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The parameters of a nondegenerate quantum code must obey the Hamming bound. An impor-
tant open problem in quantum coding theory is whether or not the parameters of a degenerate
quantum code can violate this bound for nondegenerate quantum codes. In this paper we show
that Calderbank-Shor-Steane (CSS) codes with alphabet q ≥ 5 cannot beat the quantum Hamming
bound. We prove a quantum version of the Griesmer bound for the CSS codes which allows us
to strengthen the Rains’ bound that an [[n, k, d]]2 code cannot correct more than ⌊(n+ 1)/6⌋ er-
rors to ⌊(n− k + 1)/6⌋. Additionally, we also show that the general quantum codes [[n, k, d]]q with
k + d ≤ (1− 2eq−2)n cannot beat the quantum Hamming bound.
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I. INTRODUCTION

Quantum information can be protected by encoding
it into a quantum error-correcting code. An ((n,K, d))q
quantum code is a K-dimensional subspace of the state
space H = (Cq)⊗n of n quantum systems with q lev-
els that can detect all errors affecting less than d quan-
tum systems, but cannot detect some errors affecting d
quantum systems. An ((n,K, d))q quantum code with
k = logq K is also said to be an [[n, k, d]]q quantum code.
The parameter k is not necessarily integral.
A measure of the performance of the quantum code is

its ability to correct errors on the encoded information.
Let B(H) denote the algebra of bounded operators on H.
We denote by PQ the orthogonal projector in B(H) that
projects onto the quantum code Q. Let E denote a sub-
space of B(H) with basis B. The quantum code Q is
able to correct all errors in E if and only if there exists a
hermitian matrix C such that

(PQE
†FPQ)E,F∈B = C ⊗ PQ. (1)

In other words, Q can correct all errors in E if and only
if it can detect all errors in the set {E†F |E,F ∈ B}.
Of particular interest are localized errors that affect

few quantum systems. Let Et denote the vector space
spanned by all elements in B(H) affecting at most t
quantum systems. A quantum code Q is called t-error
correcting if and only if it can correct all errors in Et.
An ((n,K, d))q quantum code is t-error correcting for
t = ⌊(d− 1)/2⌋.
The pair (Q, E) consisting of a quantum code Q and a

vector space of errors E is called degenerate if and only
if the hermitian matrix C in equation (1) is singular;
otherwise, (Q, E) is called nondegenerate. An ((n,K, d))q
quantum code Q is said to be nondegenerate if and only
if (Q, Et) is nondegenerate for t = ⌊(d− 1)/2⌋.
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In the construction of quantum codes, one would like
to have both large dimension K and large minimum dis-
tance d, but these are two conflicting requirements on
the quantum code. The trade off between the number
of correctable errors and the size of the quantum code
is usually quantified by various bounds. For example,
a nondegenerate ((n,K, d))q quantum code satisfies the
Hamming bound

K ≤
qn

∑⌊(d−1)/2⌋
j=0

(

n
j

)

(q2 − 1)j
. (2)

The term ‘degenerate quantum code’ was introduced a
decade ago. Since the term was coined, researchers raised
the question whether a degenerate [[n, k, d]]q quantum
code violating the Hamming bound (2) might exist, [3].
The standard proof of (2) by a simple counting argument
can fail for degenerate quantum codes in a spectacular
fashion, fueling the interest in this problem. To date this
problem remains to be fully settled.
We review briefly some previous work to put our result

in context. Gottesman reported the first analytical result
as to the generality of the quantum Hamming bound in
[4] by proving that single and double error-correcting bi-
nary stabilizer codes cannot beat the quantum Hamming
bound. Subsequently, Ashikhmin and Litsyn [1] showed
a stronger result that asymptotically binary quantum
codes obey the quantum Hamming bound; their result
is applicable to general codes not just binary stabilizer
codes. In [8] Gottesman’s result was generalized for non-
binary codes with distance three [8], suggesting that even
with the freedom of increased alphabet it may not be pos-
sible to beat the quantum Hamming bound.
In this paper we prove some new results on the appli-

cability of quantum Hamming bound to quantum codes.
We show that all CSS codes with alphabet size q ≥ 5
must obey the Hamming bound. In the process, we
also show a weaker result that holds for general quan-
tum codes, namely we prove that if one bounds k+ d by
a fraction of the length n, then an arbitrary [[n, k, d]]q
quantum code must also obey the quantum Hamming
bound. Furthermore, we prove a quantum version of the
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Griesmer bound for the CSS codes. As a consequence of
this bound we can tighten Rains’ bound when applied to
CSS codes.
Since one-dimensional quantum codes are by definition

nondegenerate, hence obey the Hamming bound, we may
assume throughout that the quantum code is of dimen-
sion K > 1.

II. QUANTUM HAMMING BOUND AND

ARBITRARY QUANTUM CODES

One of the long standing open questions in quantum
coding theory is whether the Hamming bound (2) holds
for degenerate quantum codes. In this section, we show
that this question has an affirmative answer for a large
class of general quantum codes.
We denote by h(x) = −x log2 x − (1 − x) log2(1 − x)

the binary entropy function.

Theorem 1. If 2eq−2 ≤ δ ≤ 1 and q ≥ 3, then an
((n,K, d))q code with logq K + d ≤ (1− δ)n satisfies the
quantum Hamming bound (2).

Proof. We have K ≤ q(1−δ)n−d = qn/qδn+d. Let

T = qδn+d
/

t
∑

j=0

(

n

j

)

(q2 − 1)j . (3)

It suffices to show that T ≥ 1, since this implies that

K ≤
qn

qδn+d
≤

qn
∑t

j=0

(

n
j

)

(q2 − 1)j
.

As 2t+ 1 ≤ d ≤ 2t+ 2 we can bound T from below by

T ≥
qδn+2t+1

(q2 − 1)t
∑t

j=0

(

n
j

) =
qδn+1

(1− q−2)t
∑t

j=0

(

n
j

) .

By [7, Corollary 23.6] we have
∑t

j=0

(

n
j

)

≤ 2nh(t/n).

Hence, we obtain

T ≥
qδn+12−nh(t/n)

(1− q−2)t
=

qδn+1−nh(t/n) log
q
2

qt logq
(1−q−2)

≥ 1.

In other words, we need to show that

δn+ 1− nh(t/n) logq 2− t logq(1 − q−2) ≥ 0,

that is

h(t/n) logq 2 + (t/n) logq(1− q−2)− 1/n ≤ δ ≤ 1. (4)

Next, we will show the above inequality holds for δ ≥
2eq−2.
Without loss of generality let us assume that k + d =

(1 − δ)n where 2eq−2 ≤ δ ≤ 1 and k = logq K. By
the quantum Singleton bound, k + d ≤ n − d + 2; so
d ≤ δn + 2 and t = ⌊(d− 1)/2⌋ ≤ ⌊(δn+ 1)/2⌋, hence,
t/n ≤ δ/2 + 1/2n.

Let f(x) = x − h(x/2) logq 2 = x + (x/2) logq(x/2) +
(1 − x/2) logq(1 − x/2), for x ∈ (0, 2). The derivative of
f(x) is given by

f ′(x) = 1 +
1

2
logq

x

2− x
=

1

2
logq

q2x

2− x
,

which can be seen to satisfy f ′(x) > 0 for x > 2/(q2+1).
Since δ ≥ 2eq−2 = 2e(1+ q−2)/(q2 +1) > 2/(q2+1), the
function f(x) is increasing for x ≥ 2eq−2. We claim that
f(x) ≥ 0 for x ≥ 2eq−2 and q ≥ 3. Indeed, we have

f(x) = x− h(x/2) logq 2

= x+ (x/2) logq(x/2) + (1− x/2) logq(1− x/2)

= logq(q
2x/2)x/2(1− x/2)1−x/2 ≥ f(2eq−2)

= logq e
eq−2

(1− eq−2)1−eq−2

.

Since (1 + z) ≤ ez holds for all z, we have (1 − z) =
1/(1 + z/(1− z)) ≥ e−z/(1−z); and as eq−2 < 1 for q ≥ 3
we obtain

f(x) ≥ logq e
eq−2

e−eq−2

= 0,

as claimed. In particular, we have δ + 1/n ≥ h(δ/2 +
1/2n) logq 2 for 2eq−2 ≤ δ ≤ 1. The entropy function
h(x) is monotonically increasing in x for x ∈ [0, 1/2].
Since t/n ≤ δ/2 + 1/2n, for 2eq−2 ≤ δ ≤ 1 − 1/n, the
monotonicity of h(x) implies that h(t/n) ≤ h(δ/2+1/2n).
If 1 − 1/n < δ ≤ 1, then we observe that 1/2 < δ/2 +
1/2n ≤ 3/4, for n ≥ 2. As h(x) = h(1 − x), we have
h(1/4) ≤ h(δ/2 + 1/2n) < h(1/2). But t/n ≤ 1/4, by
the Singleton bound, therefore again we have h(t/n) ≤
h(δ/2 + 1/2n). In either case we have h(t/n) logq 2 ≤
h(δ/2 + 1/2n) logq 2 ≤ δ + 1/n. Thus, δ satisfies the

inequality (4); note that (t/n) logq(1 − q−2) < 0. If n =
1, then t = 0 and equation (4) holds trivially for all
0 ≤ δ ≤ 1. Hence, the quantum code obeys quantum
Hamming bound (2).

It follows from Theorem 1 that for any δ > 0, an
[[n, k, d]]q code with k + d ≤ (1 − δ)n obeys the quan-

tum Hamming bound for any alphabet size q ≥
√

2e/δ.
This suggests that it is less likely that one can find a de-
generate quantum code beating the quantum Hamming
bound for larger alphabet sizes. Indeed, if we choose
a larger alphabet size q, then we can choose a smaller
parameter δ, so the previous theorem rules out an even
larger fraction of quantum codes.
The following table list for a given alphabet size q the

fraction 1− δ of the length that bounds the sum of min-
imum distance d and dimension parameter k.
The thresholds on δ given in Theorem 1 are monotoni-

cally decreasing in q. Therefore, if we conclude from The-
orem 1 that all [[n, k, d]]α codes with k + d ≤ (1− δ)n
obey the Hamming bound, then this implies that the
same claim holds for all alphabet sizes q ≥ α. In par-
ticular, we can conclude from Table I that if q ≥ 4 and
k + d ≤ n/2, then an [[n, k, d]]q quantum code cannot
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q 3 4 5 6 7 8 9 10 11

δ 0.605 0.340 0.218 0.152 0.111 0.085 0.068 0.055 0.045

1− δ 0.395 0.660 0.782 0.848 0.889 0.915 0.932 0.945 0.955

TABLE I: Threshold values of δ for [[n, k, d]]q codes as com-
puted by Theorem 1

beat the quantum Hamming bound. Similarly, we can
conclude from Table I that if q ≥ 5 and k + d ≤ 3n/4,
then an [[n, k, d]]q cannot beat the quantum Hamming
bound.
Notice that these results are not a restatement of the

asymptotic versions of the quantum Hamming bound.
The asymptotic forms usually claim that for large n, the
quantum Hamming bound holds. In contrast, the present
result specifies the restriction of K and d when the quan-
tum Hamming bound holds exactly, irrespective of the
size of n.

III. QUANTUM HAMMING BOUND AND CSS

CODES

In this section, we focus on a subset of the stabilizer
codes known as CSS codes. These quantum codes have
desirable properties especially in the context of fault tol-
erant quantum computation. Even though some better
bounds are known for CSS codes, such as tighter linear
programming bounds, it remained unclear whether they
obey the quantum Hamming bound.
In this section, we will additionally assume that the

alphabet size q is power of a prime. We show that all
CSS codes obey the quantum Hamming bound when the
alphabet size q ≥ 5. In particular, we can partially com-
plement the results of Theorem 1 by including the range
k + d > (1− δ)n, where δ = 2eq−2.
For the background, we mention that the CSS con-

struction used here can be found in [2, Theorem 9] and
q-ary versions in [5] or [8]. Our proof takes advantage of
an idea that has been introduced in [1, Theorem 8].

Lemma 2. Let Q be an [[n, k, d]]q CSS code derived from
a pair of classical codes C1 ⊂ C2 ⊂ Fn

q , where Ci is an
[n, k1]q code. Then Q implies the existence of [n−k1, k,≥
d]q and [k + k1, k,≥ d]q codes.

Proof. Since C1 ⊂ C2, the generator matrices of C1 and
C2 can be put in the form

GC1
=

[

Ik1
P

]

GC2
=

[

Ik1
P

0k×k1
A

]

.

Since C2 is an [n, k1 + k]q code we can further transform
GC2

to

GC2
=

[

Ik1
P ′ P ′′

0k×k1
Ik A′

]

=

[

Ik1
P

0k×k1
Ik A′

]

.

The code generated by
[

0k×(n−k)/2 Ik A′
]

is in C2\C1

and has a distance d. Because the first k1 coordinates are
zero we can also view it as an [n − k1, k, d]q code. The
codes C⊥

2 ⊂ C⊥
1 have the parameters [n, n− k1− k]q and

[n, n − k1]q respectively. Reasoning similarly with C⊥
2

and C⊥
1 we can show that there exists a [k1 + k, k, d]q

code.

Proposition 3. Let Q be an [[n, k, d]]q CSS code with
k + d > (1− δ)n such that δ = 2eq−2 and q a prime
power ≥ 5. Then Q obeys the quantum Hamming bound.

Proof. Suppose that Q is derived from a pair of nested
codes C1 ⊂ C2 ⊂ F

n
q with the parameters [n, k1]q

and [n, k + k1]q, respectively. These codes must satisfy
min{wt(C2 \ C1),wt(C

⊥
1 \ C⊥

2 )} = d.
If k+d = n−d+2, then Q is an MDS code. Rains has

shown that every quantum MDS code is nondegenerate,
see [9, Theorem 2]; hence, the Hamming bound holds.
Thus, we can assume that k + d ≤ n − d + 1. The inte-
grality of k+d implies that k+d ≥ ⌊(1− δ)n⌋+1. By as-
sumption, we also have ⌊(1− δ)n⌋+1 ≤ k+d ≤ n−d+1,
which implies d ≤ n− ⌊(1− δ)n⌋ = ⌈δn⌉ and

t = ⌊(d− 1)/2⌋ ≤ δn/2. (5)

By Lemma 2, there exist classical codes D and D′ with
the parameters [n − k1, k, d]q and [k + k1, k, d]q respec-
tively. SinceD obeys the classical Singleton bound, cf. [6,
pg. 71], we have

n− k1 ≥ k + d− 1. (6)

In particular, if k1 > n− k − d+ 1, then Q cannot have
a distance d and no [[n, k, d]]q code can be derived from
such a C1 and C2. Further, D obeys the classical Ham-
ming bound, see [6, pg. 48]; hence,

qk ≤
qn−k1

∑t
j=0

(

n−k1

j

)

(q − 1)j
. (7)

Similarly, applying the classical Singleton and Ham-
ming bounds to D′, we respectively obtain

k1 + k ≥ k + d− 1, (8)

qk ≤
qk1+k

∑t
j=0

(

k1+k
j

)

(q − 1)j
. (9)

In particular, if k1 < d − 1, there cannot exist an
[[n, k, d]]q code. From equations (7) and (9) we obtain

q2k ≤
qn−k1+k1+k

∑t
j=0

(

n−k1

j

)

(q − 1)j
∑t

j=0

(

k1+k
j

)

(q − 1)j
.

which yields

qk ≤
qn

∑t
i,j=0

(

n−k1

i

)(

k1+k
j

)

(q − 1)i+j
. (10)
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To prove that Q obeys the Hamming bound, it suffices
to show that the right hand side of (10) is less than the
right hand side of (2); put differently, it suffices to show
that

t
∑

j=0

(

n

j

)

(q2 − 1)j ≤

t
∑

i,j=0

(

n− k1
i

)(

k1 + k

j

)

(q − 1)i+j .

If n ≤ 4 and k > 0, the quantum Singleton bound implies
that d ≤ 2, i.e., t = 0 and the inequality holds. For n ≥ 5
we shall prove an even stronger inequality, namely that

t
∑

j=0

(

n

j

)

(q2 − 1)j ≤
t

∑

j=0

(

n− k1
j

)(

k + k1
j

)

(q − 1)2j(11)

holds term by term,
(

n
j

)

(q2−1)j ≤
(

n−k1

j

)(

k+k1

j

)

(q−1)2j .

It clearly holds for j = 0. For j > 0 we use the fact that
(n/j)j ≤

(

n
j

)

≤ (ne/j)j ; hence, it suffices to show that

(

ne

j

)j

(q2 − 1)j ≤

(

n− k1
j

k + k1
j

)j

(q − 1)2j.

This is equivalent to showing that

ne

j
(q + 1) ≤

n− k1
j

k + k1
j

(q − 1). (12)

Notice that equality cannot hold in both (6) and (8).
Indeed, if we have k1 = n − k − d + 1 in (6), then it
follows that k1 + k = n− d+1 ≥ k+ d as Q is not MDS,
tightening the inequality (8). If k1+k = k+d− 1 in (8),
then this implies n− k1 = n− d+ 1 ≥ k + d, tightening
the inequality (6). It follows that (n − k1)(k + k1) ≥
(k + d)(k + d − 1) ≥ (1 − δ)n ((1 − δ)n − 1). Hence, to
prove that (12) holds it is enough to show

ej(q + 1) ≤ n(1− δ)(1 − δ − 1/n)(q − 1).

By assumption δ = 2eq−2. By equation (5), we have
j ≤ t ≤ δn/2; thus, it remains to show that

e2q−2(q + 1) ≤ (1− 2eq−2)(1 − 2eq−2 − 1/n)(q − 1).

This inequality holds for q = 5 and n = 5. The left
side of this inequality is monotonically decreasing in q
while the right hand side is monotonically increasing in
q and n; hence, the inequality holds for all q ≥ 5 and
n ≥ 5. Consequently, we have shown that inequality (11)
holds for all n, and it follows that Q obeys the quantum
Hamming bound.

Theorem 4. For q ≥ 5 all [[n, k, d]]q CSS codes obey the
quantum Hamming bound.

Proof. Set δ = 2eq−2. A CSS code obeys the quantum
Hamming bound by Theorem 1 if k + d ≤ (1− δ)n, and
by Proposition 3 if k + d > (1− δ)n.

Other interesting bounds can be derived as a conse-
quence of Lemma 2. For instance, an analogue of the
Griesmer bound is possible.

Theorem 5 (Quantum Griesmer Bound for CSS Codes).
An [[n, k, d]]q CSS code satisfies the following bound:

n+ k

2
≥

k−1
∑

i=0

⌈

d

qi

⌉

. (13)

Proof. By Lemma 2 there exist [n − k1, k, d]q and [k +
k1, k, d]q codes. These codes obey the classical Griesmer
bound, see [6, Theorem 2.7.4], hence we obtain

n− k1 ≥

k−1
∑

i=0

⌈

d

qi

⌉

and k + k1 ≥

k−1
∑

i=0

⌈

d

qi

⌉

.

Combining the two inequalities proves the statement of
the theorem.

We can also show that a similar bound (though not
exactly the same) is applicable for linear quantum codes.
Since

⌈

d/qi
⌉

≥ 1 for i > 0, we have (n+ k)/2 ≥ d+ k− 1
and we recover the quantum Singleton bound as n− k ≥
2d − 2. A very natural question would be if there are
quantum codes that meet the quantum Griesmer bound.
If k = 1 (and n−k even), then this essentially reduces to
the quantum Singleton bound and all [[n, 1, (n+ 1)/2]]q
quantum MDS codes meet this bound. The interesting
case is when k ≥ 2. The [[4, 2, 2]]2 code for instance meets
this bound, it also meets the quantum Singleton bound.
At this time we are not aware of other codes that meet
the quantum Griesmer bound.

Corollary 6. An [[n, k, d]]q CSS code with d ≥ q satisfies

n− k

2
≥ d(1 + 1/q)− 2. (14)

Proof. This is an easy consequence of Theorem 5. Since
d ≥ q we have

n+ k

2
≥ d+ d/q +

k−1
∑

i=2

⌈

d

qi

⌉

≥ d+ d/q + k − 2.

Simplifying the above inequality yields the claim.

Note that Corollary 6 is tighter than the quantum Sin-
gleton bound. Rains had shown that the binary quantum
codes cannot correct more than ⌊(n+ 1)/6⌋ errors [10].
A slightly stronger result can be easily derived for CSS
codes.

Corollary 7. An [[n, k, d]]2 CSS code cannot correct
more than ⌊(n− k + 1)/6⌋ errors.

Proof. By Corollary 6, we have (n − k)/2 ≥ 3d/2 − 2,
which implies the claim.



5

IV. CONCLUSIONS

In this paper we have shown that the quantum Ham-
ming bound holds for all CSS codes with alphabet greater
than 5. We also have shown a slightly weaker result for
general quantum codes. Our results give ample evidence
for the conjecture that the quantum Hamming bound
holds for all quantum codes. However, there still remain
some gaps. The major remaining open question is the
status of ((n,K, d))q quantum codes which do not satisfy
the conditions in Theorem 1. Some special cases of in-
terest are linear stabilizer codes and CSS codes of small
alphabet q ≤ 4.
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