐶!,!𝑧 + 𝐷!,! = 0, (II.9) 

where 𝐴,𝐵,𝐶 and 𝐷 are time-dependent variables but position-invariant constants. Based on the 

basic geometry of the symmetry plane between two points [127], one can directly obtain 

expressions of the four parameters as follows: 

𝐴!,! = 𝑥! − 𝑥!, (II.101) 

𝐵!,! = 𝑦! − 𝑦!, (II.11) 

𝐶!,! = 𝑧! − 𝑧!, (II.12) 

𝐷!,! = −𝑛!𝑂, (II.13) 

where 𝑛 is the normal vector of the plane ℎ!,!, indicating its direction from 𝑠! to 𝑠!, or formally: 
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 𝑛!,! = 𝑥! − 𝑥! ,𝑦! − 𝑦! , 𝑧! − 𝑧!
!
. (II.14) 

Therefore, one can construct ℎ!,!-plane of any two satellites using only their positions 𝑟!! and 𝑟!!, 

which can be obtained through many precise resources, such as the public ephemeris model [27]. 

I make 𝑧-curves (as drawn in Figure II-2) shape like ellipse segments, as it is near the ℎ-

curve. It is well known that the intersection of a 3D plane and an ellipsoid (the Earth surface) is 

an ellipse [128]. Given the formula of the intersecting ellipse (as the ℎ-curve illustrated in Fig. 3), 

it is easier to derive the closed-form equation of 𝑧-curve. Theoretically, the closed-form equation 

for ℎ-curve could be obtained by solving the system of equation (10) and the following Earth 

reference ellipsoid equation [18]: 

 
𝑥!

𝑎!!
+
𝑦!

𝑎!!
+
𝑧!

𝑏!!
= 1, (II.15) 

where 𝑎! and 𝑏! are known constants defined by the World Geodetic System 84 (WGS84) [18]. 

Unfortunately, there is not an explicit and simple solution for the system of equations (I.10) and 

(I.16) [128][129]. It is even more difficult to derive a straightforward formula for the 𝑧-curve, 

not to mention its relation with the co-coverage zone boundary. As an alternative, numerical 

methods could be applied to simulated or measured OOP data, e.g., data from the CORS network, 

to derive the 𝑧-curve. The numerical method has an advantage over the analytic method, because 

the latter only takes the approximate Earth surface into account.  

Provided with the mathematic equation of 𝑧-curve, its relations to ground receivers and 

𝑂-zone divisions can be computed in an explicit way. Since it is not available, I put our emphasis 

on the 3D 𝑧-surface to model its characteristics, from the receiver 𝑢’s perspective. 
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II.5 The Z-Surface’s Relations to Receiver 

For a receiver 𝑢 at a known position 𝑟!, questions of interest about the every 𝑧-surface 

include but are not limited to: 

• Is 𝑢 locating at left zone or right zone of an 𝑧-surface?  

• What is the distance from 𝑢 to the 𝑧-surface? 

• Is the surface moving away or towards 𝑢? 

• If it is getting closer, when will 𝑢 experience next zero-crossing event? 

To answer these questions, the distance from 𝑢 to the 𝑧-surface, denoted as 𝑑! 𝑟! , is the 

key. I define this distance as illustrated in Figure II-3: the length of the line segment 𝑢𝑒!, where 

𝑒! is a point on 𝑧-surface intersecting with the perpendicular line 𝑢𝑒 from point 𝑢 to the point 𝑒 

on ℎ-plane. Let 𝑑!,!! 𝑟! , 𝑑!,!! 𝑟!  denote the length of |𝑢𝑒′| and |𝑢𝑒|, respectively. As it will be 

clear later, when 𝑑!,!! 𝑟! > 0, the receiver is located at the right zone near 𝑠!, otherwise, at the 

left near 𝑠!. When 𝑑!,!! 𝑟! > 0, it is located at the positive side of ℎ-plane, otherwise, at the 

negative side, as shown in Figure II-3.   

To analyze 𝑑!,!! 𝑟! , I construct a 2D Cartesian coordinate frame 𝑜𝑥!𝑦′ with the origin at 

point 𝑜, the 𝑥′-axis from 𝑠! to 𝑠! and the 𝑦′-axis from point 𝑒 to 𝑜, as shown in Figure II-3. By 

definition, points 𝑠!, 𝑠!, 𝑜 and 𝑜′ are on the new coordinate plane 𝑜𝑥!𝑦′. I claim that point 𝑒′ is 

also on the coordinate plane 𝑜𝑥!𝑦′, which is proved through this process (“⟹” means “lead to”): 

segment 𝑢𝑒 and the 𝑥′-axis are both perpendicular to the plane ⟹ they are in parallel, which 

forms a plane containing 𝑠!, 𝑠!, 𝑜 and 𝑜′  ⟹ all points on 𝑢𝑒 are also on the plane ⟹  point 𝑒′ is 

on the plane.  
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As plane 𝑜𝑥′𝑦′ being the cross profile, the ℎ-plane and 𝑧-surface become a line and a 

hyperbola, respectively. Depending on the position of 𝑢, the sign of 𝑎 and the length of |𝑒𝑒!|, 

eight different relations among 𝑑!,!! 𝑟!  components are shown in Table II-2. The bottom four 

cases illustrate when point 𝑢 is within the furrow between the line and the hyperbola, i.e. 

𝑑! < |𝑒𝑒′|. Let 𝑠𝑖𝑔𝑛() denote the sign function which returns 1, -1 or 0 when the input is 

positive, negative or zero, respectively. The relationship between 𝑑!, 𝑑!, 𝑎 and |𝑒𝑒′| can be 

summarized from Table II-2 as the following equation:  

𝑑!,!! 𝑟! = 𝑑!,!! 𝑟! + 𝑠𝑖𝑔𝑛(𝑎!,!) ∙ |𝑒𝑒′|. (II.16) 

It is important to note that 𝑑!,!! 𝑟! = 0 is a necessary, but not sufficient condition for 

zero-crossing events, because it only indicates the 𝑧!,!-surface is flying across 𝑢. It doesn’t imply 

that both 𝑠! and 𝑠! are visible to 𝑢. Therefore, another necessary condition for zero-crossing 

event is that 𝑢 is located within the co-coverage zone 𝑅!!,!!
! . 

In (II.17), 𝑑!,!!  and |𝑒𝑒′| can be computed with satellite positions and receiver position. 

𝑑!,!! 𝑟!  is the distance of a point to a 3D plane. The conventional equation [127] is revised to 

show the sign of distance, because it indicates which side (positive or negative) the receiver 𝑢 is 

in. 𝑑!,!! 𝑟!  is given as follows: 

 𝑑!,!! 𝑟! =
𝐴!,!𝑥 + 𝐵!,!𝑦 + 𝐶!,!𝑧 + 𝐷!,!

𝑛!,!
, (II.17) 

where 𝑛!,! = (𝐴𝑖,𝑗, 𝐵𝑖,𝑗, 𝐶𝑖,𝑗)! is the normal vector of plane ℎ!,!, pointing from 𝑠! to 𝑠! as defined in 

(15). 𝑑!,!! 𝑟! > 0 (or <) is equivalent to that the point u is on the positive (or negative) side of 

the plane ℎ!,!. One can reason about this claim as follows: let 𝑣 denote a vector from any point 𝑔 
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on the plane to 𝑢 (as shown in Figure II-3), (II.18) is derived from the length of projected 

component of 𝑣 onto the direction of 𝑛!,!, or  𝑑!,!! 𝑟𝑢 =
𝑣𝑇𝑛𝑖,𝑗

𝑛𝑖,𝑗
 .  

To analyze |𝑒𝑒′|, we focus on the plane 𝑜𝑥′𝑦′. Because 𝑒𝑒′ is perpendicular to the 𝑦′-axis, 

|𝑒𝑒′| is the 𝑥′ component of point 𝑒′ coordinate. As such, the 2D equation for the hyperbola 𝑜′𝑒′ 

is needed. The general form for any hyperbola whose transverse axis is aligned with the 𝑥′-axis 

and center is on the origin 𝑜, is expressed as [126]: 

 𝑥′!

𝑎′! −
𝑦!!

𝑏!!
= 1, (II.18) 

where 𝑎!! = 𝑎!,!!  obviously, 𝑏′ is the length of the conjugate axis. According to basic hyperbola 

knowledge, we can derive the equation of 𝑏′! [126]: 

 𝑏′! =
|𝑠!𝑠!|!

4 − 𝑎!,!! , (II.19) 

where |𝑠!𝑠!| is the distance between two focal satellites. Then the coordinate of point 𝑒′ in the 

𝑜𝑥′𝑦′ frame is: 

𝑒′ = −𝑠𝑖𝑔𝑛 𝑎!,! ∙ 𝑎!,!! 1+
4 ∙ 𝑜𝑒 !

𝑠!𝑠!
! − 4𝑎!,!!

,− 𝑜𝑒 , (II.20) 

where |𝑜𝑒| can be obtained through the right triangle ∆𝑜𝑒𝑢, i.e. 𝑜𝑒 = |𝑜𝑢|! − 𝑑!,!!
!. 

Therefore, the length of segment 𝑒𝑒′ is: 

𝑒𝑒! = 𝑎!,!! 1+
4 ∙ 𝑜𝑢 ! − 𝑑!,!!

!

𝑠!𝑠!
! − 4𝑎!,!!

. (II.21) 
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Table II-2 Relationship of 𝒅𝒛, 𝒅𝒉 and |𝒆𝒆′|  in cases with different relative positions of u, h-
plane and z-surface. 
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To get a sense of the magnitude of |𝑒𝑒′|, we list some typical values in the following 

table as the |𝑎!,!| and 𝑠!𝑠!  change. |𝑜𝑒| is fixed to be 20229 kilometers, which is the average 

orbital altitude 20229 km [26]. 

Table II-3 Typical values of |ee'| (kilometers) 
𝒆𝒆!  𝒔𝒊𝒔𝒋  

1,000 5,000 10,000 30,000 

𝒂𝒊,𝒋  
5 202 41 21 8 
20 810 163 83 34 
50 2033 408 208 84 
100 4130 816 417 168 

 

From Table II-3, the value of |𝑒𝑒′| will be amplified as two satellites fly closer to each 

other and as the value of |𝑎| gets larger. The curvature of 𝑧-surface is significant since the 

hyperboloid sheet expands significantly as it makes contact with the ground. Fortunately, 𝑎!,! can 

be effectively estimated based on many well established error correction models [27][37][38][39] 

and techniques (DGPS) [26][28]. The estimation uncertainty remains to be the width of the 𝑧-

surface where the actual hyperboloid could be any sheet in it. 

To answer Q1 and Q2, a receiver first estimates 𝑎!,! using correction models or DGPS 

corrections, and then compute 𝑑! 𝑟!  using (II.17), (II.18) and (II.22). 𝑑! 𝑟!  is more explicit 

and simpler to compute than using the shortest distance from 𝑢 to the 𝑧-surface. For 𝑑! 𝑟! , the 

point on surface 𝑒′ is coupled with the ℎ-plane and is easy to be tracked as the ℎ-plane is dragged 

by the satellites, and it does not cause loss of precision. For the shortest distance, one can 

compute it using methods like Lagrange multipliers [126], but it would require complex 

calculation process and high computing cost for iterative solution of the system of equations. The 
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two approaches eventually converge to each other, because a zero-crossing event happens if and 

only if both 𝑑! 𝑟!  and the shortest distance are equal to zero.  

Q3 and Q4 are related to analysis of point 𝑒 at change of 𝑑!,!!  over time. Dynamics of 

point 𝑒 on the ℎ-surface is complex because it is affected by the motion pattern of satellites. The 

ℎ-plane on the 𝑧-surface is “dragged” by two orbiting satellites on foci at their respective 

velocities. The movement of the center point 𝑜 is the averaged motion of two satellites. However, 

other points on the ℎ-plane have different angular and linear speeds, since the plane is not 

spinning around some center. Notice that the receiver positioning algorithm regularly provides 

computation results of satellite positions using current ephemeris. Therefore, I can analyze the 

dynamics of 𝑑!,!!  discretely by considering consecutive two sample times 𝑡!!! and 𝑡!, where 𝑘 is 

a positive integer.  

Let  𝑣!,!!  denote the rate of 𝑑!,!!  over time, which can be approximated through: 

𝑣!,!! 𝑟!, 𝑡! =
𝑑!,!! 𝑟!(𝑡!), 𝑡! − 𝑑!,!! 𝑟!(𝑡!!!), 𝑡!!!

 𝑡! − 𝑡!!!
. (II.22) 

From (II.17) and (II.23), one can know that the 𝑧-surface is fading away from the 𝑧-surface when 

𝑠𝑖𝑔𝑛 𝑑!,!! 𝑠𝑖𝑔𝑛 𝑣!,!! > 0 and thus it is less urgent to keep track of this pair of satellites. The 

receiver is approaching the 𝑧-surface if 𝑠𝑖𝑔𝑛 𝑑!,!! 𝑠𝑖𝑔𝑛 𝑣!,!! < 0 because in such scenario 𝑑!,!!  

could decrease until 𝑑!,!! = 0, implying an imminent zero-crossing event. The time left to cross 

the 𝑧!,!-surface, denoted as 𝑇!,!! (𝑡!), is defined as the difference of current time 𝑡! to the zero-

crossing time 𝑡!,!! , or  𝑇!,!! 𝑡! = 𝑡!,!! − 𝑡!. Formally, it can be approximated by: 
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𝑇!,!! 𝑟!, 𝑡! =
!!,!
! !!,!!

!!,!
! !!,!!

, 𝑖𝑓  𝑠𝑖𝑔𝑛 𝑑!,!! 𝑠𝑖𝑔𝑛 𝑣!,!! < 0 . (II.23) 

 

To answer Q3 and Q4, a receiver needs to do the following steps:  

1. Compute and store current and previous samples using (II.17), (II.18) and (II.22), i.e. 

𝑑!,!! (𝑟!(𝑡!), 𝑡!) and 𝑑!,!! 𝑟!(𝑡!!!), 𝑡!!! ;   

2. Calculate the velocity 𝑣!,!! 𝑟!, 𝑡!  using (II.22) to determine the relative motion of 𝑧-

surface;  

3. If the surface is approach, one can predict 𝑇!,!! 𝑡!  using (II.24). 

II.6 Experimental Validation and Analysis 

The performance of the OOP model is evaluated using the publically available CORS 

measurement data [23].  The 1-second RINEX (Receiver Independent Exchange Format) [130] 

files of GPS data from CORS locations marked on Figure II-4, JPLM, ICT1, ICT2, ICT4 and 

ICT5 were used for evaluation of the OOP model. Raw L1 code pseudoranges are recorded in 

the RINEX files. For indexing of satellite pairs for the 32 GPS satellites, we design a simple 

formula for a total of 496 labels (1, 2), (1, 3), …, (1, 32), (2, 3), …, (31, 32) as follows: 

𝐼𝑛𝑑𝑒𝑥 𝑖, 𝑗 =
(64− 𝑖)(𝑖 − 1)

2 + 𝑗 − 𝑖 (II.24) 

A zero-crossing event occurred when the order of two pseudoranges swapped. Figure II-5 

plots pseudoranges measured by JPLM to all GPS satellites over 86400 seconds in the 145th day 

of 2015. Pseudorange from the same satellites is marked in the same color. The intersection of 

any two curves of different colors is a zero-crossing point. In the histogram format, Figure II-6 

shows the number of zero-crossing events observed at JPLM. The frequency and distribution of 
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these zero-crossing points are determined by the position of JPLM with respect to the GPS 

constellation. A potential application of OOP is to use these zero-crossing points as timing 

integrity check points based on matching satellite pairs’ behaviors. When JPLM is used alone, 

the checking frequency is in the interval of 15-30 minutes. This checking frequency can be 

drastically increased with multiple stations are networked to serve this purpose.  

 

Figure II-4 Five CORS GNSS receivers with 1-second sampling rate used for the OOP 
evaluation.  
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Figure II-5 L1 code pseudoranges of JPLM over day 145, 2015  

 

Figure II-6 Histogram of zero-crossing events measured by JPLM over day 145, 2015 
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Next, I examine zero-crossing events for the four closely spaced stations ICT1,2,4,5 and 

the result is plotted in Figure II-7, in which a zero crossing event is marked by a triangle oriented 

to south, east, west, and north, respectively. Due to their close proximity, these 4 stations are 

expected to have nearly identical times in recording their zero-crossing events. Most zero-

crossing events fit the theory, as most marked shapes have all four events (e.g., the second lowest 

mark at the lowest left corner), but in several other marked locations, 1, 2 (first mark for index 

350), or even 3 (the right most mark for index 350) marks were missing. The checking provides 

a simple glance at the consistency of different receivers at proximity of each other. The 

inconsistence could imply that they had bad measurements, bad logs, or malfunctions.  

 

Figure II-7 Zero-crossing events of all satellite pairs measured by ICT1,2,4,5 over day 145, 
2015 
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Next, I examine the paired zero-crossing events measured by ICT1 for 20 days in May 

and Jun, 2015, and the results for 5 selected days are plotted in Figure II-8. Using the 24 hours as 

a cycle, one can observe the shifting patterns for all pair indices. This is due to the fact that the 

periodicity of satellite orbit in the ECEF coordinate frame is on average 246 seconds less than 

one day period, from experiments done by A. Duncan and K. Larson [22].  

 

Figure II-8 Zero-crossing events of all satellite pairs measured by ICT1 on days 145, 150, 
155, 160 and 160 in 2015  

Last, but not least, we evaluate the performance of the proposed pairwise OOP model 

against the CORS data. Specifically, we used the ephemeris data to compute on the receiver’s 

distance to the 𝑧-surface or 𝑑! 𝑟! , which was translated to the time when 𝑑!,!! 𝑟! = 0, and the 

time when zero-crossing event of 𝑧!,!-surface was measured. We set the report rate of our 

computed zero-crossing events to one second, so that they are consistent with the 1-second report 
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rate of CORS measurements. Key parameters used in our model include receiver 𝑢, satellite 

positions and semi-major axis 𝑎. The randomly chosen ICT1 as the receiver 𝑢 has surveyed 

ECEF coordinate, as stated in its site log on the CORS website [23]. Satellite positions are 

computed with their ephemeris models given by the navigation files (RINEX) of ICT1.  

 

Figure II-9 Performance of the pairwise OOP model on ICT1 over day 145 in 2015 
- Matrix: time difference (in second) of measured zero-crossings to modeled zero-crossings with 

respect to all satellite pairs. 

- Graph: show the aberrant measurement of pseudorange from 𝑠!". 

For convenience, we used the ephemeris model at the beginning of the day, which is 

expected to have a few meters of error as it is expired. The semi-major axis 𝑎 in OOP model 

contains ionosphere delay, troposphere delay and satellite clock bias. Among them, the satellite 
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clock bias has the largest magnitude, which could be hundreds of microseconds, as one can find 

from the International GNSS Service or IGS orbit files in SP3 format [131]. In my experiment, 

this error is estimated using standard correction models with parameters in ephemeris [27]. 

Atmosphere delays can be readily included in the model using conventional models 

[27][37][38][39], but they were not included, representing a worse case assessment for the OOP 

model.   

The performance of OOP model is measured based on the difference between the 

modeled zero-crossing times vs. that of the actual measurements. The comparison was made for 

the day 145 of 2015, and the result was shown in Figure II-9, in the format of a half matrix. Each 

row-column combination represents a satellite pair, and only half a matrix is required to 

represent all combinations. Within a day, 0, 1, or 2 zero-crossing events can be observed, and the 

differences between the modeled vs. measured times are entered. A “*” sign means that no zero-

crossing was observed. For instance, no zero-crossing occurs to satellite 8. The number of zero-

crossing pairs is not evenly distributed across the spectrum. For all observed cases except for two, 

the OOP has 1 second or less of error. The error of 581 and 2 seconds are respectively observed 

for the pair (𝑠!", 𝑠!") and (𝑠!, 𝑠!"). The actual plots for 𝑠!" and 𝑠!" are plotted at left lower 

corner of Figure II-9, suggesting a spiking of the pseudorange for 𝑠!". By adjusting the 

estimation of semi-major axis 𝑎, OOP can be readily applied to timing integrity check across 

different satellite channels, at the time resolution determined by the sampling and reporting rate 

of the reference receivers.  

II.7 Conclusion 

This chapter proposes the Order of Pseudoranges (OOP) as a system state for the signals 

of a set of satellites. We analyze the dynamics of 𝑧-surfaces generated from zero-crossing of the 
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pseudoranges of satellite pairs. The resulting prediction model was tested using the 1-second 

pseudorange data from selected CORS sites. 

Many interesting applications can be developed on the basis of the OOP model. For 

instance, the sweeping 𝑧-surfaces form natural temporal-spatial checkpoints for receivers to 

detect presence of aberrant signals. Receivers on the same 𝑧-surface have an overhead-free 

synchronization signal to the resolution of the error terms of the pseudorange equation. The 

number of 𝑧-surfaces will continue to grow with the deployment of new satellites. 

From the perspective of distributed computing models, OOP offers a novel system state 

similar to the notion of virtual clock in Lamport’s work, but it offers more than just temporal 

ordering. For instance, the 𝑧-surface for a satellite pair also offers a spatial order of receivers 

dynamically. The 𝑂-zone partitioned by 𝑧-surfaces is largely untouched due to space limit. How 

to explore these and many other untouched issues is critical to create the necessary computing 

abstractions, with provable properties, to integrate the powerful GNSS technology into the future 

generation of networking and distributed computing environments. 
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CHAPTER III Z-SURFACE & Z-CURVE – GNSS GLOBAL COMMON EVENTS2 

III.1 Needs of Formalizing Z-Surface & Z-Curve 

In this chapter, I aim to investigate the basic temporal and spatial properties of GNSS 

signals derived from their TDOA measures. Knowledge obtained from the modeling process will 

aid development of advanced applications. Knowing that positioning is the basis for remote 

sensing data analysis, the modeling techniques can be used for design of ground based 

monitoring grids to validate satellites’ time and positions. 

OOP aims to use the notion of k-event(A, B), when the TDOA of signals of (A, B) is equal 

to k, to discretize states of GNSS signals at a position. The set of ground points that observe the 

same k-event form a k-curve(A, B). A k-event is called a z-event when k=0. In this chapter, I show 

that z/k-surface/curve can be characterized by several factors, such as satellite position, clock 

offset, and atmospheric delay, whose uncertainties are accounted for by existing models [32-41].    

Geometric modeling of the TDOA can be solved using a hyperbolic framework, but most 

existing work is based on the planar environment. New techniques and their solvers are needed 

to characterize TDOA surfaces in 3D space. Key issues being addressed are summarized as 

follows: 

1. The relationship among (A, B) positions, clock errors, propagation errors, and their z-

surface SzA,B. 

2. The perimeter of a z-surface and its relation with signal coverage. 

                                                

 

2 Reprinted with permission from "Geometric Modeling of the Z-Surface and Z-Curve of GNSS Signals 
and Their Solution Techniques" by Guoyu Fu, Colton Riedel, Tyler Holmes, and Jyh-Charn Liu in IEEE 
Transactions on Geoscience and Remote Sensing 99 (2018): 1-12. Copyright 2019 by IEEE. 
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3. Geometrical interpretation of the z-surface, in terms of its eccentricity, foci, semi-major 

axis, opening directions. 

4. The mathematical model of z-surface’s ground intersection - z-curve CzA,B. 

5. Transformation of results from the mathematics-friendly Earth-Center Earth-Fixed 

(ECEF) coordinate frame to the user-friendly longitude-latitude coordinate frame. 

Modeling of SzA,B is done by manipulating the pseudorange model while taking into account 

the signal propagation errors in pseudorange formation. The main challenge in modeling Sk
A,B is 

to find a valid range of 𝑘 so that a feasible solution can be found. Modeling of CzA,B in the 

Cartesian form is not as difficult, but its parameterization is the well-known class of Quadric 

Surface Intersection Curve (QSIC) problems.  

A high-level illustration of the z-surface and z-curve between (A, B) is given in Figure 

III-1Figure I-1, where the satellites’ antennae emit GNSS signals in their TSV’s at a time instant 

t. The primary factors which determine the propagation pathway of an RF signal are the satellite 

position, antenna direction, beam width, along several other parameters [29][30], which will be 

detailed in Chapter IV. The z-surface that represents the equal distance/pseudorange surface 

between (A, B) spans indefinitely in the 3D space. Its intersection with the Earth (surface) forms 

a z-curve, which is marked by the thick line segment on Figure III-1.  
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Figure III-1 Illustration of Geometric Components 

For convenience, I assume the satellite position as a known value obtained from the 

broadcasted ephemeris model [27], because no closed form expression can accurately reflect 

satellite drift caused by outgassing, maneuvers, microgravity, solar winds, and other factors [28].  

Let a 3D surface SzA,B denote the z-surface with respect to (A, B), where all points on 

SzA,B have zero difference in their pseudorange to (A, B). A k-surface, Sk
A,B, is the generalization 

of a z-surface when the pseudorange difference is a constant value k. We will show that a z-

surface (and k-surface) is also a quadratic shape, which is one sheet of two-sheeted hyperboloid 

when the pseudorange error terms are non-zero.  

Given the positions of (A, B), ionospheric and tropospheric errors, and satellites’ clock 

offsets, a z-surface in the unobstructed 3D space can be written in the general quadratic form: 

SzA,B:   𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0.    (III.1) 
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Details will be explained in Theorems III.1 and III.2. The final constrained Sk
A,B has a similar 

form, as given in Theorem III.3. Parameters 𝑀!, 𝑁!, and 𝐿! describe the placement, orientation, 

eccentricity, and other characteristics of the hyperbolic sheet. If error terms of pseudoranges can 

be cancelled, the equation is reduced to a linear polynomial and the z-surface becomes a plane. 

To reflect real world conditions, the points of the z-surface receiving signals from (A, B) must 

be within TSVA,B. Although this modeling technique can be applied to all elevations, for 

simplicity we only consider the altitudes below (“within”) the troposphere. The flyover of SzA,B 

can be detected by a receiver Ω when a change of the order of pseudoranges occurs from 

𝜌! > (<)𝜌! to 𝜌! < (>)𝜌!.  

A zero-crossing curve (z-curve) with respect to (A, B), denoted by CzA,B, is the 

intersection of z-surface SzA,B and the Earth surface model E based-on its reference ellipsoid. This 

definition leads to the combination of (III.1) and (III.2) to form a system of two equations: 

CzA,B ∶    𝐱
!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0  
𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0

 

Linear and quadratic constraints required to represent TSVA,B with respect to this z-surface will 

be discussed in Chapter IV. Although the z-curve offers more practical values for ground users 

than the z-surface does, it is not easy to generate points on a z-curve from the fourth-order 

(quartic) curve bounded by TSVA,B. There is no simple way to find a parametric tracing of the 

QSIC [9-12], let alone find the constraints of the parameter. Therefore, in addition to the 

Cartesian representation of the z-curve, I also propose a parameterization method in Section III.5 

to trace CzA,B and obtain the algebraic solution of each point CzA,B. 
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III.2 Models of Earth Surface and Coordinate Systems 

The real Earth’s surface is the topographic surface, commonly indexed by its geodetic 

latitude, longitude, and height (LLH) [21], where the height is the vertical distance of a position 

on terrain above its sea level. Under the terrain, the sea level surface is a reference geoid surface 

derived from the distribution of micro-gravity [21]. Both the topographic and geoid surface 

models have no straightforward closed form, and are typically expressed in numerical formats 

such as Digital Elevation Models [20]. In this work we adopt the reference ellipsoid defined in 

WGS84 [18] [21] as the Earth’s surface E. The ellipsoid E can be expressed as: 

 E:    !
!

!!
! +

!!

!!
! +

!!

!!
! = 1. (III.2) 

Here, 𝑎! (6378137 meters) and 𝑏! (≈6356752.314140 meters) are known constants which 

represent the equatorial radius and polar radius, respectively [18]; 𝑥,𝑦, 𝑧 are ECEF coordinates 

of a surface point [19]. An ellipsoid is a quadratic shape in 3D Euclidean space ℝ! , which 

allows us to rewrite (III.2) in the quadratic form [8]: 

 E :   𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0, (III.3) 

where 𝐱 = (𝑥,𝑦, 𝑧)! ∈ ℝ! is the coordinate of a receiver Ω, and  

𝑀! =

!
!!
! 0 0

0 !
!!
! 0

0 0 !
!!
!

,   𝑁! = 0,0,0 ,   𝐿! = −1. 

The matrix representation of (III.1) will be extensively used for manipulations of linear 

and quadratic equations to derive geometric relationships among entities of interest in ℝ!. I will 

use similar quadratic expressions for representations of the z-surface, and the symbol set 
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(𝑀! ,𝑁! , 𝐿!) will be used to represent three-dimensional coefficients of a quadratic polynomial 

expression of a system x, where “x=E” for the Earth, “x=V” for TSV, and “x=Z” for z-surface/z-

curve. 

The parametric Earth surface is denoted by the tuple 𝜆,𝜑 , where longitude 𝜆 and 

geocentric latitude 𝜑 are spherical dimensions aligned with the ECEF frame. As illustrated in 

Figure III-2, 𝜆 is the angle between the prime meridian and a plane containing the North Pole, 

South Pole, and point of interest [18]. 𝜆 is positive when the point is east of the prime meridian 

(i.e. in the eastern hemisphere), and negative otherwise. 𝜑 is the angle between the equatorial 

plane and the line from Earth’s center through the point [18]. It is positive when the point is on 

the northern hemisphere, and negative otherwise. 𝜆,𝜑 ’s relationship with ECEF coordinates is 

bijective [18]: 

𝑥 = 𝑎! cos 𝜆 cos 𝜑 ,
𝑦 = 𝑎! sin 𝜆 cos 𝜑 ,

𝑧 = 𝑏! sin 𝜑 ,
     (III.4) 

where geocentric latitude’s range is 𝜑 ∈ [− !
!
, !
!
], and longitude’s range is 𝜆 ∈ [−𝜋,𝜋). It is 

important to note that 𝜑 is different from the more commonly used geodetic latitude 𝜓, as shown 

in Figure III-3. The bijective mapping between 𝜑 and 𝜓 can be expressed as 

𝜓 = 𝑡𝑎𝑛!!(!!
!

!!
! tan𝜑) [18].  
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Figure III-2 The Earth coordinate systems  

 

Figure III-3 The relationship between geocentric and geodetic latitudes. 

The reference ellipsoid E approximates the real Earth surface and facilitates the 

development of a complete math system for the TSV. Readers are encouraged to replace the 

ellipsoid Earth model with other realistic models as needed for more precise analysis. The real 

Earth surface is the topographic surface, commonly indexed by its geodetic latitude, longitude, 

and height (LLH) [20], where the height is the vertical distance of a position on terrain above 

local sea level. Under the terrain is the sea level surface, given by a reference geoid surface 
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derived from the distribution of micro-gravity [19]. Both topographic surface and geoid surface 

models have no closed form, and are typically expressed in numerical formats such as Digital 

Elevation Models (DEM) [20]. 

III.3 Cartesian Model of Z-Surface & Z-Curve 

The z-surface SzA,B is the solution space of pseudorange difference ∆!,! 𝐱 =

0,∀𝐱 ∈TSVA,B. Let 𝔖!,! denote this solution space but without the condition “∀𝐱 ∈TSVA,B”. We 

can derive expression for 𝔖!,! first, and then add the constraint of ∀𝐱 ∈TSVA,B to the system of 

expressions.  

𝔖!,! is a set of points in space at which a GNSS receiver measures the same 

pseudoranges from (A, B) at time 𝑡. The pseudorange model [25][26][28] is given as the sum of 

geometric distance and error terms:  

𝜌 = 𝐱! − 𝐱 + 𝑣𝛿!" 𝐱 + 𝑣𝐸1 𝐱 + 𝑣𝐸2 𝐱 ,    (III.5) 

𝐸1 𝐱 = 𝛿!" 𝐱 + 𝛿!" 𝐱 − 𝛿!" 𝐱 ,      (III.6) 

where 𝑣 is the speed of light in vacuum, 𝛿!" the receiver clock offset, 𝐸1 represents error terms 

of a GNSS system (ionospheric delay 𝛿!", tropospheric delay 𝛿!", satellite clock error 𝛿!"), E2 

denotes man-made sources like spoofing, multipath [30][31]. By substituting (5) in ∆!,! 𝐱 = 0, 

one can readily obtain:  

∆!,! 𝐱 = 𝐱! − 𝐱 − 𝐱! − 𝐱 + 𝑣 𝐸1 
! 𝐱 − 𝐸1 

! 𝐱 + 𝑣 𝐸2 
! 𝐱 − 𝐸2 

! 𝐱 . (III.7) 

When 𝐸2 = 0, 𝑣 𝐸2 
! − 𝐸2 

! = 0 in (7). As such, 𝔖!,! represents a set of points satisfying  

𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! − 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 !

+ 𝑣 𝐸1 
! − 𝐸1 

! = 0, 
(III.8) 
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where the last linear term is a constant by assumption. For convenience, we let 𝑎 = !
!
𝐸1 

! −

𝐸1 
! = !

!
𝛿𝑖𝑜
𝐴 − 𝛿𝑖𝑜

𝐵 + 𝛿𝑡𝑟
𝐴 − 𝛿𝑡𝑟

𝐵 − 𝛿𝑠𝑐
𝐴 − 𝛿𝑠𝑐

𝐵 . 𝑎 is assumed to be a constant for the areas of 

concern, because 𝛿!"’s from A and B’s pseudoranges are same and cancelled out, while 𝛿!", 𝛿!" 

and 𝛿!" are assumed to be constant at a given time instance [25][26]. It will become clear shortly 

that 𝑎 is essentially the semi-major axis of the solution space 𝒮 to be solved in Theorem  III.1.  

In the following discussion, a necessary and sufficient condition for 𝔖!,! being a non-

empty set is given in Lemma III.1. The geometric meaning and property of 𝔖!,! is discussed in 

Theorem III.1. A compact Cartesian system of 𝔖!,! is presented in Lemma III.2, by rewriting 

(III.8). Finally, the Cartesian expression for  SzA,B is provided in Theorem III.2 by incorporating 

the system for TSVA,B into the system of 𝔖!,!. 

Lemma III.1 𝔖!,! is a non-empty set if and only if −𝑐 < 𝑎 < 𝑐, where 𝑐 = !
!
𝐱! − 𝐱!  

is a half of the geometric distance between A and B.  

Proof: When 𝔖!,! is a non-empty set, there exists at least an arbitrary point 𝑞 which 

forms a triangle with (A, B) in the 3D space ℝ!, so that the following inequality must be 

satisfied: 𝐱! − 𝐱! − 𝐱! − 𝐱! < 𝐱! − 𝐱! . By substituting (III.8) into the inequality 

expression, we get −𝑐 < 𝑎 < 𝑐. Conversely, when −𝑐 < 𝑎 < 𝑐, 𝔖!,! is a non-empty set, 

because |2𝑎| < 2𝑐 implies that there are points which can form a triangle with (A, B). That is, 

some of these points in ℝ! satisfy (III.8). ■ 

As will be shown in Theorem III.1, 𝔖!,! is a hyperboloid at most times, and 𝑎 and 𝑐 are 

two factors of its eccentricity 𝑒. Empirical results show that 𝑎 can be either negative or positive, 

and that 𝑎’s magnitude is typically less than 𝑐. That being said, 𝔖!,! exists and is usually not 
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empty based on Lemma III.1. 𝑎 is primarily determined by the difference of satellites’ clock 

offset 𝛿!"! − 𝛿!"! , instead of atmospheric delays, because 𝛿!"  can be as large as 1 millisecond, or 

300 kilometers equivalently, while 𝛿!"  and 𝛿!"  are on the magnitude of tens of nanoseconds [26]. 

Even though these errors can be well compensated for positioning, their physical values before 

compensation will affect the curvature of z-surface.  

Theorem III.1 When 𝐸1 
! = 𝐸1 

!, 𝔖!,! is an equal distance plane between (A, B). 

Otherwise, when 𝐸1 
! ≠ 𝐸1 

! , 𝔖!,! is one half sheet of a two-sheeted hyperboloid, whose foci 

are A, B, and the semi-major axis is 𝑎. 

The geometric meaning of Theorem III.1 is illustrated in Figure III-4. The solution space 

𝔖!,! can be one of the three sub-shapes 𝐻 
!,!, wing-B (𝑊 

!), and wing-A (𝑊 
!) of a hyperboloid 

shape. Let 𝑞 denote an arbitrary point on 𝔖!,!, 𝑊 
! represents the case when 𝑎 = !

!
(𝑑 𝐵, 𝑞 −

𝑑(𝐴, 𝑞)) is less than zero, 𝐻 
!,! the case when 𝑎 = 0, and 𝑊 

! the case when 𝑎 > 0, where the 𝑑 

function refers to the geometric distance between two points. 

Proof: To solve 𝔖!,!, we rewrite (8) by replacing 𝑣 𝐸1 
! − 𝐸1 

!  with 2𝑎: 

𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! −  𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! = 2𝑎, (9) 

where the two square root terms on the left-hand side (LHS) represent the geometric distances 

from an arbitrary point 𝑞 to (A, B), or 𝑑 𝐴, 𝑞  and 𝑑 𝐵, 𝑞 , respectively. The “2𝑎” on the right-

hand side (RHS) is the difference from 𝑑 𝐵, 𝑞  to 𝑑 𝐴, 𝑞 .  

The special case of 𝔖!,! with 𝑎 = 0 is represented by 𝐻 
!,! , in Figure III-4, and (III.8) 

can be rewritten in the general form   

𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! = 0,    (III.9) 
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where 𝐶! = 2 𝑥! − 𝑥! , 𝐷! = 2 𝑦! − 𝑦! ,  𝐸! = 2 𝑧! − 𝑧! , and 𝐹! = 𝐱!!𝐱! − 𝐱!!𝐱!. The 

first three coefficients are elements of the normal vector of 𝐻 
!,!, i.e. (𝐶! ,𝐷! ,𝐸!)!, which is 

exactly in the direction of a unit vector 𝑛 from B to A:     

𝑛 =
𝑥! − 𝑥!

2𝑐 ,
𝑦! − 𝑦!

2𝑐 ,
𝑧! − 𝑧!

2𝑐

!

, 

where 𝑐 refers to half of distance between A and B as defined in Lemma III.1. This implies that 

𝐻 
!,! is always perpendicular to the line connecting A and B. Moreover, by substituting 

𝑜! = !
!
𝐱! + 𝐱!  , the midpoint of A and B, into (III.9), one finds that 𝐻 

!,!  always passes 

through 𝑜′. Therefore, 𝐻 
!,! is a special plane and every point on 𝐻 

!,!  has equidistant to A and B.  

In case of 𝑎 ≠ 0, let 𝔖!,!(𝑎 ≠ 0) denote a set of points satisfying (III.8). Formally, for 

all points 𝑞 ∈ 𝔖!,!(𝑎 ≠ 0),  𝑑 𝐵, 𝑞 − 𝑑 𝐴, 𝑞 = 2𝑎 ≠ 0. I could not locate any 3D shape 

definitions in literature to represent 𝔖!,!(𝑎 ≠ 0), therefore we present a simple technique to 

construct 𝔖!,!(𝑎 ≠ 0) from the collection of 2D planes, each of which is a slice intersecting the 

line segment 𝐴𝐵, with all inclination angles 𝜃 ∈ 0,𝜋 . Let ℝ!(𝜃) denote each of these 2D 

section planes. The trace of points on the plane ℝ!(𝜃) have the same distance difference 2𝑎 to 

two foci, by (III.8). Therefore, the portion of 𝔖!,!(𝑎 ≠ 0) on ℝ!(𝜃) is a hyperbola with (A, B) 

as the foci and 𝑎 as the semi-major axis, by the definition of a hyperbola [118]. One such 

hyperbolic curve is plotted in Figure III-4. Note also that on ℝ!(𝜃), the geometric meaning of 

(III.8) is slightly different from the definition of hyperbola, in that (III.8) is not expressed in the 

absolute value of 𝑑 𝐵, 𝑞 − 𝑑 𝐴, 𝑞 . As a result, 𝔖!,!(𝑎 ≠ 0) on ℝ!(𝜃) refers to only one half 

(wing) of a hyperbola. By iterating over all 𝜃 ∈ 0,𝜋 , the union set of all hyperbola wings form 

a single sheet of a two-sheeted hyperboloid of revolution [118], whose characteristics are 
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determined by 𝐱!, 𝐱!, 𝑐 and 𝑎. Specifically, when 𝑎 > 0, or 𝑑 𝐵, 𝑞 > 𝑑 𝐴, 𝑞 ,  𝔖!,!(𝑎 ≠ 0) is 

𝑊!. Otherwise, when 𝑑 𝐴, 𝑞 >  𝑑 𝐵, 𝑞 ,  𝔖!,!(𝑎 ≠ 0) is wing-B, 𝑊!. ■ 

From Theorem III.1, one can write the canonical form of 𝔖!,!(𝑎 ≠ 0) by placing it on a 

local coordinate 𝐿!,!, which can be constructed by letting 𝑜! be 𝐿!,!’s origin, 𝑛 the 𝑦′-axis of 

𝐿!,!, and any right-handed orthogonal vectors on 𝐻 
!,! the  (𝑥!-, 𝑧′-) axes of 𝐿!,!. In 𝐿!,!, 

coordinates of (A, B) are respectively 𝐱!′ = 0, 𝑐, 0  and 𝐱!′ = 0,−𝑐, 0 . And 𝔖!,!(𝑎 ≠ 0) in 

𝐿!,! has the form  

!!!

! !!! !
− !!!

! !
+ !!!

! !!! !
= −1,where 𝑎𝑦! > 0,         (III.10) 

where the equation describes the collection of 𝑊! and 𝑊! of the hyperboloid, and the inequality 

constraint the solution points on only one of the two wings. Since Theorem III.1 implies 𝔖!,! is 

a quadratic shape of hyperboloid, 𝔖!,! can be represented in a general quadratic form in both 

𝑎 = 0 and 𝑎 ≠ 0 cases. Lemma III.2 below gives a compact representation for 𝔖!,!. 

 

Figure III-4 Illustration of 𝕾𝑨,𝑩 on the ECEF frame. 
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Lemma III.2 A quadric matrix form of (III.8) can be expressed as   

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0,
𝑎 𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0, 

where 𝑀! = 𝑚!,! , 𝑖, 𝑗 = 1,2,3, 𝑁! = 𝑛! , 𝑖 = 1,2,3, 𝐿! ∈ ℝ.  

The variables are defined as follows: 

𝑀! =
𝐶!! − 4𝑎! 𝐶!𝐷! 𝐶!𝐸!
𝐶!𝐷! 𝐷!! − 4𝑎! 𝐷!𝐸!
𝐶!𝐸! 𝐷!𝐸! 𝐸!! − 4𝑎!

, 

𝑁! =
2𝐺!𝐶! + 8𝑎!𝑥!

2𝐺!𝐷! + 8𝑎!𝑦!

2𝐺!𝐸! + 8𝑎!𝑧!
, 

𝐿! = 𝐺!! − 4𝑎!𝐱!
!𝐱!, 𝐺! = 𝐹! − 4𝑎!. 

Proof: Rewrite the following equation into a quadric matrix form: 

𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! − 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! = 2𝑎. 

Step 1: Move one of the square root (e.g. the distance to satellite A) to the RHS, and 

square both sides. We get: 

𝑥! + 𝑦! + 𝑧! − 2𝑥!𝑥 − 2𝑦!𝑦 − 2𝑧!𝑧 + 𝑥!! + 𝑦!! + 𝑧!! =

4𝑎! + 4𝑎 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! + 𝑥! + 𝑦! + 𝑧! − 2𝑥!𝑥 − 2𝑦!𝑦 − 2𝑧!𝑧 +

𝑥!! + 𝑦!! + 𝑧!!,    

Step 2: Leave the term of square root at the RHS, and substitute 𝑥!! + 𝑦!! + 𝑧!! and 

𝑥!! + 𝑦!! + 𝑧!! with 𝐱!!𝐱! and 𝐱!!𝐱!, respectively. We get: 

𝐺 + 𝐶𝑥 + 𝐷𝑦 + 𝐸𝑧 = 4𝑎 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 !, 

where 𝐺,𝐶,𝐷, and 𝐸 are given as: 

𝐺 = 𝐱!!𝐱! − 𝐱!!𝐱! − 4𝑎!,  𝐶 = 2 𝑥! − 𝑥! , 
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𝐷 = 2 𝑦! − 𝑦! , 𝐸 = 2 𝑧! − 𝑧! . 

Step 3: Square both sides and after some reorganization of the terms, we get: 

𝑚!,!𝑥! +𝑚!,!𝑦! +𝑚!,!𝑧! + 2𝑚!,!𝑥𝑦 + 2𝑚!,!𝑥𝑧 + 2𝑚!,!𝑦𝑧 + 𝑘!𝑥 + 𝑘!𝑦 + 𝑘!𝑧 + 𝐿 = 0,  

where coefficients are given as below: 

𝑚!,! = 𝐶! − 16𝑎!,  𝑚!,! = 𝐷! − 16𝑎!, 

𝑚!,! = 𝐸! − 16𝑎!,𝑚!,! = 𝐶𝐷,  𝑚!,! = 𝐷𝐸,  𝑚!,! = 𝐶𝐸, 

𝑘! = 2𝐺𝐶 + 32𝑎!𝑥!, 𝑘! = 2𝐺𝐷 + 32𝑎!𝑦!, 𝑘! = 2𝐺𝐸 + 32𝑎!𝑧!, 

𝐿 = 𝐺! − 16𝑎!𝐱!!𝐱!. 

Its matrix form is: 

𝐱!𝑀𝐱+ 𝐾𝐱+ 𝐿 = 0, 

where 𝑀 = {𝑚!,!},𝑖, 𝑗 ∈ {1,2,3}, and 𝐾 = {𝑘!}, 𝑖 ∈ {1,2,3}. It is important to note that only half 

of the solutions should be used, as this equation also covers the situation of 𝐱! − 𝐱 −

𝐱! − 𝐱 = −2𝑎. ■ 

Theorem III.2 The z-surface of (A, B), SzA,B, in the implicit Cartesian expression  is   

SzA,B :   

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≥ 0,
𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0,

𝑎 𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0,
𝐱𝑇𝑀𝑉

𝐴𝐱 + 𝑁𝑉
𝐴𝐱 + 𝐿𝑉

𝐴 ≤ 0,
𝐶𝑉
𝐴𝑥 + 𝐷𝑉

𝐴𝑦 + 𝐸𝑉
𝐴𝑧 + 𝐹𝑉

𝐴 ≥ 0,
𝒙!𝑀!

!𝒙+ 𝑁!!𝒙+ 𝐿!! ≤ 0,
𝐱𝑇𝑀𝑉

𝐵𝐱 + 𝑁𝑉
𝐵𝐱 + 𝐿𝑉

𝐵 ≤ 0,
𝐶𝑉
𝐵𝑥 + 𝐷𝑉

𝐵𝑦 + 𝐸𝑉
𝐵𝑧 + 𝐹𝑉

𝐵 ≥ 0,
𝒙!𝑀!

!𝒙+ 𝑁!!𝒙+ 𝐿!! ≤ 0,

      

I
II
III
 

(III. 11) 
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where the 2nd (II) and 3rd (III) expressions represent the unconstrained z-surface 𝔖!,! with 

respect to (A, B) as described in Lemma 3, the rest inequalities describe TSVA,B described in 

Chapter IV. 

III.4 Extension to K-Surface & K-Curve 

The k-surface Sk
A,B is a close relative of the z-surface to represent the surface where points 

have same pseudorange difference 𝑘 to (A, B). Let 𝑎! denote a constant value of 𝑎! =

𝒞
!
𝐸1!! − 𝐸1!! + !

!
. Equation ∆!,! 𝐱 = 𝑘 is rewritten as: 

𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 ! − 𝑥! − 𝑥 ! + 𝑦! − 𝑦 ! + 𝑧! − 𝑧 !

= 2𝑎! . 
(III.12) 

Lemma III.3: The solution space of (III.12) is a non-empty set if and only if −2𝑐 − 2𝑎 <

𝑘 < 2𝑐 − 2𝑎.  

Proof: Omitted here, since it is similar to that of Lemma III.1. ■ 

Theorem III.3 The k-surface of (A, B), Sk
A,B, in the implicit Cartesian expression  is  

identical to that of SzA,B in  Theorem III.2, except that the coefficient a in expression III is 

replaced by 𝑎!. 

By substituting different values of 𝑘, one can obtain k-surfaces, as illustrated in Figure 

III-5. Intuitively, the distance between the two wings of the hyperboloid increases with the 𝑘 

value, while the openness of the wing is narrowed.  

The system of equations for Ck
A,B  is derived from Theorem III.2 by replacing 𝑎 by 𝑎!, 

and “≤”with“=” in the first expression to constrain the points in Ck
A,B to the Earth’s surface.  
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  (a) on the local 𝑦′𝑧′ section                          (b) on the global ECEF frame 

Figure III-5 The k-surfaces with different k values.  

 

Figure III-6 Parameterization schemes for coverage zone and z-curve. 

Theorem III.4 The implicit expression of a z(k)-curve for satellites A and B and about the 

reference ellipsoid defined in WGS84, is given by replacing expressions I, III in Theorem III.2 as 

follows: 
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I →                   𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0, 

III→             𝛼 𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0, 

where 𝛼 =  𝑎 for a z-curve, and 𝛼 =  𝑎! for a k-curve. 

III.5 Parameterization of Z-Curve 

In many applications like computer visualization and mapping, Cartesian models are 

inconvenient because they require a full enumeration for all points in the 3D space. A 

parameterization scheme is discussed here to trace the z(k)-curve based on only one parameter, 

i.e. the geocentric latitude 𝜑. The longitude 𝜆 is positive when the point is east of the prime 

meridian, and negative otherwise. The geocentric latitude 𝜑 is positive when the point is in the 

northern hemisphere, and negative otherwise. 𝜆,𝜑 ’s relationship with ECEF coordinates is 

bijective and given by [19]: 

𝑥 = 𝑎! cos 𝜆 cos 𝜑 ,
𝑦 = 𝑎! sin 𝜆 cos 𝜑 ,

𝑧 = 𝑏! sin 𝜑 ,
    (III.13) 

where 𝜑 ∈ [− !
!
, !
!
], 𝜆 ∈ [−𝜋,𝜋). It is important to note that 𝜑 is different from the more 

commonly used geodetic latitude 𝜓. Their relation can be expressed as 𝜓 = 𝑡𝑎𝑛!!(!!
!

!!
! tan𝜑) 

[132]. 

The proposed representations with 𝜆,𝜑  are illustrated in Figure III-6. The z-curve Ck
A,B 

is discretized into dots (in yellow), one or two of which are located at the same 𝜑-circle but with 

different longitudes. Therefore, both shapes can be described by mathematical ranges: let ℝ! 

denote the valid latitude range, and for each 𝜑 ∈ ℝ!, and let ℝ!(𝜑) denote the longitude range 

on the 𝜑-circle for the coverage zone, or the longitude value(s) of point(s) on the z-curve. 
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Being a QSIC, Ck
A,B is an ellipsoid-hyperboloid shape. Neither an ellipsoid nor a 

hyperboloid is a ruled surface (i.e. a surface that can be described as a cluster of lines). It thus 

remains a hard problem to efficiently parameterize the ellipsoid-hyperboloid intersection (EHI) 

algebraically. A well known method proposed by Levin et al [2] can search for a ruled surface in 

the pencil [11] (i.e. the cluster of shapes crossing the intersection of the two shapes) of two 

general quadric shapes, and thus reduce the final polynomial from the 4th to the 2nd order. 

However, it has non-trivial computations unrelated to the specific EHI problem. In our work, we 

directly substitute the parametric Earth (III.13) into the Cartesian expression of the hyperboloid, 

i.e. the equation II in (III.11). The derivation is detailed in Appendix 1. The result will be a 4th 

order polynomial equation of longitude value 𝜆, given a known geocentric latitude 𝜑. Every time 

a pair of (𝜆,𝜑) is solved, it must be converted to a Cartesian coordinate to be tested against the 

remainder of the constraints in (III.11). 𝜑 becomes the tracing parameter: for each geocentric 

latitude 𝜑 ∈ ℝ!, the real roots of a 4th order equation, if also satisfying the rest constraints in 

(III.11), can be the longitudinal value(s) 𝜆, which label the point(s) of the z-curve on this 𝜑-circle.  

III.6 Experimental Validation 

A C++ based software tool was developed to validate the Cartesian models and their 

parameterization methods using the data from almost 4000 GNSS reference stations in the public 

IGS and CORS databases [35][36]. The tool implements construction of Cartesian models, 

parameterization functions, polynomial solvers, time and coordinate converters, parsers for 

RINEX observation and navigation files, and the sp3 file, and utility functions. OpenGL and 

CGAL libraries [23][121] were used for 3D visualization and interactive adjustment. A 2D 

display webpage was implemented using python and Google Maps to display the overlays of 

reference stations and z-curves. Other numerical experiments are carried out in Matlab.  
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Form Theorem III.3, z-curves between satellite pairs can be generated for their expected 

ground (Cartesian) positions at different times. After parametrization, they are compared against 

the 1-Hz measurements made at the 190 IGS and 756 CORS networks of GPS/GNSS receivers. 

Snapshots of the z-curves for a GPS satellite pair (6, 30) at 30-second intervals (denoted in Time 

of Week, or TOW in second) are plotted in the left diagram of Figure III-7. CORS and IGS 

stations are marked as circles initially. They are replaced by crosses when experiencing zero-

crossings of pseudoranges from satellites (6, 30), i.e. the transition from 𝜌! − 𝜌!" > 0   to 

𝜌! − 𝜌!" < 0 , vice versa. Nearly all stations detect zero-crossings at the times predicted by the 

proposed z-curve model. Some stations during this time are not marked as crosses due to lack of 

measurements. Among more than 400 curves, this series of z-curves ( Cz6,30) were chosen for 

illustration because they passed the greatest number of reference stations that day.  
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Figure III-7 Snapshots of z-curves vs. detections of IGS and CORS. 

- Left: real z-curves and detected stations in 330 seconds from TOW 430238 to 430568 seconds (12 

snapshots are shown) 

- Right: a z-curve in solid line and two simulated z-curves in dash lines (detected stations are marked 

in stars), at TOW 430388 second 

- Note: the cluster of z-curves are Cz6,30, Day 110, 2017. Stations are marked as circles, and become 

crosses when detecting z-curve. 
Reporting a z-curve crossing at an unexpected time by a group of receivers indicates 

anomaly with respect to a common event. A potential application of the z-curve model is 

therefore detection of anomalous satellite trajectories, spoofing, or atmosphere properties, 

especially the ionosphere, which can be disturbed by various causes [133]. We use the right 

diagram of Figure III-7 to show the simulation result. Given a z-curve of Cz6,30 at TOW 430388, 
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it is expected that 6 stations (crosses) report its crossing within ±1 second, shown as the solid 

line. If 𝜌!" is increased by 5,000 and 50,000 meters, the stations marked as stars instead would 

observe Cz6,30. Since the same z-curve should reappear periodically, this anomaly checking logic 

can be scheduled. 

Another potential application is the collaborative survey of GNSS constellation orbits and 

geodetic models. Any discrepancy between the predicted and measured zero-crossings is the 

result of imperfections of the Earth’s surface model, atmospheric models, orbital models, or 

signal models. The 1-Hz reporting rate of receivers used in this dissertation is not fine enough to 

reveal any of these potential imperfections. However, when GNSS receivers report pseudoranges 

every millisecond, any error of zero-crossing predictions would be more detectable, thereby 

revealing any potential imperfections in geodetic or navigation models.  

Multiple z-curves may intersect simultaneously. In Figure III-8, I randomly select three 

satellites (PRNs 2, 3, 30). Eight instances, on 15-minute intervals, of z-curves Cz2,3, Cz2,30, Cz3,30 

are plotted. Initially (TOW 345420 second) they have no intersection, but appear to be 

converging at some point outside of their co-coverage zone. At the next instance, the three 

curves intersect at a point. The three z-curves intersect at a different circled point at each 

subsequent observation. Consider three satellites with PRNs 𝑖, 𝑗, 𝑘 (𝑖 < 𝑗 < 𝑘) which form three 

intersecting z-curves Czi,j, Czi,k, Czj,k, we have 𝜌! = 𝜌! on Czi,j, 𝜌! = 𝜌! on Czi,k, and 𝜌! = 𝜌! on 

Czj,k. If three curves intersect at one point, the point must measure 𝜌! = 𝜌! = 𝜌!. That is, the tri-

intersection points form a unique path that observe identical pseudoranges to the 3 satellites.  The 

argument can be readily expanded to m (m>2) pairs of z-curves which intersect. 
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Figure III-8 Intersections of three moving z-curves, Day 110, 2017  

III.7 Conclusion 

This chapter presents the geometric model and mathematic solution systems for z-surface, 

z-curve, as well as their direct relatives k-surface and k-curve. Being a form of TDOA 

measurement in the 3D space, we present a divide and conquer technique to solve the hyperbolic 

shapes by (infinite) slicing of the 3D hyperboloid into its 2D slices. A parameterization 

technique and its two constraint solvers were also presented. Experimental results show that our 

model match the field data collected from the CORS network. This work is based on a pair of 
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satellites in their fixed positions. Dynamic migration of z-curves and z-surfaces and other 

dynamic properties need to be developed.  
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CHAPTER IV  

SATELLITE TSV AND COVERAGE FOOTPRINT 

IV.1 Introduction  

The analysis of a satellite’s radiated region is important for design and application of 

many classes of satellites, e.g. communications, weather, navigation [67], Earth resources, and 

surveillance satellites. The radiated space of a satellite is known as the Service Volume, 

describing the 3D space reached by the broadcast signal. This radiated region on Earth’s surface 

which receives signals from a given satellite is known as the coverage footprint. Geometrically, 

the service volume is a downward-opening cone-like shape which is a function of the satellite’s 

position and antenna’s beam width. An analytical model of service volume is helpful for the 

design of constellations and satellite antenna patterns.  

A formal and validated research of the service volume model is missing in literature. 

Existing models for coverage footprints have several disadvantages. First, they are point-based 

numerical solutions [44][47][48]. This class of methods describes the satellite-receiver pair 

geometry; they discretize the Earth’s surface into a set of points and examine the satellite-

receiver geometric relationship. The results are less accurate than an analytic solution, and the 

accuracy depends on the discretization resolution. Second, they bear a high computational 

complexity - proportional to the number of pixels. If the resolution is less than 1 km2, there will 

be millions of ground points for a LEO (Low Earth Orbit) satellite and billions for a MEO 

(Medium Earth Orbit) satellite. Third, existing methods usually assume the Earth as a sphere for 

simplicity [42-52]. An ellipsoid is a better approximation of the Earth, with a sphere assumption 

causes 100-200 kilometers of errors for the circumference of the equator and a meridian circle.  
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Contributions of this work are twofold. First, I propose an algebraic Cartesian model for the 

service volume. Adopting an ellipsoidal Earth approximation, this work models the service 

volume as a cone-based system of quadratic inequalities. With these Cartesian models one can 

quickly determine if a point is within the service volume, and use them as constraints in 

optimization problems such as constellation design, antenna parameter selection, etc. Second, 

this dissertation proposes a parameterization scheme to obtain the boundary of the ground region 

covered by the service volume. The proposed algorithms derive the boundaries as a list of 

latitude-longitude points. The resolution of latitudes controls the resolution of boundary points, 

which reduces the previous 2-dimension computation complexity to 1-dimension. Finally, the 

proposed theories are validated using GPS satellite ephemeris and real measurements from 946 

high-rate observation stations around the globe. 

The remainder of the chapter is organized as follows. In Sections IV.2 and IV.3, I derive 

the Cartesian model for the service volume. Section IV.4 discusses the parameterization scheme 

for the boundaries of the ground intersections of the service volume. Lastly, in section IV.5, 

experimental results are presented. 

IV.2 Implicit Cartesian Cone Model 

I model the TSV of a satellite as a span of a (half) cone shape with its open facing the 

Earth, as the shaded space illustrated in Figure IV-1 left. I first discuss the half cone model in 

Lemma IV.1. Then in Theorem IV.1 and Corollary IV.1, we discuss the visibility constraint – 

how to exclude the shaded area on the dark side of the Earth. The final Cartesian TSV model is 

provided in Theorem IV.2.  
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Figure IV-1 Illustrations of the TSV modeling process. 
- Left: an example TSV shape 

- Right: transformation process of the TSV cone model  

Lemma IV.1: The radiation cone of a satellite 𝑆 with apex 𝐱! = (𝑥!,𝑦!, 𝑧!)! and opening 

angle 2θ, has this implicit Cartesian expression: 

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≤ 0,
𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0, 

with coefficients as follows: 

𝑀! = ℛ!(−𝛼) ℛ!(𝛽)𝑑𝑖𝑎𝑔(1,1,−𝑡𝑎𝑛!𝜃)ℛ!(𝛽)!ℛ!(−𝛼)!, 

𝑁! = −[𝑀!𝒯 +𝑀!
!𝒯]!, 𝐿! = 𝒯!𝑀!𝒯, 

𝐶! = 𝑥! − 𝑥!, 𝐷! = 𝑦! − 𝑦!, 𝐸! = 𝑧! − 𝑧!, 

𝐹! = 𝐱!!(𝐱! − 𝐱!), 

where 𝒯, ℛ!(−𝛼), and ℛ!(𝛽) are a translation vector, and two rotation matrices about the 𝑥 and 

𝑦-axes to be given in (IV.3)-(IV.6). 
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Proof: The modeling process of TSVS starts with introducing a canonical cone V!  at the 

ECEF origin, as shown in Figure IV-1 right, aligned with the z-axis, and with opening angle 2𝜃. 

Let 𝐱! ∈ V!  denote an interior point of V! . All such points 𝐱! will be transformed to be interior 

points 𝐱 ∈TSVS, with the following transition:  

𝐱 = ℛ𝐱! + 𝒯,     (IV.1) 

where ℛ and 𝒯 are a 3×3 rotation matrix and a 3×1 translation vector to be discussed later. 

The source cone - V!  in use here from be truncated from a canonical double cone 

(including the gray downward-looking cone in Figure IV-1 right) by the positive 𝑧-axis 

component [53]: 

V! :  
𝐱!!𝑀!

!"#$𝐱𝟎 ≤ 0,
𝑧! > 0,     (IV.2) 

where 𝑀!
!"#$ = 𝑑𝑖𝑎𝑔(1,1,−𝑡𝑎𝑛!𝜃) is a coefficient characterizing a canonical double cone, and 

the “𝑧! > 0” term is added to exclude the negative cone (in gray). The target cone - TSVS has 𝐱! 

as apex, pointing towards the nadir 𝑝 in the direction of radiation, denoted as 𝐝:   

𝐝 = (
𝑥! − 𝑥!

𝐱! − 𝐱! ,
𝑦! − 𝑦!

𝐱! − 𝐱! ,
𝑧! − 𝑧!

𝐱! − 𝐱! )! , 

where 𝐱! − 𝐱!  is the distance between 𝑝 and 𝑆, serving as the normalizing factor.  

Transformation from 𝐱! ∈ V!  to 𝐱 ∈ TSVS is accomplished in (IV.1) by first rotating the 

positive 𝑧 direction to align the 𝐝 (Eqns. (IV.3)-(IV.5)), followed by translation 𝒯 of the shape 

from (0,0,0)! to 𝐱! (Eqn. (IV.6)).  

The rotation process is illustrated in Figure 4, where the target vector 𝐝 = (𝑑! ,𝑑! ,𝑑!)! is 

placed on the origin, and it is to be rotated to align with the 𝑧-axis along intermediate vectors 
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(𝑑! , 0, 𝑑!! + 𝑑!!)! on the 𝑥𝑧-plane with angle 𝛼, and (0,0, 𝐝 ! = 1)! on the 𝑧-axis with angle 

𝛽. Note that in this process, the length of all intermediate vectors is preserved to be identical to 

that of 𝐝, i.e. a unit length. The rotation from the 𝑧-axis (0,0,1)! to 𝐝 includes a counter-

clockwise rotation of 𝛽 about the 𝑦-axis, and a clockwise rotation of 𝛼 about the 𝑥-axis. 

Rotations of arbitrary angles 𝜔! and 𝜔! about 𝑥- and 𝑦-axes on a 3D point can be done through 

left multiplying it with the following matrices, respectively: 

ℛ! 𝜔! =
1 0 0
0 cos𝜔! − sin𝜔!
0 sin𝜔! cos𝜔!

,       ℛ! 𝜔! =
cos𝜔! 0 sin𝜔!
0 1 0

− sin𝜔! 0 cos𝜔!
.    (IV.3) 

Specifically, we need 𝜔! = −𝛼 and 𝜔! = 𝛽 because ℛ! and ℛ! are counterclockwise 

from the perspective of a positive axis toward the origin [54]. As such, the rotation matrix in 

(IV.1) is ℛ = ℛ!(−𝛼) ℛ!(𝛽), indicating that the point 𝐱! shall be rotated about 𝑦-axis before 

rotation about 𝑥-axis. 

 
Figure IV-2 Angles from z-axis to d in the ECEF coordinate frame.  
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The angle 𝛽 can be readily calculated by considering the sides of the right triangle at the 

origin, (𝑑! , 0, 𝑑!! + 𝑑!!)!, and (0,0, 𝑑!! + 𝑑!!)!: 

cos𝛽 =
!!!!!!!

𝐝
= 𝑑!! + 𝑑!!,     sin𝛽 = !!

𝐝
= 𝑑!.   (IV.4) 

The angle 𝛼 is calculated on the 𝑦𝑧-plane, because 𝛼 is equal to the angle between the 𝑧-

axis and 𝐝’s projection on the 𝑦𝑧-plane (0,𝑑! ,𝑑!)!: 

cos𝛼 = !!

!!!!!!!
, sin𝛼 = !!

!!!!!!!
.    (IV.5) 

In (IV.4), there are odd cases when the denominator 𝑑!! + 𝑑!! is zero: 𝑑! = 𝑑! = 0. In 

this case when the 𝐝 is already on the 𝑥-axis, there is no need to rotate about 𝑥-axis, and a single 

rotation of 𝛽 about 𝑦-axis is sufficient.  

The translation process is equivalent to translating the origin to the position of the 

satellite 𝑆. The translation vector 𝒯 in (IV.1) can be constructed by taking the difference of these 

two points, or simply [54]: 

𝒯 𝐱! = (𝑥!,𝑦!, 𝑧!)!.    (IV.6) 

The Cartesian representation of TSVS cone is obtained by rewriting (IV.1) into its inverse 

function, 𝐱! = ℛ!!(𝐱− 𝒯), and substituting it into the quadratic inequality in (IV.2). Details of 

the derivation process is left to the readers, who might need to utilize the property that the 

rotation matrices ℛ! and ℛ! are orthogonal, i.e.ℛ!
! = ℛ!

!! and ℛ!
! = ℛ!

!!. The resultant 

expression is present as follows: 

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≤ 0,     (IV.7) 

where 𝑀! = ℛ𝑀!
!"#$ℛ!, 𝑁! = −[𝑀!𝒯 +𝑀!

!𝒯]!, 𝐿! = 𝒯!𝑀!𝒯.  
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The “𝑧! > 0” in (IV.2) is transformed to a plane intersecting 𝑆 and with 𝐝 as its normal 

vector. Based on the general point-normal form of a 3D plane [55], one can readily represent the 

transformed plane “𝑧! > 0” as: 

 𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0,    (IV.8) 

where 𝐶! = 𝑥! − 𝑥!, 𝐷! = 𝑦! − 𝑦!, 𝐷! = 𝑧! − 𝑧!, 𝐹! = 𝐱!!𝐱! − 𝐱!!𝐱!.  ■  

 

IV.3 Visibility Constraints 

Points which are not visible to satellites are excluded via the visibility constraint. For 

instance in Figure IV-3 left, the dark side of the Earth should not be modeled within the TSV. 

However, the modeling process is not as simple as using a plane to exclude the dark side of the 

Earth. Experiments have shown inclusion of invalid space commonly occurs in MEO (medium 

earth orbit), and GEO (geostationary earth orbit) satellites, as shown in Figure IV-3 left. The 

shaded areas should be excluded from the TSV model, when the MEO or higher satellites are 

designed to cover the entire visible Earth surface. Therefore, a more rigorous visibility constraint 

is required. 
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Figure IV-3 Modeling process of visibility constraints 
- Left: blind spots of the naïve visibility constraint 

- Right: geometry of horizontal coordinates 

Inspired by the word “visibility”, our modeling process focuses on the satellite’s elevation – 

the satellite should be above the horizon of the ground receiver. Let 𝑞 denote an arbitrary point 

on the Earth surface. We are interested in the set of 𝑞’s which view the satellite 𝑆 at a non-

negative elevation.  

As illustrated in Figure IV-3 right, 𝛽 denotes the elevation angle of satellite 𝑆 with respect to 

its local horizon (i.e. the tangent plane to the Earth), and 𝛼 the complement angle of 𝛽. The angle 

𝛼 can be computed by the normal vector 𝐧! of the tangent plane and the vector 𝒔 from 𝑞 to 𝑆, 

denoted by 𝒒𝒔: cos𝛼 = 𝒒𝒔∙𝐧!
𝒒𝒔 𝐧!

. Vector 𝐧! at point 𝑞, is obtained by simply taking partial 

derivatives of the Earth equation (II.15) with respect to 𝑥,𝑦, 𝑧: 

𝐧! = (!!
!!
! ,

!!
!!
! ,

!!
!!
!)! .     (IV.9) 
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We want all possible 𝑞’s whose elevation is non-negative, or specifically, 𝛽 ≥ 𝛽!, where 

𝛽! is a minimum elevation angle mask, 𝛽! is a constant, and 𝛽 is a function of 𝑞. We show the 

derivation process in detail (symbol “→” indicates “derives to”): 

𝛽 ≥ 𝛽!  →  sin𝛽 ≥ sin𝛽!   →  sin(!
!
− 𝛼) ≥ sin𝛽!  →   cos𝛼 ≥ sin𝛽!   →  

 𝒒𝒔 ∙ 𝐧! ≥ sin𝛽! 𝒒𝒔 𝐧! .     (IV.10) 

Based on the inequality (IV.10), we can derive the following two theorems about satellite 

visibility constraints. 

Theorem IV.1: Given an elevation angle 𝛽! (𝛽! ∈ [0,
!
!
]), all ground points 𝐱 who view 

satellite 𝑆 𝐱! = (𝑥!,𝑦!, 𝑧!)!at an elevation angle no smaller than 𝛽! (i.e. 𝛽 ≥ 𝛽!) can be 

expressed as: 

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≥ 0, 

where 𝑀! =

!!
!

!!
! − 𝑠𝑖𝑛!𝛽!

!!!!

!!
!

!!!!

!!
!!!

!

0 !!
!

!!
! − 𝑠𝑖𝑛!𝛽!

!!!!

!!
!!!

!

0 0 !!
!

!!
! − 𝑠𝑖𝑛!𝛽!

, 

𝑁! = (2𝑥!𝑠𝑖𝑛!𝛽! −
!!

!!
! , 2𝑦!𝑠𝑖𝑛!𝛽! −

!!

!!
! , 2𝑧!𝑠𝑖𝑛!𝛽! −

!!

!!
!), 

𝐿! = 1− 𝑠𝑖𝑛!𝛽!(𝑥!
! + 𝑦!! + 𝑧!!). 

Proof: The proof process is to expand inequality (IV.10), where 𝒒𝒔 = (𝑥! − 𝑥,𝑦! −

𝑦, 𝑧! − 𝑧)! and n! is given in (IV.9).  

In the LHS (Left-Hand Side), we have  

𝒒𝒔 ∙ 𝐧! =
2𝑥
𝑎!!

𝑥! − 𝑥 +
2𝑦
𝑎!!

𝑦! − 𝑦 +
2𝑧
𝑏!!

𝑧! − 𝑧  
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𝒒𝒔 ∙ 𝐧! =
2𝑥
𝑎!!
𝑥! +

2𝑦
𝑎!!
𝑦! +

2𝑧
𝑏!!
𝑧! − 2

𝑥!

𝑎!!
+
𝑦!

𝑎!!
+
𝑧!

𝑏!!
 

𝒒𝒔 ∙ 𝐧! =
!!!

!!
! 𝑥 +

!!!

!!
! 𝑦 +

!!!

!!
! 𝑧 − 2 . 

In the RHS (Right-Hand Side), we have 

𝒒𝒔 = 𝑥! + 𝑦! + 𝑧! − 2𝑥!𝑥 − 2𝑦!𝑦 − 2𝑧!𝑧 + 𝑥!! + 𝑦!! + 𝑧!! and 

𝐧! = 2 !!

!!
! +

!!

!!
! +

!!

!!
! = 2. 

Since 0 ≤ 𝛽! ≤
!
!
, squaring two sides of this inequality (IV.10) should still be satisfied, 

such that the square root in 𝒒𝒔  can be removed: 

(𝒒𝒔 ∙ 𝐧!)! ≥ (2 sin𝛽! 𝒒𝒔 )!, 

which can be derived to matrix form shown in Theorem IV.1, by substituting in equations above. 

■ 

Theorem IV.1 can be used to plot and analyze the relationship of satellite position and 

ground regions with different elevation viewing angles. For example, GPS/GNSS receivers are 

encouraged to ignore satellites that are flying at 5° or lower elevations for better signal quality. 

In our discussion, we are more interested in “visible or not”, so the following corollary provides 

the visibility constraint by setting 𝛽! = 0.  

Corollary IV.1: All ground points 𝐱 who view satellite 𝑆 𝒙! = (𝑥!,𝑦!, 𝑧!)! above or on 

their horizon (i.e. 𝛽 ≥ 0) can be expressed as:  

!!

!!
! 𝑥 +

!!

!!
! 𝑦 +

!!

!!
! 𝑧 ≥ 1. 

Proof: Based on Theorem IV.1, we set  𝛽! = 0 and obtain the above planar inequality. 

The derivation process is omitted for space. ■ 
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In summary, I can finally express the Cartesian model for a TSV in the following 

Theorem. 

Theorem IV.2: The TSV of a satellite 𝑆, TSVS, about the reference ellipsoid defined in 

WGS84 has the following implicit Cartesian expression: 

 

𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≤ 0,
𝐶!𝑥 + 𝐷!𝑦 + 𝐸!𝑧 + 𝐹! ≥ 0,
𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! ≥ 0,
!!

!!
! 𝑥 +

!!

!!
! 𝑦 +

!!

!!
! 𝑧 − 1 ≥ 0,

    (IV.11) 

where 𝑀! ,𝑁! , 𝐿! are defined in Lemma IV.1, 𝐶! ,𝐷! ,𝐸! ,𝐹! in Lemma IV.1 as well, 𝑀! ,𝑁! , 𝐿! 

from (1).  

Proof: As I have discussed in Lemma IV.1, the 1st and 2nd inequalities of (IV.11) restrict 

the points to be inside of the half cone. The 3rd inequality restricts points to be on or outside of 

the Earth’s surface. The 4th inequality ensures points visible to satellite, as given in Corollary 

IV.1. ■ 

IV.4 Parameterization for Footprint Boundary 

This section constructs the parametric function 𝑃 𝜆,𝜑 = 0, with whom only parametric 

coordinates 𝜆,𝜑  on the boundary of TSV footprint are satisfied. This section also discusses the 

solving process for all qualified 𝜆’s, given a value of the tracing parameter 𝜑. The reasonable 

search range of the tracing parameter is provided as well. 

Generally, the footprint boundary is modeled as an intersection of the TSV cone and the 

Earth ellipsoid. As a Quadratic Surfaces Intersection Curve (QSIC), it should be a geodesic 

surface ellipse, as illustrated in Figure IV-4 left. However, corner cases may break this perfect 

nature, as shown in Figure IV-4 right. When the TSV cone does not intersect with the Earth 
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completely, the resulting footprint boundary will not be a perfect ellipse. Instead, a desired 

footprint boundary is plotted in Figure IV-5, where it is composed of two parts: cone’s 

intersection with Earth, as well as the visibility boundary. In the following paragraphs I discuss 

how to trace each.  

             

Figure IV-4 Two intersections between TSV cone and Earth ellipsoid 
- Left: cone completely intersects with ellipsoid 

- Right: cone incompletely intersects with ellipsoid 

 

Figure IV-5 Footprint boundary when TSV cone does not fully intersect with the Earth 
ellipsoid  
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The cone boundary assumes the TSV cone fully intersected with the Earth ellipsoid, as 

shown in Figure IV-4 left. In this case, the footprint boundary would appear like the circle in Fig. 

7, including the dash part. Let 𝑃!"#$ 𝜆,𝜑 = 0 denote the parametric function for this case. Both 

the ellipsoid and cone have parametric forms in terms of parameters other than 𝑥,𝑦, 𝑧. Here we 

adopt the parametric cone, because a cone is a ruled surface (i.e. a surface that be represented by 

a cluster of rotating lines) that will lead to a simpler 𝑃!"#$ function.  

Specifically, let 𝐱 = 𝐱! + 𝑡 ∙ 𝐯 (𝑡 ∈ ℝ, 𝑡 > 0) denote all rays on the TSVS cone’s 

boundary originating from the satellite 𝑆, towards the Earth, in a unit direction 𝐯. Since every 𝐯 

is of unit-length, and has a 𝜃-angle with respect to the satellite’s Direction of Radiation (DOR) 𝐝 

(defined in the proof of Lemma IV.1), we can calculate all 𝐯’s as finely as required through 

selecting all 𝑣! ∈ −1,1  and solving  

𝑣!! + 𝑣!! + 𝑣!! = 1,
𝐯 ∙ 𝐝 = cos𝜃 .

 

Then 𝐱 = 𝐱! + 𝑡 ∙ 𝐯 is substituted into the Earth’s Cartesian expression (II.15), leading to 

a quadratic single-variable (𝑡) equation. If no real solution exists, we skip this ray because it 

implies this ray does not intersect with the Earth. If one or two real positive solutions exist, the 

smallest value of 𝑡 is chosen, because it is closer to the satellite. With known 𝑡 and 𝐯, the 

boundary points on the coverage zone can be found out in both Cartesian and 𝜆,𝜑  coordinates.  

The visibility boundary is the intersection of the visibility constraint (defined in Corollary 

1) and the Earth surface. It is the intersection of a plane and an ellipsoid. We can plug the 

parametric Earth into the visibility plane (!
!

!!
! 𝑥 +

!!

!!
! 𝑦 +

!!

!!
! 𝑧 = 1).  

𝐶! cos 𝜆 + 𝐷! sin(𝜆)+ 𝐸! = 0, (IV.12) 
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where 𝐶! ,𝐷! ,𝐸! are functions of the tracing parameter 𝜑: 

𝐶! = − !!

!!
cos 𝜑 ,𝐷! = − !!

!!
cos 𝜑 ,𝐸! = 1− !!

!!
sin(𝜑). 

The solving process of (IV.12) is explained in Appendix 2.     

IV.5 Experimental Validation & Analysis 

In this section, I carry out experiments to validate the correctness of the Cartesian models 

of the TSV and the parameterization schemes for the footprint boundary. I then use the proposed 

models to analyze the service coverage of some popular constellations. 

Validation 

I use GPS to validate the proposed models, because research resources for GPS are very 

rich and accessible publicly online. There are over 946 high-rate GPS/GNSS reference stations 

by the International GNSS Service (IGS) network and the Continuously Operating Reference 

Station (CORS) networks over the globe [23][27]. Stations constantly report raw measurements 

at every second for every GPS satellite. These reports are collected in public FTP servers and 

used as ground truth to indicate whether stations observe GPS signal.  

The validation experiment is implemented in C++ and Javascript. The process is as 

follows. First, I compute the ECEF position (𝐱!) of a GPS satellite using the broadcasted 

ephemeris model from NASA. It results in up 1 meter of satellite position error. Second, I 

construct the Cartesian TSV model with GPS beam width angle (2𝜃 = 27.6°), using Theorem 

IV.2. Third, I trace its footprint boundary using the proposed parameterization scheme, and plot 

the boundary on Google Maps. Fourth, on the same map, I show all high-rate reference stations 

and mark those who report measurements within 5 seconds from the GPS satellite.  



 

80 

 

80 

 

Figure IV-6 Validation of the proposed TSV model (global view and zoom-in view of East 
U.S.A.). 

Note: The blue shaded oval is the coverage zone of PRN 9, at TOW 352700 second, Apr 20, 

2017, produced by the parameterization method.  

The experimental result is shown in Figure IV-6. The footprint boundary of GPS satellite 

PRN (Pseudorandom Number) 9 is generally matched with the boundary between unreported 

stations (in blue or light blue) and reported stations (in red or orange). To have closer 

observations, I zoom into the dense area in North America, as shown in Figure IV-6 right. It 

shows the proposed model and parameterization scheme provide an accurate approximation. 

Most reference stations report measurement as soon as they see the satellite. Some stations inside 

the coverage have not done so because they are configured to report satellites with 5° or higher 

elevation. Interestingly, over half of stations located in the state of Alabama, and some stations in 
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the state of Michigan report measurements even when they have not seen the satellite. This is 

due to the use of highly sensitive Trimble receivers, capable of receiving satellite signals from 

negative elevations. 

Analysis 

This section uses the proposed TSV model and parameterization method to analyze 

coverage of different constellations. The output from our work is a list of latitude-longitude pairs 

to denote the coordinates of footprint boundary. To calculate the coverage area on the Earth 

ellipsoid, we utilize the “areaint” function of the Matlab Mapping toolbox [63]. It uses a line 

integral approach to add up the total polygon areas constraint by the footprint boundary, on a 

WGS84 reference ellipsoid.  
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Figure IV-7 Coverage area ratio on the reference ellipsoid of GPS satellites, annotated with 
satellites’ block type and launch date 

The ratio of each GPS satellite’s footprint area over the entire area of the Earth 

(510072000 km2) is shown in Figure IV-7. The 𝑥-axis has 32 bins, referring to GPS satellites 

with PRNs 1 – 32. The 𝑦-axis is the area ratio, for the reference of the minimal, 25%-quantile, 

half, 75%-quantile, and the maximal of values over one GPS ECEF period (about 23 hours 56 

minutes). Overall, the coverage ratio of GPS is around 38% with ±0.2% uncertainty. The 

uncertainty may be caused by the orbital shape: coverage area is the maximum when a satellite is 

at apogee, or the minimum when it is at perigee. Moreover, newly launched satellites (e.g. PRNs 

3, 6, 9, 32) tend to have less uncertain coverage ratios than older satellites (e.g. PRNs 2, 11, 18, 

21, 28).  
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In Figure IV-8, we continue to use GPS satellite positions to examine the assumption of 

“spherical Earth” versus “ellipsoidal Earth”. Specifically, we change the 𝑦-axis to the area 

difference between the footprint on Earth ellipsoid (WGS84) and the footprint on Earth sphere 

(with 3 different radius). Assuming the Earth radius to be 6371 km, the resulting coverage area 

has an error of 48,000 km2 (equivalent to the land area of Slovakia [62]) to footprint on a 

reference ellipsoid. If we select the radius to be the lengths of semi-major axis 𝑎! or semi-minor 

axis 𝑏!, the area errors will be around 73,000 km2 (the land area of Panama) and 140,000 km2 

(the land area of Nepal). Future work includes determination of the optimal radius of the Earth 

for coverage analysis, which requires a more focused study to consider other factors. 

In Table IV-1, I summarize the mean and uncertainty of some constellations’ altitude and 

coverage area, computed by the proposed works. Positions of all satellites in each constellation 

are calculated using Two-Line-Element orbital models from Celestrak [65] and the SGP4 v1.4 

Python library [66]. Accuracy is up to 1 kilometer within one day.  

  

Figure IV-8 Errors of coverage areas with spherical Earth versus ellipsoidal Earth 
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Table IV-1 Constellation coverage comparisons 

Categ
ory 

Conste
llation 

Operator 

Purpose, 
Number of 

Operational 
Satellites 

Orbital 
Period 

Off-
Nadir 
Angle 

(𝜽) 

Mean 
Altitud
e (km) 

Altitud
e 

Uncert
ainty 
(km) 

Mean 
Cover

age 
Ratio 

Mean 
Coverage 

Area 
(km2) 

Area 
Uncertai

nty 
(km2) 

Low 
Earth 
Orbit 

(LEO) 

Orbcomm 
Orbcomm 

(United 
States) 

Communicati
on, 44 

~100 
minutes 

[36] 
62°[33] 745.73 48.71 5.23% 

26,663,351
.38 

1,565,54
3.80 

Iridium 
Iridium 

Communic
ations Inc. 

Communicati
on, 72 

~100 
minutes 

[35] 
75°[34] 693.81 167.61 4.87% 

24,832,541
.76 

5,704,42
7.89 

Iridium-
NEXT 

Iridium 
Communic
ations Inc. 

Communicati
on and Earth 
survey, 66 

~100 
minutes 

[35] 
75°[34] 786.00 22.56 5.47% 

27,920,337
.50 

734,212.
92 

Medium 
Earth 
Orbit 

(MEO) 

GPS 
United 

States Air 
Force 

Navigation, 
32 

11 hours 
58 

minutes 
[29] 

13.8°[31] 
20,191.

41 
191.29 

38.01
% 

193,865,41
7.85 

447,872.
81 

Galileo 

European 
GNSS 

Agency 
(GSA) 

Navigation, 
30 

14 hours 
22 

minutes 
[29] 

13.8° 
23,116.

08 
923.46 

39.19
% 

199,874,83
3.27 

2,002,36
1.44 

GLONAS
S 

Russian 
Federal 
Space 

Agency 

Navigation, 
25 

11 hours 
15 

minutes 
[29] 

13.8° 
19,139.

18 
24.20 

37.52
% 

191,367,30
5.14 

136,304.
75 

Beidou 

China 
National 

Space 
Administra

tion 
(CNSA) 

Navigation, 
18 

12 hours 
53 

minutes 
[30] 

13.8° 
21,543.

89 
40.58 

38.59
% 

196,830,71
8.91 

109,153.
00 

Geostatio
nary  / 

Geosynch
ronous 
Earth 
Orbit 

(GEO) 

SBAS 

U.S.A., 
E.U., 
Japan, 
India, 
Russia 

Navigation 
Augmentation

, 16 
 9°[32] 

35,801.
09 

775.28 
42.43

% 
216,439,68

7.99 
708,942.

89 

Gorizont Russia 
Communicati

on, 35 
 9° 

36,069.
56 

1,835.3
4 

42.47
% 

216,623,74
3.10 

1,786,60
4.03 

IV.6 Conclusion 

This chapter presents a geometric Cartesian model for the TSV from a satellite to its 

nadir with any specified off-nadir angle (Theorem IV.2). This chapter also provides a 
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parameterization method to obtain the discrete points on the satellite’s footprint boundary. This 

footprint boundary can be the horizon edge (Corollary IV.1) or any 𝛽-degree elevation edge 

(Theorem IV.1) for ground points to the satellite. Experiments with real GPS ephemeris show 

that our model and parameterization method match the field measurements from CORS/IGS 

networks. I then use the proposed theories to analyze coverage of GPS along with other 

constellations.  
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CHAPTER V  

DYNAMIC MODELS OF TSV, Z-SURFACE & Z-CURVE 

V.1 Problem Statement 

The z-surfaces formed by pairs of satellite signals migrate constantly in accordance to the 

satellite motions. Z-surface offers a new tool for periodic integrity and precision checking of 

signals based on simple observations of signal pairs. Z-surface finds applications in detection of 

aberrant GNSS signals, e.g., satellite malfunctions, spoofing, multipath. And when the system is 

absent of such anomaly, their occurrences can be used as a high confidence timing reference for 

wide-area systems like power transmission grids.  

In my prior works, I have demonstrated detection of a z-surface, and later derived the 

analytical form for z-surface and their parameterization scheme at a time instant. Knowing that 

the z-surfaces constantly migrate with satellite motions, as the example illustrated in Figure V-1, 

it is of great interest to model the dynamics of z-surfaces as a function of the satellite speeds. 

Other basic information include the z-surface/curve motion direction, the shape and pose 

(flattening, extension, and inclination) of z-surface and z-curve as a function of time. This way, 

one can generate short-term z-surface forecast for better protection of the system integrity. 

In this chapter, I aim to solve the dynamics of the z-surface and z-curve as a function of 

time for a pair of satellites. Specifically, given the z-surface and z-curve at a time instant 𝑡, I aim 

to solve its shape and position changes at 𝑡 + ∆𝑡, where ∆𝑡 is a discrete time interval. A 

continuous analytic function for shape migration is not considered here, because the orbital 

model – ephemeris, is a discrete model for the unsmooth orbit. A naïve approach to solve this 

problem could be based on plugging the new time stamps in static models in Chapter III, but this 

approach provides little insight on the behavior of the system dynamics. Instead, in this chapter, I 
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propose a system dynamics modeling approach to derive the transformation functions 𝒫!  and 𝒫! , 

where the former represents the motion effects of the TSV of a satellite, and the latter motion 

effects of the z-surface. I then pay special attention to the migration of the parameterized version 

of z-curve, for which, I propose a novel numerical algorithm to move all z-curve points from 𝑡 to 

𝑡 + ∆𝑡. 

 

Figure V-1 Moving z-curves of GPS satellites (PRNs 2, 3, 30) with 15-minute interval.  

Given the positions of (A, B), one can directly write down the Cartesian representations 

of their TSVs (denoted as TSVA,B), z(k)-surface (Sz|k
A,B), and z(k)-curve (Cz|k

A,B), as well as the 
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parameterized form of z(k)-curve (Cz|k
A,B) in terms of tuples of latitude-longitude (or equivalently 

the Earth-Centered Earth-Fixed (ECEF) coordinates). Cz
A,B is a discretized array derived from 

CzA,B, and it can be expressed as Cz
A,B = 𝐫𝒊 ,∀𝑖 = {1,2,… ,𝑛}, where 𝐫 = (𝑥,𝑦, 𝑧, 1)! is 

homogeneous coordinate with first three dimensions as the ECEF coordinate and the last as the 

point’s scale. The homogeneous coordinate system is commonly used to simplify 

transformations. 

 

Figure V-2 Illustration of TSV and z-curve migrations  
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Changes of z-curves are the direct results of satellite and Earth motions. As shown in 

Figure V-2, during ∆t the Earth is self-spinning, (A, B) orbit in different velocities and 

trajectories, and their signals propagate through the atmosphere from new angles. As a result, the 

coverage zone of (A, B) and the z-surface morph in terms of shape and displacement. I will show 

that, through analysis of those motion dynamics, these motion related effects can be summarized 

into 4×4 matrices 𝒫!  and 𝒫!  plus filtering operations of boundary: 

𝐫! 𝑡 + ∆𝑡 = 𝒫! 𝐫! 𝑡 ,     (V.1) 

𝐫! 𝑡 + ∆𝑡 = 𝒫! 𝐫! 𝑡 ,    (V.2) 

where 𝐫! 𝑡  denotes the set of points in TSV, 𝐫! 𝑡 ∈TSV(𝑡); 𝐫! 𝑡  the set of points on a z-

surface, 𝐫! 𝑡 ∈ SzA,B(𝑡). 

For the migration of discrete points on z-curve Cz
A,B, I take a recursion approach. The 

initial Cz
A,B at a starting epoch is obtained by the tracing method proposed in Chapter III, or other 

QSIC solvers like the Levin’s method [2], marching methods [11], subdivision methods [9], etc. 

[5][7]. Subsequent Cz
A,B’s are derived through a procedure based on the previous Cz

A,B. I propose 

such a recursive procedure by analyzing the dynamics of CzA,B from 𝑡 to 𝑡 + ∆𝑡. Challenges in 

the dynamic analysis are illustrated in Figure V-2. Firstly, as a part of z-surface, the z-curve 

moves along with z-surface, but it may no longer align with the Earth surface when the z-surface 

inclines at a different angle. Secondly, being constrained by TSVA,B, the z-curve will be shorten 

or elongated due to the change of TSVA,B. As will be discussed in section V.5, the proposed 

method adopts numerical approaches to overcome these challenges. 
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The remainder of this chapter is organized as follows. I first analyze the pair-satellite 

motion in Section V.2. Next, I derive the transformation functions 𝒫!  and 𝒫!  for TSV and z-

surface in Sections V.3 & V.4, respectively. In Section V.5, I propose the numeric algorithm for 

z-curve migration in detail. I show our experimental process, results, and analyses in Section V.7.   

V.2 Paired-motion of Two Satellites 

Main contributing factors to the dynamics of z-surface include the phases and velocities 

of the Earth’s self-spinning, orbiting of (A, B) with different elevation angles, as well as the 

change of atmosphere properties. To simplify the analysis, I fix the Earth motion by using ECEF 

frame, and adopt the ephemeris model to represent satellite motions, where orbits are sinusoid-

like trajectories.   

When (A, B) are in paired motion, SzA,B is being “dragged”  along in the 3D space, as 

shown in Figure V-3. The motion effect on SzA,B can be composed from translating, rotating, 

reflection, and scaling, which are mainly affected by the following four factors: 

1) The displacement of SzA,B can be determined by the midpoint point o’ between (A, B): 

𝐨’ = !
!
𝐫! + 𝐫! = (!

!!!!

!
, !

!!!!

!
, !

!!!!

!
, 1)!.   (V.3) 

2) The inclination of SzA,B with respect to the ECEF axes can be determined by the 

orientation n!, which is defined as a unit vector in the direction from A to B: 

𝐧! = 𝐫!!𝐫!

!!
= (!

!!!!

!!
, !

!!!!

!!
, !

!!!!

!!
, 0)!,    (V.4) 

and  𝑐 is half of the foci distance, i.e. 𝑐 = !
!
𝐫! − 𝐫! . 
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3) The opening direction of the hyperbolic sheet towards A or B is determined by the 

sign of its semi-major axis 𝑎. The value a is the difference of signal propagation errors between 

A and B: 

𝑎 = !
!

𝛿!"! − 𝛿!"! + 𝛿!"! − 𝛿!"! − 𝛿!"! − 𝛿!"! + !
!
,   (V.5) 

where 𝑣 is the speed of light in vacuum, and 𝛿!", 𝛿!", 𝛿!" the timing delays caused by 

Ionospheric and tropospheric refractions, satellite clock offset, respectively. Referred to Figure 

V-3, when 𝑎 > 0, SzA,B is the hyperbolic sheet closer to A, called wing-A (𝑊!). Otherwise, it is 

the wing-B (𝑊!). When 𝑎 = 0, SzA,B degenerates to a plane  𝐻!,!. 

4) The eccentricity of SzA,B, denoted as 𝑒, is defined as below. Note that the larger 𝑒 is, 

the flatter SzA,B is. 

𝑒 = !
!
(𝑎 ≠ 0).     (V.6) 

 

Figure V-3 an illustration of a z-surface  
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The two satellites may fly at different velocities and accelerations, in different orbits, 

elevations, and inclinations. It is exceedingly complicated to incorporate these factors in 

algebraic equations of closed forms. As a pragmatic alternative, I propose a discrete, time step 

approach, similar to the basic concept of ephemeris model, so that given positions of (A, B) at 

time 𝑡 and 𝑡 + ∆𝑡, I use affine transformation matrices to map a z-surface from SzA,B(𝑡) to 

SzA,B(𝑡 + ∆𝑡). This method is inherently compatible with the computing process of ephemeris 

calculating and pseudorange measuring. 

This work uses rotation, translation and some other transformations to describe shapes’ 

migration. Let ℛ! 𝜔 , ℛ! 𝜔 , and ℛ! 𝜔  for arbitrary positive angle 𝜔 denote the 

counterclockwise rotations about 𝑥-, 𝑦- and 𝑧-axes, when one is looking from a positive axis 

toward the origin [54]: 

ℛ! 𝜔 =

1 0 0 0
0 cos𝜔 − sin𝜔 0
0 sin𝜔 cos𝜔 0
0 0 0 1

,    (V.7) 

ℛ! 𝜔 =

cos𝜔 0 sin𝜔 0
0 1 0 0

− sin𝜔 0 cos𝜔 0
0 0 0 1

,    (V.8) 

ℛ! 𝜔 =

cos𝜔 − sin𝜔 0 0
sin𝜔 cos𝜔 0 0
0 0 1 0
0 0 0 1

.    (V.9) 

Let 𝒯 𝐯  for an arbitrary vector 𝐯 = (𝑥,𝑦, 𝑧, 0)𝑻 represent the translation matrix [54]: 

𝒯 𝐯 =

1 0 0 𝑥
0 1 0 𝑦
0 0 1 𝑧
0 0 0 1

.     (V.10) 
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Some properties of them will be used: since ℛ is a orthogonal matrix, we have 

ℛ!!(𝜔) = ℛ!(𝜔) = ℛ(−𝜔); and 𝒯!!(𝐯) = 𝒯(−𝐯) [54]. 

V.3 TSV Migration 

In this section, we firstly derive the Cartesian model of TSV in a homogenous form using 

4D coordinates. I then derive the migration matrix 𝒫!  using homogeneous coordinates. 

The TSVS has a quadratic shape – cone as the primary component, with several visibility 

constraints. Let 𝜃 denote half of the opening angle  (For GPS, 𝜃=13.8˚ [29]),  𝐫! the satellite 

antenna coordinate, 𝐫!the pointing target. For convenience, I assume 𝐫! to be the origin of ECEF 

frame, i.e. 𝐫! = (0,0,0,1)!. Let 𝐝! denote the direction of radiation of 𝑆’s antenna array, and 

𝐝! =
𝐫!!𝐫!

!

𝐫!!𝐫!
! = (!!!

!

𝐫!
! , !!!

!

𝐫!
! , !!!

!

𝐫!
! , 0)!. 

 

Figure V-4 Illustration of TSV Migration  
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Theorem V.1: The TSV of a satellite 𝑆, TSVS, about the reference ellipsoid defined in 

WGS84 has the following implicit Cartesian expression using homogenous coordinates: 

TSVS(𝐫!!):   

𝐫!𝑄!𝐫 ≤ 0,
𝐫!𝑄!!𝐫 ≤ 0,
𝐻!! !𝐫 ≤ 0,
𝐻!! !𝐫 ≤ 0,

     (V.11) 

where 𝑄 and 𝐻 are used to denote symmetric matrix and vector of coefficients, respectively: 

𝑄! = 𝑑𝑖𝑎𝑔 − !
!!
! ,−

!
!!
! ,−

!
!!
! ,−1 , 

𝐻!! = 𝑥𝑡𝑆,𝑦𝑡𝑆,𝑧𝑡
𝑆,− 𝐫𝑡𝑆

2 !
, 

𝐻!! = 𝐝!, 

𝑄!! = 𝒬!"#! 𝑄!!"#$𝒬!"#. 

𝑄!!"#$ and 𝒬!"# are defined as below: 

𝑄!!"#$ = 𝑑𝑖𝑎𝑔(1,1,−𝑡𝑎𝑛!𝜃, 0), 

𝒬!"# −𝛽,𝛼,−𝐫!! = ℛ! −𝛽 ℛ! 𝛼 𝒯 −𝐫!! =

cos𝛽 − sin𝛼 sin𝛽 − cos𝛼 sin𝛽 −𝑥!!

0 cos𝛼 − sin𝛼 −𝑦!!

sin𝛽 sin𝛼 cos𝛽 cos𝛼 cos𝛽 −𝑧!!
0 0 0 1

, 

cos𝛼 = !!,!

!!,!! !!!,!!
, sin𝛼 = !!,!

!!,!! !!!,!!
, cos𝛽 = 𝑑!,!! + 𝑑!,!! , sin𝛽 = 𝑑!,!. 

Proof: This system is derived from the TSV model in Chapter IV. In (V.11), the 

derivation of 1st, 3rd, and 4th inequalities is straightforward, and thus omitted. The 1st inequality 

of 𝑄! is a constraint to exclude points inside the Earth. 𝑎! (6378137 meters) and 𝑏! 

(≈6356752.314140 meters) are known constants that represent the equatorial radius and polar 
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radius, respectively [18]. The 3rd inequality of 𝐻!! ensures all points are visible to the satellite. 

The 4th inequality of 𝐻!! excludes points back of 𝑆. 

The 2nd inequality of 𝑄!! describes points within a double cone centered at 𝑆 pointing in 

𝐝!. Following the same proof process in Chapter IV, 𝑄!! is derived by applying transformation 

𝒬!"# to a canonical cone 𝐫!𝑄!!"#$𝐫 ≤ 0, i.e. 𝑄!! = 𝒬!"#! 𝑄!!"#$𝒬!"# . 𝒬!"# is a composite 

transformation operation including the rotation ℛ! −𝛽  about 𝑦-axis, rotation ℛ! 𝛼  about 𝑥-

axis, and translation 𝒯 −𝐫!! . Here, 𝛼 is the angle from the projection of 𝐝! on the 𝑦𝑧-plane to 

the 𝑧-axis, and 𝛽 the angle from 𝐝! to this projection. ■  

To transform discrete points generated from Theorem V.1, i.e. 𝐫! 𝐫!! ∈TSVS(𝐫!!), into 

the pose at time 𝑡 + ∆𝑡, i.e. 𝐫! 𝐫!!∆!! ∈ TSVS(𝐫!!∆!! ), one can adjust the cone’s pose to match 

the new direction of radiation by rotation, and then translate them to match the cone’s apex to sit 

on the new position of 𝑆. 

Mathematically, let discrete points multiply 𝒫! = 𝒯(∆𝐫!!)ℛ, where 𝒯 is referred to (10), 

∆ refers to a difference operator, i.e. ∆𝐫!! = 𝐫!!∆!! − 𝐫!!. ℛ is a rotation from the vector 𝐝! to 

𝐝!!∆!, which can be obtained by the Rodrigue’s formula [103]: 

ℛ! = 𝐼 + sin𝜙 [𝑈]× + (1− cos𝜙)[𝑈]×! ,    (V.12) 

where 𝐼 is a 3D identity matrix, 𝑈 a vector equal to the unit cross product of [𝐝!]! and [𝐝!!∆!]! 

(the sub-vector of first three elements of 𝐝! and 𝐝!!∆!), 𝜙 the angle between [𝐝!]! and [𝐝!!∆!]!, 

and [∙]× the skew-symmetric matrix of a vector [68]. 

𝑈 = [𝐝!]!×[𝐝!!∆!]!
[𝐝!]!×[𝐝!!∆!]!

,  𝜙 = 𝑐𝑜𝑠!!(𝐝! ∙ 𝐝!!∆!),   (V.13) 
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where “×” and “∙” refers to cross-product and dot-product. We are assuming 𝜙 ≠ 0 or 𝜋 and thus 

[𝐝!]!×[𝐝!!∆!]! ≠ 0, because otherwise that implies the satellite is moving very slowly 

(𝐝! = 𝐝!!∆!) or has flew to the opposite of the orbit (𝐝! = −𝐝!!∆!) during ∆𝑡. As such, 𝒫!  is 

derived as follows: 

𝒫! = 𝒯(∆𝐫!!)ℛ = ℛ!

∆𝑥!!

∆𝑦!!

∆𝑧!!
𝟎 1

.    (V.14) 

V.4 Z-Surface Migration 

In this section, I first rewrite the z-surface Cartesian model into the homogenous form. 

Then we derive its migration matrix 𝒫! .    

Based on Chapter III, the z-surface SzA,B can be modeled as a hyperbolic sheet 𝔖!
!,!, 

constrained by the TSVs of (A, B), or: 

SzA,B =  𝔖!
!,! ∩TSVA∩TSVB.     (V.15) 

Theorem V.2: The z-surface hyperbolic sheet 𝔖!
!,!  has the following implicit Cartesian 

expression using homogenous coordinates: 

𝔖!
!,!:

𝐫!𝑄!𝐫 ≤ 0,
𝐫!𝑄!!𝐫 = 0,

𝑎!! 𝐻!! !𝐫 ≥ 0,
     (V.16) 

where the coefficients 𝑄!! and 𝐻!! are listed as below: 

𝑄!! =

𝐶! − (4𝑎! )! 𝐶𝐷 𝐶𝐸 𝐺𝐶 + (4𝑎! )!𝑥!!

𝐶𝐷 𝐷! − (4𝑎! )! 𝐷𝐸 𝐺𝐷 + (4𝑎! )!𝑦!!

𝐶𝐸 𝐷𝐸 𝐸! − (4𝑎! )! 𝐺𝐸 + (4𝑎! )!𝑧!!

𝐺𝐶 + (4𝑎! )!𝑥!! 𝐺𝐷 + (4𝑎! )!𝑦!! 𝐺𝐸 + (4𝑎! )!𝑧!! 𝐺! − (4𝑎! )! 𝐱!! !

, 

𝐻!! = (𝐶,𝐷,𝐸,𝐹)!, 
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𝐶 = 2 𝑥!! − 𝑥!! , 𝐷 = 2 𝑦!! − 𝑦!! , 𝐸 = 2 𝑧!! − 𝑧!! , 𝐹 = 𝐱!! ! − 𝐱!! !, 𝐺 = 𝐹 − 2𝑎! !. 

Proof: This theorem is mathematically derived from in Chapter III. The 1st inequality of 

𝑄! limits the points outside of the Earth. The 2nd inequality of 𝑄!!requires points be on the 

hyperboloid of two-sheet. 𝑄!! is derived by expanding coefficients in Theorem III.2  and then re-

organizing up. I leave this process to readers. The 3rd inequality filters one of the sheets out 

according the sign of the semi-major axis 𝑎!! (see (V.5)).   ■ 

The migration of z-surface SzA,B consists of following components: a translation to move 

the displacement (V.3), a rotation to adjust the inclination (V.4), a scaling and a reflection to 

tune the opening angle and direction, respectively. 

The executing order, however, needs to be considered carefully. The scaling, especially, 

needs to be uniformly applied in the shape that is aligned with the origin and axes of the ECEF 

frame. As such, in order to get 𝔖!!∆!
!,!  from 𝔖!

!,!, one must firstly align the pose of 𝔖!
!,! 

downward with the ECEF frame before scale it and reflect it, and finally adjust upward to be the 

pose of 𝔖!!∆!
!,! . The overall process of transformations is listed as below, where 𝐫! ∈ 𝔖!

!,! , 

𝐫!!∆! ∈ 𝔖!!∆!
!,!  are points in source and target shapes, and 𝐫!,!,!,!,! are points in intermediate 

shapes. 

Step 1:  𝐫! = 𝒯(−𝐨𝒕!)𝐫!: Translate the center of 𝔖!
!,! from the midpoint 𝐨𝒕!  of (A, B) to 

the origin of ECEF frame. 

Step 2: 𝐫! = ℛ!(−𝛼!)ℛ!(𝛾!)𝐫!: Rotate 𝐫!’s 𝛾! and 𝛼! angles about 𝑧- and 𝑥-axes, 

respectively, so that the foci of the hyperbolic sheet, or (A, B), are placed on the 𝑦-axis at 𝑐 and 

– 𝑐 away from the origin. Here 𝛾! is the angle from 𝐧!! ’s projection in the 𝑥𝑦-plane (see 
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(𝑛!,!! ,𝑛!,!! , 0)! in Figure V-5),to the 𝑦 axis, while 𝛼! is the angle from the rotated vector 

(0, 𝑛!,!!" + 𝑛!,!!" ,𝑛!,!! )! to the 𝑦𝑧-plane and the 𝑦-axis [54]: 

cos 𝛾! =
!!,!
!

!!,!!" !!!,!!"
 , sin 𝛾! =

!!,!
!

!!,!!" !!!,!!"
;    (V.17) 

cos(𝛼!) = 𝑛!,!!" + 𝑛!,!!" , sin(𝛼!) = 𝑛!,!! .    (V.18) 

 

Figure V-5 Rotation angles  

After this step, the intermediate hyperbolic sheet can be written in a canonical form as 

follows [53]: 

!!

!!!
− !!

!!!
+ !!

!!!
= −1. (𝑎!𝑦 > 0),    (V.19) 

where 𝑎!𝑦 > 0 ensures the correct polarity of the hyperbolic sheet. 

Step 3: 𝐫! = 𝒮𝐫!: Scale the hyperbolic sheet to be: 
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!!

!!!∆!
! − !!

!!!∆!
! + !!

!!!∆!
! = −1. (𝑎!𝑦 > 0),    (V.20) 

where the matrix 𝒮 is derived by comparing (V.20) with (V.19): 

𝒮 = 𝑑𝑖𝑎𝑔 !!
!!!∆!

, !!
!!!∆!

, !!
!!!∆!

, 1 .    (V.21) 

Step 4: 𝐫! = ℱ𝐫!: Reflect the opening direction of the hyperbolic sheet to ensure 

𝑎!!∆!𝑦 > 0. If 𝑎!!∆!𝑎! > 0, this step can be skipped, since the opening direction does not 

change. If 𝑎!!∆!𝑎! < 0, i.e. 𝑎!!∆!𝑦 < 0, all points 𝐫!’s in (V.20) need to be reflected with along 

the 𝑦-axis [54]: 

ℱ = 𝑑𝑖𝑎𝑔 1, 𝑠𝑖𝑔𝑛 𝑎!!∆!𝑎! , 1,1 ,    (V.22) 

where 𝑠𝑖𝑔𝑛 𝑥 = 1 if 𝑥 > 0, or −1 if 𝑥 < 0. If 𝑎!!∆!𝑎! > 0, ℱ becomes an identity matrix. 

Step 5: 𝐫! = ℛ!(−𝛾!!∆!)ℛ!(𝛼!!∆!)𝐫!: Adjust the shape 𝐫!’s orientation to match that of 

𝐫!!∆! ∈ 𝔖!!∆!
!,! . Here 𝛼!!∆! and 𝛾!!∆! are similar angles of 𝐧!!∆!!  to those in the 2nd step [54]: 

cos 𝛾!!∆! =
!!,!!∆!
!

!!,!!∆!
!" !!!,!!∆!

!"
 ,sin(𝛾!!∆!) =

!!,!!∆!
!

!!,!!∆!
!" !!!,!!∆!

!"
;  (V.23) 

cos𝛼!!∆! = 𝑛!,!!∆!!" + 𝑛!,!!∆!!" , sin𝛼!!∆! = 𝑛!,!!∆!! .  (V.24) 

Both angles are negated to have a counter-clockwise rotation, because at this time, 𝐧!!∆!!  

is the target orientation of rotation while in the 2nd step, 𝐧!!  is the original orientation of rotation. 

Step 6: 𝐫!!∆! = 𝒯(𝐨𝒕!∆𝒕! )𝐫!: Translate the shape from the origin to the midpoint of (A, B) 

at 𝒕+ ∆𝒕, to get final pose. 

To sum up, the transformation 𝒫!  in 𝐫!!∆! = 𝒫! 𝐫! is: 

𝒫! = 𝒯 𝐨𝒕!∆𝒕! ℛ!(−𝛾!!∆!)ℛ!(𝛼!!∆!)ℱ𝒮ℛ! −𝛼! ℛ! 𝛾! 𝒯 −𝐨𝒕! ,  (V.25) 
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To simplify this representation, we can group ℛ!(𝜔)ℛ!(𝜃), 𝒯(r) together as 

𝒬!"#(𝛼, 𝛾, 𝐫), which can be computed as: 

𝒬!"#(𝛼, 𝛾, 𝐫) =

cos 𝛾 − sin 𝛾 0 𝑥
cos𝛼 sin 𝛾 cos 𝛾 − sin𝛼 𝑦
sin𝛼 sin 𝛾 cos 𝛾 cos𝛼 𝑧

0 0 0 1

.   (V.26) 

In 𝒬!"#, the order of 𝒯 and ℛ does not matter, but ℛ! must be in front of ℛ! . Since 

𝒬!"#!! 𝛼, 𝛾, 𝐫 = (ℛ𝑥(𝛼)ℛ𝑧(𝛾)𝒯(𝐫))!!= 𝒯!! 𝐫 ℛ𝑧
−1 𝛾 ℛ𝑥

−1 𝛼 = 𝒯(−𝐫)ℛ𝑥(−𝛼)ℛ𝑧(−𝛾), the final 

transformation matrix 𝒫!  can also be given as follows: 

𝒫! = 𝒬!"#!! (−𝛼!!∆! , 𝛾!!∆! ,−𝐨!!∆!! )ℱ𝒮𝒬!"#(−𝛼! , 𝛾! ,−𝐨!!).   (V.27) 

V.5 Z-Curve Migration 

A z-curve C 
A,B is a QSIC of z-surface (V.16) and the Earth surface, or formally: 

C 
A,B = S 

A,B ∩E =  𝔖 
!,! ∩TSVA∩TSVB∩E.    (V.28) 

The main focus in this section is the migration of z-curve’s discrete points: given 𝐫! ∈ Ct
A,B, what 

is its relation with 𝐫!+∆t ∈ Ct+∆t
A,B ? How to obtain the input 𝐫! ∈ Ct

A,B will not be discussed here, 

since it is a classic QSIC tracing problem, and our previous work [2] presents an analytic QSIC 

solver for it. Its migration to 𝐫!+∆t ∈ Ct+∆t
A,B  can be accomplished by the numerical algorithm 

present in this section. 

Overview 

As illustrated in Figure V-2, the bulk of C 
A,B behavior is migrating along with the z-

surface S 
A,B. On one hand, as S 

A,B becomes steeper or flatter at t+∆t, points in C 
A,B may be 

lifted up above ground or brought down under ground. They shall be leveled downward and 

upward to align with Earth surface, respectively. In the meantime, the uniformness of intervals 
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shall be maintained to some degree. On the other hand, the z-curve varies in length due to the 

change of TSVA,B. When the coverage zone shrinks, those out-of-coverage points need to be 

filtered out of Ct+∆t
A,B . When TSVA,B enlarges, more discrete points on C 

A,B shall be inserted in 

the front or appended in the end of Ct+∆t
A,B . The uniformness shall also be retained as that of Ct

A,B. 

The proposed method overcomes these challenges. Its three general steps are listed as 

follows, where 𝐫! ∈ Ct
A,B is the input, 𝐫!+∆t ∈ Ct+∆t

A,B  the output, and 𝐩 ∈P, 𝐪 ∈Q intermediate 

shapes. 

Step 1: Affine transformation by 𝒫!  

Moving along the z-surface is mathematically achieved by multiplying 𝐫! ∈ Ct
A,B with 

the same motion matrix 𝒫! : 

𝐩 = 𝒫! 𝐫!,     (V.29) 

I will not discuss this step in detail hereafter. 

Step 2: Earth surface alignment 

I then apply the Newton’s method on each 𝐩 to iteratively solve for a nearby point 𝐪 (∈ 

Q) on the hyperbolic sheet’s intersection with Earth, i.e. 𝔖!!∆!
!,! ∩E. This step is elaborated in 

next section. 

Step 3: Boundary points alignment 

Out-of-coverage 𝐪’s shall be trimmed out of Ct+∆t
A,B , whereas more in-coverage 𝐪’s need 

be collected. Due to the nature of this problem, I design a numerically marching based algorithm, 

which progressively collects discrete points along the z-curve until certain stopping conditions 

are met. It will be detailed later. 



 

102 

 

102 

Earth Surface Alignment 

The input of this step is 𝐩 ∈P⊆ S!!∆!
A,B , a set of points on z-surface and near the Earth 

surface. The output of this step is: for every 𝐩, find a point 𝐪 nearby on the Earth, such that 𝐪 ∈ 

Q⊆ 𝔖!!∆!
!,! ∩E. As it is hard to find a closed-form solution, we formulate the problem 

numerically: 

Given an initial point 𝐫(!) = (𝑥 ! ,𝑦 ! , 𝑧 ! , 1)! such that 𝐫(!)!𝑄!!∆!! 𝐫(!) = 0, find a 

point 𝐫(!) = (𝑥 ! ,𝑦 ! , 𝑧 ! , 1)! with at most 𝑚 iterations, such that 𝐫(!)!𝑄!!∆!! 𝐫(!) = 0 and 

𝐫(!)!𝑄!𝐫(!) = 0. 

Here the initial value 𝐫(!) refers to each 𝐩 point and the final 𝐫(!) is a corresponding 𝐪 

point. Being a root-finding problem, this problem is underdetermined - there are only two 

equations 𝑄!!∆!!  and 𝑄! for three variables 𝑥,𝑦, 𝑧. The root searching starts from 𝐩, but may head 

in an infinite number of directions towards the Earth surface. 

A third condition is needed, to guide the root searching process. Moreover, I may utilize 

it to retain the uniformness of 𝐪 ∈Q. The uniformness of Ct
A,B is controlled in Chapter III, by the 

uniformly separated geocentric latitude 𝜑! (𝜑!!! − 𝜑! is constant). I thus need to guide the root 

searching to proceed along the latitude-surface that each 𝐩 is on. Specifically, for each 𝐩 (𝐫(!)), 

whose geocentric coordinate is (𝜆 ! ,𝜑 ! ), let Φ !  denote the surface in space with geocentric 

latitude 𝜑 ! . As shown in Figure V-6, Φ !  is a cone sitting on the origin with 𝜑 !  inclination 

angle from the equator plane. Φ !  can be derived using [69]: 

𝑥 = 𝑑 cos 𝜆 cos 𝜑 ,
𝑦 = 𝑑 sin 𝜆 cos 𝜑 ,

𝑧 = 𝑑 sin 𝜑 ,
    (V.30) 
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with 𝑑 = 𝑥! + 𝑦! + 𝑧!. Φ(!) surface has the form of 𝑧 = 𝑥! + 𝑦! + 𝑧! sin(𝜑 ! ) by fixing 

𝜑 to be 𝜑 ! . 

 

Figure V-6 Root searching direction and geocentric coordinate  

By adding the third condition, I rephrase the problem into: 

Given an initial value 𝐫(!) (geocentric latitude is 𝜑 ! ), solve for a root of the system of 

equations 𝐅 = [𝑓! 𝑥,𝑦, 𝑧 = 0,  f! x, y, z = 0, f! x, y, z = 0], where f!, f!, f! are: 

f! 𝑥,𝑦, 𝑧 = 𝐫!Q!𝐫, 

f! 𝑥,𝑦, 𝑧 = 𝑑! − 𝑑! − 2𝑎, 

f! 𝑥,𝑦, 𝑧 = 𝑧 − 𝑥! + 𝑦! + 𝑧! 𝑠𝑖𝑛(𝜑 ! ), 

and 𝑑! = 𝑥 − 𝑥! ! + 𝑦 − 𝑦! ! + 𝑧 − 𝑧! !, 𝑑! = (𝑥 − 𝑥!)! + (𝑦 − 𝑦!)! + (𝑧 − 𝑧!)!. 

I solve it by the Newton’s method. It takes advantage of the derivative of 𝐅 (Jacobian 

Matrix J), which is used to iteratively update the intermediate point 𝐫(!) in a way that can 
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decrease its evaluation value of the system, i.e. 𝐅 𝐫 ! < 𝐅 𝐫 !!! , until which reaches to 

zero [70]. 

J(𝑥,𝑦, 𝑧) =

− !!
!!
! − !!

!!
! − !!

!!
!

!!!!

!!
− !!!!

!!
!!!!

!!
− !!!!

!!
!!!!

!!
− !!!!

!!

!! !"#(! ! )
!!!!!!!!

!! !"#(! ! )
!!!!!!!!

1− ! !"#(! ! )
!!!!!!!!

  (V.31) 

The procedure to solve nonlinear systems of equations is given in. The iteration may not 

converge, when the hyperbolic sheet does not intersect the Earth at the specific latitude-surface, 

i.e. 𝔖 
!,! ∩E∩Φ ! =∅. In this special case, the procedure shall output void.  
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Table V-1 Algorithm: Pseudocode of Earth Alignment Using Newton’s method 
Input: 𝑥 ! , 𝑦 ! , 𝑧 ! , m. Output: 𝑥 ! ,𝑦 ! , 𝑧 !  

Method: 

1:    set i = 1. 

2:    if i < m, repeat: 

3:          calculate 𝐅 and 𝐽 using 𝑥 !!! ,𝑦 !!! , 𝑧(!!!) 

4:          solve the 3×3 linear system 𝐽(∆𝑥,∆𝑦,∆𝑧) = 𝐅 

5:          update (𝑥 ! ,𝑦 ! , 𝑧 ! )=(𝑥 !!! ,𝑦 !!! , 𝑧(!!!))-(∆𝑥,∆𝑦,∆𝑧) 

6:          if (∆𝑥)! + (∆𝑦)! + (∆𝑧)! < a small threshold: 

7:                stop and return 𝑥 ! ,𝑦 ! , 𝑧 !  

8:          update 𝑖++ 

9:    if (∆𝑥)! + (∆𝑦)! + (∆𝑧)! < a small threshold: 

10:        return 𝑥 ! ,𝑦 ! , 𝑧 !  

11:  else return void 

For actual implementation, I suggest several points of concerns. First, I actually use a 

modified Newton’s method to improve the typical quadratic convergence rate [70] to a cubic 

convergence, to save iteration steps. Due to page limit, we direct the readers to Homeier’s 

Theorem 2 in [73] for a better version of lines 4-5 in Second, this system 𝐅 = 𝟎 may have two 

solutions when the z-curve intersects twice with the latitude circle. One can guide the iterations 

converge to the correct region under satellite’s coverage by limiting the step size (e.g. less than a 

few kilometers), as the correct local optimum should be close to the initial point. Third, the 
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system 𝐅 = 𝟎 may be ill conditioned, as its coefficients are not normalized, which increases the 

difficulty of convergence. One can normalize each sub-function in 𝐅 by dividing its coefficients 

with some common norm of all sub-functions, and adjust the Jacobian matrix accordingly. 

Boundary Points Alignment 

Inputs of this step are 𝐪 ∈Q, a set of points on the hyperbolic sheet 𝔖!!∆!
!,!  and the Earth 

surface E. Outputs are our ultimate goal - Ct+∆t
A,B . The marching process begins with some seed 

point(s). For the case of Q= ∅, one needs to rerun the QSIC tracing solver in Chapter III to 

generate Ct+∆t
A,B . I adopt a Parametric–Implicit Surface Intersection (PISI) solver [11] to drive this 

marching process, which should terminate at the edge of coverage. 

Let 𝐒 𝜆,𝜑 = (𝑥 𝜆,𝜑 ,𝑦 𝜆,𝜑 , 𝑧 𝜆,𝜑 ) denote the parametric Earth’s surface, and 

𝑓! 𝑥,𝑦, 𝑧 = 0 denote the implicit form of the z-surface, or specifically: 

𝐒 𝜆,𝜑 = (𝑎! cos 𝜆 cos 𝜑 ,𝑎! sin 𝜆 cos 𝜑 , 𝑏! sin 𝜑 )!,  (V.32) 

𝑓! 𝑥,𝑦, 𝑧 = 𝑑! − 𝑑! − 2𝑎,     (V.33) 

with geocentric latitude 𝜑 ∈ [− !
!
, !
!
], and longitude 𝜆 ∈ [−𝜋,𝜋). This PISI solver is based on the 

observation that the tangent vector 𝑇 at any point on the intersection curve 𝐒 ∩ (𝑓! = 0) is 

orthogonal to the normal vector 𝑁! of the 𝑓! = 0 surface. 𝑇 and 𝑁! are given as [11]: 

𝑇 𝑠 = 𝐒!
!"
!"
+ 𝐒!

!"
!"

, 

𝐒! = (−𝑎! sin 𝜆 cos 𝜑 ,𝑎! cos 𝜆 cos 𝜑 , 0 )!, 

𝐒! = (−𝑎! cos 𝜆 sin 𝜑 ,−𝑎! sin 𝜆 sin 𝜑 , 𝑏! cos 𝜑 )!, 

𝑁! = (!!!
!

!!
− !!!!

!!
, !!!

!

!!
− !!!!

!!
, !!!

!

!!
− !!!!

!!
)!, 
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where 𝑠 is a unit arc-length of the intersection curve. This orthogonality, together with the first-

fundamental-form definition of a unit arc-length 𝑠 [71], make up a system of two differential 

equations with the unknowns as the derivatives of 𝜆,𝜑 on 𝑠. Specifically, by plugging (V.32) and 

(V.33) into the saying differential equations in [11], we can express the system after some 

derivations as follows: 

!"
!"
= ± !

!
,  !"
!"
= ∓ !

!
,     (V.34) 

where the sign decides the two opposite marching directions on the intersection curve, and 

Δ = 𝐸𝛽! − 2𝐹𝛼𝛽 + 𝐺𝛼!, with 𝐸,𝐹,𝐺 being the first-fundamental-form coefficients: 

𝛼 = 𝐒!!𝑁!, 𝛽 = 𝐒!!𝑁!,    (V.35) 

𝐸 = 𝐒!!𝐒!, 𝐹 = 𝐒!!𝐒!, 𝐺 = 𝐒!!𝐒!.    (V.36) 

The system (V.34), together with a starting point of marching (denoted as (𝜆 ! ,𝜑 ! )), is 

a standard initial-value problem of ordinary differential equations [70]. As such, we use a classic 

4th-order Runge-Kutta (RK4) method to solve it [70]. In the RK4 solver, the step size ℎ is the 

same unit of the arc-length 𝑠, which can be set approximately as the great circle distance [72] 

between two points on the previous z-curve Ct
A,B. Let 𝑢, 𝑣 denote the functions in (34), the 

marching solver can be designed as the Table II-2, where the StopOrNot function is left to 

readers to implement based on coverage.  
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Table V-2 Algorithm: Pseudocode of the Marching Solver Based on RK4 
Inputs: 𝜆 ! , 𝜑 ! , !"

!"
= 𝑢(𝜆,𝜑), !"

!"
= 𝑣(𝜆,𝜑). 

Outputs: new points in the unexplored area to be added to Ct+∆t
A,B  

1:    set the step size h, set 𝑖=0 

2:    while (true): 

3:          compute 
𝑈! = 𝑢 𝜆 ! ,𝜑 ! ℎ,
𝑉! = 𝑣 𝜆 ! ,𝜑 ! ℎ.

   

4:          compute 
𝑈! = 𝑢 𝜆 ! + !!

!
,𝜑 ! + !!

!
ℎ,

𝑉! = 𝑣 𝜆 ! + !!
!
,𝜑 ! + !!

!
ℎ.

 

5:          compute 
𝑈! = 𝑢 𝜆 ! + !!

!
,𝜑 ! + !!

!
ℎ,

𝑉! = 𝑣 𝜆 ! + !!
!
,𝜑 ! + !!

!
ℎ.

   

6:          compute 
𝑈! = 𝑢 𝜆 ! + 𝑈!,𝜑 ! + 𝑉!  ℎ,
𝑉! = 𝑣 𝜆 ! + 𝑈!,𝜑 ! + 𝑉!  ℎ.

   

7:          compute 
𝜆 !!! = 𝜆 ! + !!!!!!!!!!!!!

!
,

𝜑 !!! = 𝜑 ! + !!!!!!!!!!!!!
!

.
 

8:          if StopOrNot(𝜆 !!! , 𝜑 !!! ) returns true: 

9:                   stop iteration, discard (𝜆 !!! , 𝜑 !!! ) 

10:        save (𝜆 !!! , 𝜑 !!! ), 

11:        update 𝑖 = 𝑖 + 1 
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V.6 Experimental Validation & Analysis 

Software platform 

 

Figure V-7 Experimental platform on static and dynamic z-curve theories  

I develop a software library in C++ and Javascript for the validation, visualization, and 

analysis of static characteristics and dynamic behaviors of z-surface, z-curve, and satellite 



 

110 

 

110 

coverage. As outlined in Figure V-7, the library obtains measurement data from almost 4000 

GNSS reference stations in the global IGS and CORS networks [23][86], to serve as ground truth. 

The library gets the satellite ephemeris files from NASA CDDIS server [87] to compute precise 

satellite positions with 1 meter or less error. The library can then construct the implicit Cartesian 

models, migration functions, and other utilities like time and coordinate conversions, polynomial 

and matrix solvers. The library supports 3D rendering via OpenGL and CGAL libraries [88][89].  

Validation and a potential application 

I focus to validate the migration of z-curve, because it involves the migration of z-surface 

as well. In Chapter III, I have validated that at the time when a predicted z-curve sweeps by, 

corresponding GNSS receivers will report in a timely manner, the change of order of two 

pseudoranges. Those who do not report the crossing are found to be anomalous, i.e. injected by 

errors. In other words, the algebraic QSIC solver for the z-curve proposed in Chapter III is 

correct and consistent with real measurements. Therefore, my target here is to match the 

migrated z-curve with the z-curve computed using QSIC solver in Chapter III. 

The validation result is shown in Figure V-8, where two black lines are the z-curves 

computed using the solver in Chapter III.5, from two GPS satellites (PRN 6 and PRN 15) at 

TOW (Time of Week) 343235 seconds, and 343236 seconds of GPS week 1945, respectively. 

This z-curve is sweeping about 500 meters within 1 second, across the downtown of San 

Francisco, U.S.A. For validation, we take z-curve points in TOW 343235 seconds and migrate 

them into next second (marked as the white dots), using the three steps in Section V.5. The white 

dots exactly overlap on the black line, which proves the correctness of the proposed migration 

functions.   
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Figure V-8 Validation of z-curve migration function  

Using Figure V-8, I illustrate an unverified potential application. Location-aware devices 

(smart phones, vehicles, bicycles, etc.) should sense and report the crossing of this z-curve (i.e. a 

zero crossing), as expected. Specifically, they would measure 𝜌! ≤ 𝜌!" at TOW 343235 seconds 

and 𝜌! > 𝜌!" at next second. Normal devices are expected so as those in green. At the same time, 

abnormal devices may report the zero crossing at the red locations, while their physical locations 
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are within these two z-curves. This or similar cases happen when a GNSS spoofer broadcasts a 

signal mimicking GPS satellites and inject errors into pseudoranges to mislead GNSS devices 

nearby. This scenario is partially verified in Section III.6 where timing errors in pseudoranges 

cause CORS stations measuring the zero crossing at wrong positions. To fully realize this 

application, more users’ data are required. The essential reason for the effectiveness of using z-

curve on anti-spoofing is that spoofing signal has to spread over many receivers in a region and 

the zero crossing is a deterministic event independent of any GNSS receivers. More crowd 

source spatial-temporal applications are expected to develop upon these z-curves, thanks to its 

deterministic and universal properties.  

Visualization 

This section aims to show more results of z-curve migration, to illustrate the process and 

a drawback. In Figure V-9, I plot the oval coverages of two satellites (PRN 2 and PRN 8) 

generated by the TSV model in Chapter IV, their z-curve at TOW 347500, and their z-curve at 

30 minutes ago. Clearly, the z-curve grows longer, because the overlapping coverage area 

increases during this period. From a short z-curve to its longer version, our algorithm inherently 

transforms the curve points to account for the pose of z-surface, aligns each point to the Earth 

surface, and finally extends in both side until reaching the boundary of coverage. This process 

enables connections between curve points at old and new timestamps, which are represented as 

black lines between two z-curves.  
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Figure V-9 Migration of a z-curve (PRN 2, PRN 8) from TOW 345700 to 347500 (30 
minutes) at GPS week 1945  

In Figure V-10, the z-curve (PRN 6 and PRN 15) is shrinking in length during this 30-

minute period, because two satellites are flying away from each other and the co-coverage area 

becomes smaller. In this case, my algorithm has to trim out curve points that are out of coverage 

boundary, and does not need to run the PISI solver for curve extension. In Figure V-11, I show 

the validity of our migration function in a 2-hour period. Starting from “now” (TOW 343000), 

we migrate the curve to states at 15 minutes, and 30 minutes ago, as well as to states in next 90 

minutes. The proposed algorithm describes the dynamic behavior in a very smooth way. 
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Figure V-10 Migration of a z-curve (PRN 6, PRN 15) from TOW 345700 to 347500 (30 
minutes) at GPS week 1945  
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Figure V-11 Migrations of a z-curve (PRN 6, PRN 15) at every 15 minutes during 2 hours 

In Figure V-12, a drawback of this proposed migration method is illustrated. The z-curve 

(PRN 8 and PRN 23) rotates clockwise. At half hour ago, one end of the z-curve is sparser than 

its other portions. This occurs because the curve points are generated using solver in Section III.5 
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whose tracing parameter is the latitude. Therefore, less curve points will be generated when the 

z-curve is more parallel to a latitude line. This sparsity will be maintained in the subsequent 

states, using the proposed migration function. The sparsity is even worsened in this particular 

case, where the z-curve becomes nearly perpendicular to latitude lines. The densities of migrated 

points and new extended points are not even in this case. Due to page limit, I will keep 

mitigation of this drawback in our future works.  
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Figure V-12 Migration of a z-curve (PRN 8, PRN 23) from TOW 345700 to 347500 (30 
minutes) at GPS week 1945    

V.7 Conclusion 

This chapter models the migrations of the satellite TSV, z(k)-surface, and z(k)-curve. 

Their physical movements are precisely described as functions of time and satellite position. Z-

surface migration is composed of translation, rotation, scaling, and reflection, as a result of the 

co-movement of two satellites. The migration of z-curve is solved numerically by transforming 
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along z-surface migration, aligning to Earth surface via Newton’s method, and 

trimming/extending points to coverage boundary via a PISI solver. Experimental results show 

that the proposed migration models can produce migrated z-curve points to match the validated 

solution given in Chapter III exactly, which also implies the correctness of z-surface migration 

model. The speed of GPS z-curves is analyzed using the proposed model. The proposed 

geometric and numerical approaches may be also applicable to other implicit and parametric 

shape problems. The theory of z-curve may serve as a system of spatiotemporal reference grids 

for the development of more location and time based applications. 
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CHAPTER VI CONCLUSION 

VII.1 Contributions 

The main contribution of this dissertation is the development and validation of TDOA 

based z-surface projection theory of GNSS signal, time, and position. My efforts present here 

answer the following questions regarding z-surface/curve. Firstly, this work provides 

mathematical tools to analyze a receiver’s relationship with a z-surface, in terms of geometry and 

measurement. Secondly, this work formalizes the Cartesian model and properties of z-surface, as 

well as its extension to k-surface. Thirdly, this work provides parameterization algorithms for 

z/k-curve at the reference ellipsoid. Finally, this work analyzes the motion behavior of z/k-

surface and derives the migration functions of z-surface and z-curve. All these components have 

been validated with measurement and orbital data collected by thousands of survey-grade 

reference stations in CORS and IGS networks.  

The second contribution of this dissertation is a precise and efficient tool for satellite 

coverage analysis. Not only GNSS satellites but also other LEO, MEO, and GEO satellites, are 

compatible with the proposed models of Terrestrial Service Volume (or even Space Service 

Volume). This work also presents an algebraic parameterization algorithm to obtain the 

boundary of coverage footprint. The validated results prove that the previous popular assumption 

of sphere Earth leads to noticeable area errors of signal coverage analysis.  

The third contribution of this dissertation is the development of an efficient software 

solution for GNSS urban positioning. Its geometric model of urban environment (buildings, trees) 

is proved efficient and effective. This work uses the R-Tree as a spatial partitioning data 
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structure to organize urban elements, which saves the computation time and storage for satellite 

selection. The proposed software solution is validated and practical. 

VII.2 Implications and Future Works 

As digital devices become more and more intelligent, the trend of tightly coupling 

between GNSS and computing science will be realized sooner. I believe this dissertation is just a 

starting point of geometric models in GNSS signals, for next generation of computational GNSS. 

This work builds the interface using geometric tools from GNSS signals and receivers to 

computation models. It analyzes the inside principles of the physical layer and the measurement 

layer of GNSS, which then become base for geometric models of the computational layer of 

GNSS. The proposed z-curve theory may serve as a new foundation for tightly coupling between 

GNSS and computation, because it has three major new properties: a common event that can be 

measured by a group of GNSS users, a deterministic model that contains precise GNSS 

information, and a low-latency observation that every GNSS receiver can sense it efficiently. 

Hence, advanced applications such as integrity monitoring, geodetic and atmospheric surveys 

may be developed upon it. 

Future works can be outlined as follows. First, the entire z-curve theory could be 

extended to carrier phase pseudoranges. This work only analyzes code pseudorange, which has 

lower resolution yet more popularity than carrier pseudorange. With carrier pseudorange enabled, 

the z-curve may enable observations of atmospheric delays, multipath delays, etc. Second, a 

crowd-source application scenario with z-curves should be developed, to demonstrate the 

practical power of the proposed models. For instance, one of the most important future works is 

to implement the scenario shown in Figure V-8, which makes the z-curve a reference grid for 
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integrity monitoring that is globally available and highly deterministic. Third, other 

characteristics of z-curve/surface should be explored. For example, its thickness is related to the 

uncertainty of pseudoranges, which can be translated to the duration of zero crossing. 
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APPENDIX 1  

Substituting the Parametric Earth (III.13) into 𝑥!𝑀!𝑥 + 𝑁!𝑥 + 𝐿! = 0 in (III.11) 

I first expand 𝐱!𝑀!𝐱+ 𝑁!𝐱+ 𝐿! = 0 as: 

𝑚!,!𝑥! +𝑚!,!𝑦! +𝑚!,!𝑧! + 2𝑚!,!𝑥𝑦 + 2𝑚!,!𝑥𝑧 + 2𝑚!,!𝑦𝑧 + 𝑛!𝑥 + 𝑛!𝑦 + 𝑛!𝑧

+ 𝑙 = 0. 
(A1.1) 

When (III.13) is substituted into (A1.1), we obtain constraints 𝑊 𝑢  and 𝐸 𝑢  for west and east 

hemispheres, respectively: 

𝑊 𝑢 = α!𝑢! + α!𝑢 − α!𝑢 + α! 1− 𝑢! + α! = 0, 𝜆 ∈ −𝜋, 0 ,
𝐸 𝑢 = α!𝑢! + α!𝑢 + α!𝑢 + α! 1− 𝑢! + α! = 0, 𝜆 ∈ 0,𝜋 .

   (A1.2) 

where 𝑢 = cos (𝜆), and coefficients are given as functions of the tracing parameter 𝜑: 

α! = 𝑎!!𝑐𝑜𝑠! 𝜑 𝑚!,! −𝑚!,! , 

α! = 𝑎!𝑏!𝑚!,! sin 2𝜑 + 𝑎!𝑛! cos 𝜑 , 

α! = 2𝑎!!𝑚!,!𝑐𝑜𝑠! 𝜑 , 

α! = 𝑎!𝑏!𝑚!,! sin 2𝜑 + 𝑎!𝑛! cos 𝜑 , 

α! = 𝑎!!𝑚!,!𝑐𝑜𝑠! 𝜑 + 𝑏!!𝑚!,!𝑠𝑖𝑛! 𝜑 + 𝑏!𝑛! sin 𝜑 + 𝑙. 

Eliminating the square root operator in both equations in (A1.2) will give us the 

following equation: 

𝐹 𝑢 :   𝛽!𝑢! + 𝛽!𝑢! + 𝛽!𝑢! + 𝛽!𝑢 + 𝛽! = 0,      (A1.3) 

where 𝑢 ∈ [−1,1], and the coefficient 𝛽’s are listed as below: 

𝛽! = 𝛼!! + 𝛼!!,    𝛽! = 2𝛼!𝛼! + 2𝛼!𝛼!, 

𝛽! = 𝛼!! − 𝛼!! + 𝛼!! + 2𝛼!𝛼!, 
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𝛽! = 2𝛼!𝛼! − 2𝛼!𝛼!,     𝛽! = 𝛼!! − 𝛼!!. 

Roots of 𝑊 𝑢 = 0 (and 𝐸 𝑢 = 0) are a subset of roots of 𝐹 𝑢 = 0, whereas some of 

roots of 𝐹 𝑢 = 0 may not satisfy 𝐸 𝑢 = 0 or 𝑊 𝑢 = 0 at the same time. As such, we first 

find real roots of 𝐹 𝑢 = 0 and test them one by one in 𝑊 and 𝐸. The algebraic solutions for a 

4th order polynomial equation are available long before, which takes up to a dozen scalar 

operations of square, cube, squared root, and cubic root. For the case of 𝛽! = 0, (A1.3) is 

degenerated to 3rd order. 
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APPENDIX 2  

Solving Processing of 𝛼 cos 𝜆 + 𝛽 sin(𝜆)+ 𝛾 = 0 

Step 1: If 𝛼 = 0 and 𝛽 = 0 and 𝛾 ≠ 0, there is no satisfying solution. 

Step 2: Let 𝑢 = cos 𝜆 ∈ [−1,1], and thus  

sin(𝜆) = 1− 𝑢!, 𝑖𝑓 𝜆 ∈ 0,𝜋 ,
− 1− 𝑢!, 𝑖𝑓  𝜆 ∈ −𝜋, 0 .

 

And the original equation can be rewritten to be: 

𝑊 𝑢 = 𝛼𝑢 − 𝛽 1− 𝑢! + 𝛾 = 0, 𝜆 ∈ −𝜋, 0 ,
𝐸 𝑢 = 𝛼𝑢 + 𝛽 1− 𝑢! + 𝛾 = 0, 𝜆 ∈ 0,𝜋 .

 

𝑊 and 𝐸 stand for west and east hemispheres, respectively, as defined by their corresponding 

longitude 𝜆. 

Step 3: Solve for potential solutions for 𝑊 𝑢 = 0 and 𝐸 𝑢 = 0, by solving their 

unified equation: 

𝛼! + 𝛽! 𝑢! + 2𝛼𝛾𝑢 + 𝛾! − 𝛽! = 0. 

The valid solution should be real numbers, and within [−1,1]. 

Step 4: For each root 𝑢, use cos!!(𝑢) to solve for an appropriate (in west or east 

hemisphere) longitude 𝜆. If  !!!!"
!

> 0, then the resulting 𝜆 should be within 0,𝜋 . If  

!!!!"
!

< 0, the resulting 𝜆 should be within −𝜋, 0 . If  !!!!"
!

= 0, then there will be two 𝜆’s of 

identical magnitude, but one in west and the other in east hemisphere.  

 


