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The identification of aflatoxins as human carcinogens has stimulated extensive research
efforts, which continue to the present, to assess potential health hazards resulting
from contamination of the human food supply and to minimize exposure. The use
of biomarkers that are mechanistically supported by toxicological studies will be
important tools for identifying stages in the progression of development of the
health effects of environmental agents. miRNAs are small non-coding mRNAs that
regulate post-transcriptional gene expression. Also, they are molecular markers of
cellular responses to various chemical agents. Growing evidence has demonstrated that
environmental chemicals can induce changes in miRNA expression. miRNAs are good
biomarkers because they are well defined, chemically uniform, restricted to a manageable
number of species, and stable in cells and in the circulation. miRNAs have been used as
serological markers of HCC and other tumors. The expression patterns of different miRNAs
can distinguish among HCC-hepatitis viruses related, HCC cirrhosis-derivate, and HCC
unrelated to either of them. The main objective of this review is to find unreported miRNAs
in HCC related to other causes, so that they can be used as specific molecular biomarkers
in populations exposed to aflatoxins and as early markers of exposure, damage/presence
of HCC. Until today specific miRNAs as markers for aflatoxins-exposure and their reliability
are currently lacking. Based on their elucidated mechanisms of action, potential miRNAs
that could serve as possible markers of HCC by exposure to aflatoxins are miR-27a,
miR-27b, miR-122, miR-148, miR-155, miR-192, miR-214, miR-221, miR-429, and miR-500.
Future validation for all of these miRNAs will be needed to assess their prognostic
significance and confirm their relationship with the induction of HCC due to aflatoxin
exposure.
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INTRODUCTION
The aflatoxins were structurally identified in the early 1960s
and over the last 50 years have been extensively studied with
respect to their mechanisms of action, including their muta-
genic and carcinogenic activity. This work has been paralleled
by developments in biomarkers of aflatoxin metabolism, DNA
adducts, and mutations applied to exposed human populations.
The improvements in exposure assessment in epidemiological
studies and the demonstration of a specific mutation in the TP53
gene have contributed significantly to the identification of afla-
toxins as human carcinogens. In addition, the studies of animal
and human aflatoxin metabolism have provided opportunities
to develop chemoprevention approaches in human populations
(Wild and Turner, 2002; Valencia-Quintana et al., 2012). These
findings stimulated extensive research efforts, which continue to

the present, to assess potential health hazards resulting from con-
tamination of the human food supply and to minimize exposure
(Kensler et al., 2011).

The use of biomarkers that are mechanistically supported
by toxicological studies will be important tools for identifying
stages in the progression of development of the health effects
of environmental agents. Since the development of a general
paradigm for molecular epidemiology and biomarkers nearly 20
years ago, progress has been made in applying these tools to spe-
cific environmental situations that may be hazardous to humans,
as exemplified by AFB1 studies. The major goals of molecular
epidemiology research are to develop and to validate biomarkers
that reflect specific exposures, their interactions, and predictions
of disease risk in individuals. Presumably, after an environmen-
tal exposure each person has a unique response to both dose
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and time to disease onset. These responses will be affected both
by genetic, host and environmental modifiers. It is assumed that
biomarkers that reflect the mechanisms of action of the etiologic
agents will be strong predictors of an individual’s risk of disease.
It is also expected that these biomarkers can more clearly clas-
sify the status of exposure of individuals and general populations
(Groopman et al., 2005).

Biomarkers can be used as outcome measures in these and
primary prevention studies. Overall, the integrated, multidisci-
plinary research on aflatoxins has provided the scientific platform
on which to base decisions regarding acceptable exposures and
priorities for interventions to reduce human risk in a public
health context (Wild and Turner, 2002).

AFLATOXIN BIOMARKERS
AFB1 requires metabolic activation to its ultimate carcinogenic
form, a reactive epoxide (aflatoxin-8,9-epoxide), primarily by the
cytochrome P450 (CYP) monooxygenase system. Epoxidation is
catalyzed by CYP1A2 and CYP3A4 in humans (Gallagher et al.,
1994; Ueng et al., 1995). Many other oxidation products, includ-
ing aflatoxin M1, are also formed. The epoxide can react further
by interacting with DNA to produce a promutagenic aflatoxin-
N7-guanine adduct. This adduct is unstable in DNA, rapidly
undergoes depurination, and is excreted in urine (Bennett et al.,
1981). The epoxide can also form products that react with serum
albumin to form long-lived lysine adducts (Sabbioni et al., 1987).
In addition, the epoxide can be conjugated by certain glutathione
S-transferases (GSTs), which are further metabolized to form
aflatoxin-mercapturic acid detoxification products that can be
excreted in urine (Scholl et al., 1997). Urinary measures of afla-
toxin M1, aflatoxin-mercapturic acid, and the aflatoxin-albumin
adduct are used as biomarkers of internal dose. Aflatoxin-N7-
guanine in urine serves as an elegant biomarker of biologically
effective dose because it is clear that formation of this adduct lies
on the causal pathway to aflatoxin-induced HCC (Kensler et al.,
2011).

An objective in development of AFB1 biomarkers is to use
them as predictors of past and future exposure status in people
(Kensler et al., 2011). However, two key attributes, one biological
(tracking) and the other chemical (stability), need to be con-
firmed to successfully use biomarkers for these purposes. miRNAs
are good biomarkers because they are well defined, chemically
uniform, restricted to a manageable number of species, and stable
in cells and in the circulation (Wang et al., 2012a).

microRNAs AND ENVIRONMENTAL POLLUTANTS
Exposure to environmental chemicals is well known to increase
risks for various diseases (Crinnion, 2010; Newbold, 2010), and
gene expression can be changed as a response to these exogenous
stressors (Ueda, 2009; Patel and Butte, 2010; Hou et al., 2012),
like tobacco and polycyclic aromatic hydrocarbons in urban air of
megacities (Arenas-Huertero et al., 2011). Such changes may be
regulated by specific miRNAs and emerged as a gene expression
regulatory factor that may link environmental chemicals and their
related diseases.

Secreted miRNAs have many requisite features of good
biomarkers. miRNAs are stable in various bodily fluids, the

sequences of most miRNAs are conserved among different
species, the expression of some miRNAs is specific to tissues or
biological stages, and the level of miRNAs can be easily assessed
by various methods, as polymerase chain reaction (PCR), which
allows for signal amplification. The changes of several miRNA
levels in plasma, serum, urine, and saliva have already been asso-
ciated with different diseases (for review see Etheridge et al.,
2011).

Growing evidence has demonstrated that environmental
chemicals can induce changes in miRNA expression (Hou et al.,
2011). Arsenite exposure induced significant decrease in miR-
19a expression in human lymphoblast cells line TK-6, resulting
in cell growth arrest and apoptosis (Marsit et al., 2006). Metal
sulfates have been shown to generate reactive oxygen species
(ROS) and trigger the expression of specific miRNAs (Lukiw and
Pogue, 2007). Bollati et al. (2010) found an increased expres-
sion of miR-146a related to inhalation of Cd-rich air particles in
steel workers, and induced rapid changes in the expression of two
inflammation-related miRNAs, miR-21 and miR-222. Aluminum
exposure may induce genotoxicity via miRNA-related regulatory
elements, for example, miR-146a, miR-9, miR-125b, and miR-128
(Lukiw and Pogue, 2007; Pogue et al., 2009).

Jardim et al. (2009) have shown extensive alterations of
miRNA expression profiles in human bronchial epithelial cells
treated with diesel exhaust particles. Schembri et al. (2009)
have identified 28 miRNAs that were differentially expressed in
smokers when compared to non-smokers, changes in miRNA
expression were suggested to contribute to altered regulation of
oncogenes, tumor suppressor genes, oxidative stress, xenobiotic
metabolism, and inflammation. Izzotti et al. (2009a,b) have mon-
itored the expression of 484 miRNAs in the lungs of mice exposed
to cigarette smoking, the most remarkably downregulated miR-
NAs belonged to several miRNA families, such as let-7, miR-10,
miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124,
miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-
219, miR-222, and miR-223. These miRNAs regulate expression
of genes involved in stress responses, apoptosis, proliferation, and
angiogenesis.

Zhang and Pan (2009) have evaluated the effects of
Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (also known as hexo-
gen or cyclonite) (RDX) on miRNA expression in mouse brain
and liver, most of the miRNAs that showed altered expression,
including let-7, miR-17-92, miR-10b, miR-15, miR-16, miR-26,
and miR-181, were related to toxicant-metabolizing enzymes, and
genes related to carcinogenesis, and neurotoxicity, in addition,
consistent with the known neurotoxic effects of RDX, the authors
documented significant changes in miRNA expression in the
brains of RDX-treated animals, such as miR-206, miR-30a, miR-
30c, miR-30d, and miR-195. STS (sodium thiosulfate) treatment
also resulted in differential expression of miR-124a and miR-
133a in the treated embryos (Choudhuri, 2010). Fukushima et al.
(2007) have demonstrated that rat exposed to acetaminophen or
carbon tetrachloride showed down-regulation of miR-298 and
miR-370 in the liver that was accompanied by hepatocyte necro-
sis and inflammation. Wang et al. (2009a) found increase serum
concentration of hepatocyte-specific miRNAs including miR-
122 and miR-192 within 1 h after acetaminophen exposure. In
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mouse exposure to Wy-14,643, peroxisome proliferator-activated
receptor alpha (PPARα) agonist, up-regulate let-7C (Shah et al.,
2007). Ethanol exposure down-regulate miR-21, miR-335, miR-
9, and miR-153 (Sathyan et al., 2007). In rats, tamoxifen up-
regulate miR-17-92 cluster, miR-106a, and miR-34 (Pogribny
et al., 2007). 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK), a tobacco carcinogen, down-regulate miR-34, miR-101,
miR-126, and miR-199 (Kalscheuer et al., 2008). In humans,
1 alpha, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], major
vitamin D metabolite, up-regulate miR-125b (Mohri et al., 2009),
and 5-fluorouracil (5-FU) an antineoplasic drug, up-regulate
miR-200b (Rossi et al., 2007). Bisphenol A (Avissar-Whiting et al.,
2010), dioxin (Elyakim et al., 2010), and diethylstilbestrol (DES)
(Hsu et al., 2009) desregulate expression of miR-146a, miR-191,
and miR-9-3, respectively. Moffat et al. (2007) looked at the
effects of dioxin treatment on miRNA in mice, dioxin-resistant
rats (Han/Wistar; Kuopio) and dioxin-sensitive rats (Long–Evans;
Turku/AB), it is interesting to note that the dioxin sensitive rats
had more affected miRNAs. X-ray exposure resulted in down
regulation of miR-7 (Ilnytskyy et al., 2008). The ROS induction
resulted in up-regulation of a specific set of miRNAs, includ-
ing miR-9, miR-125b, and miR-128 (Lukiw and Pogue, 2007).
Lin et al. (2009), and Cheng et al. (2009), found that hydrogen
peroxide induce up-regulation of miR-21.

The increasing evidence that the expression of miRNAs is
affected by several known toxicants as well as oxidative and other
forms of cellular stress certainly suggest an important role of miR-
NAs in toxicology, which could provide a link between environ-
mental influences and gene expression (Lema and Cunningham,
2010). Analysis of the resulting molecular signatures provides new
tools to identify mechanisms of toxicity, as well as to classify com-
pounds based on the biological response they elicit and to identify
cluster of genes detective or predictive of certain type of toxic
response, which are employed as biomarkers (Gatzidou et al.,
2007). miRNAs are one of the main mechanisms of epigenetic
regulation of gene expression. Conversely to stress-related miR-
NAs, the toxicological research of miRNAs associated to specific
toxicants has started few years ago. Therefore, available publica-
tions are focused in a broad spectra of toxicants and compiled
research about a particular miRNA is yet very limited (Lema and
Cunningham, 2010).

microRNA IN HCC AS POTENTIAL BIOMARKERS OF
AFLATOXIN EXPOSURE
In the recent years, several studies revealed that the expression
of miRNAs is deregulated in human HCC in comparison with
matched non-neoplastic tissue (Lu et al., 2005; Gramantieri et al.,
2008; Law and Wong, 2011; Borel et al., 2012a; Wang et al.,
2012a,b; Sun and Karin, 2013; Wong et al., 2013). Some miRNAs
identified in HCC are reported in Table 1.

Cellular miRNAs can be released into the circulation, and
circulating miRNA levels are also affected in HCC. Circulating
plasma miRNA signatures may provide a novel diagnosis method
for early, pre-symptomatic HCC patients, and may prove useful
as prognosis biomarkers (Borel et al., 2012a).

In HCC has been reported up-expression of miR-21, miR-221,
miR-22, miR-15, miR-517a, and down-expression of miR-122,

miR-29 family, miR-26a, miR-124, let-7 family members, and
miR-199a/b-3p (Szabo et al., 2012). Other miR- reported as
markers involved in HCC have been miR-15b, miR-16, miR-17-
5p, miR-18, miR-18a, miR-20, miR-23b, miR-26a, miR-29, miR-
34a, miR-92, miR-101, miR-106a, miR-125b, miR-130b, miR-143,
miR-146a, miR-195, miR-203, miR-223, miR-224, miR-338, miR-
378, miR-422b, miR-500 (Murakami et al., 2006; Budhu et al.,
2008; Jiang et al., 2008; Chen, 2009; Zhang et al., 2009; Kerr et al.,
2011; Qu et al., 2011; Liu et al., 2012; Singhal et al., 2012; Wong
et al., 2013).

In a review, Gramantieri et al. (2008) show miRNAs aberrantly
expressed in HCC compared to non-tumorous liver tissue (up-
expression of miR-33, miR-130, miR-135a, miR-210, miR-213,
miR-222, miR-331, miR-373, miR-376a, and down-expression of
miR-130a, miR-132, miR-136, miR-139, miR-143, miR-145, miR-
150, miR-200a, miR-200b, miR-214). However, specific markers
and their reliability are currently lacking as occur with aflatoxin-
exposure.

Singhal et al. (2012), review molecular and serum mark-
ers in HCC as predictive tools for prognosis and recurrence.
Aberrant expression of miR-21 can contribute to HCC by mod-
ulating PTEN expression and PTEN-dependent pathways (Meng
et al., 2007). A significantly high expression of miR-224 in HCC
patients promotes proliferation and inhibits apoptosis inhibitor-5
(API-5) transcript expression (Wang et al., 2008). An inverse cor-
relation between miR-221 and both CDKN1B/p27 and CDKN1
C/p57, suggested miR-221 oncogenic function in hepatocarcino-
genesis (Fornari et al., 2008). Also miR-221 has been involved in
the modulation of Bmf, a proapoptotic BH3-only protein, regu-
lating the cell proliferation and apoptosis proteins (Gramantieri
et al., 2009).

HCC cells showed highly deregulated miR-223 expression and
a strong inverse relationship with its downstream target Stathmin
1 (Wong et al., 2008). Murakami et al. (2006) and Li et al. (2008),
found that miR-125b that suppress the cell growth and phospho-
rylation of Akt to be a prognostic marker of HCC. miR-122 found
up to 70% of total miRNA in the liver, modulates cyclin G1, thus
influences p53 protein stability and transcriptional activity and
reduces invasion capability of HCC-derived cell lines (Fornari
et al., 2009). Bcl-w is a direct target of miR-122 that functions
as an endogenous apoptosis regulator in these HCC-derived cell
lines (Lin et al., 2008). miR-122 is under the transcriptional con-
trol of HNF1A, HNF3A and HNF3B and loss of miR-122 results
in an increase of cell migration and invasion. From a clinical
point of view, miR-122 can be used as a diagnostic and prognostic
marker for HCC progression (Coulouarn et al., 2009).

In HCC cell line, miR-34a directly targeted c-Met and reduced
both mRNA and protein levels of c-Met, thus blocking cell migra-
tion (Li et al., 2009a). miR-18a high expression in HCC tumors
(Liu et al., 2009). miR-101 has a downstream target of v-fos
oncogene and it is involved in cell invasion and migration in
overexpressed HCC cell lines (Li et al., 2009b). Xu et al. (2009)
show that miR-195 may block the G(1)/S transition by repressing
Rb-E2F signaling through targeting multiple molecules, including
cyclin D1, CDK6, and E2F3. Upregulation of miR-143 expres-
sion transcribed by NF-kappa B in HBV-HCC promotes cancer
cell invasion/migration and tumor metastasis by repression of
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Table 1 | microRNA deregulated in HCC.

miR- Effects over References

miR-9/9*/-2 Promote HCC migration and invasion through regulation of
KLF17

Budhu et al., 2008; Wang et al., 2008; Sun et al., 2013; Xu et al.,
2013

miR-10b Promoted cell migration and invasion Ladeiro et al., 2008; Li et al., 2010

miR-15b Molecular mechanisms and roles in HCC remain largely
unknown

Liu et al., 2012; Wong et al., 2013

miR-17/-5p Proliferation and migration Kutay et al., 2006; Huang et al., 2009; Yang et al., 2010; Chen
et al., 2012a; Zheng et al., 2013

miR-17-92 Induce proliferation and anchorage-independent growth Pogribny et al., 2007; Wang et al., 2012a

miR-18/a/p-18 High expression in HCC tumors. Promote cell growth.
Proliferation

Murakami et al., 2006; Jiang et al., 2008; Liu et al., 2009; Kerr
et al., 2011

miR-19a Proliferation Budhu et al., 2008; Connolly et al., 2008; Wong et al., 2008; Li
et al., 2009c

miR-20/a Proliferation, recurrence, and prognosis Kutay et al., 2006; Fan et al., 2013

miR-21 Modulating PTEN expression and PTEN-dependent
pathways. Enhanced AKT pathway. Promote cell cycle
progression, reduce cell death and favor angiogenesis and
invasion. Able to differentiate HCC from chronic hepatitis

Kutay et al., 2006; Volinia et al., 2006; Meng et al., 2007;
Gramantieri et al., 2008; Huang et al., 2008; Jiang et al., 2008;
Ladeiro et al., 2008; Wang et al., 2008; Chen, 2009; Garofalo
et al., 2009; Li et al., 2009b; Pogribny et al., 2009; Pineau et al.,
2010; Wong et al., 2010, 2013; Xu et al., 2011; Tomimaru et al.,
2012; Karakatsanis et al., 2013

miR-22 Enhanced NF-kB signaling Takata et al., 2011

miR-23a/b Repress the expression of uPA and c-met decreasing
migration and proliferation abilities in HCCcells

Kutay et al., 2006; Huang et al., 2008; Salvi et al., 2009

miR-24 Promote cell growth and inhibit apoptosis Kutay et al., 2006; Huang et al., 2008, 2009

miR-25 Apoptosis inhibition Li et al., 2008, 2009c; Wang et al., 2008; Huang et al., 2009

miR-26a Regulates the expression of cyclin D2 and E2 and induces
G1 arrest of human liver cancer cells. Reduced expression
in HCC. Systemic administration inhibe cancer cell
proliferation and induced apoptosis in HCC

Chang et al., 2008; Ji et al., 2009a; Braconi et al., 2011; Kerr
et al., 2011; Szabo et al., 2012

miR-27a Promote cell growth and inhibit apoptosis Huang et al., 2008, 2009

miR-29c Apoptosis inhibition Li et al., 2008; Xiong et al., 2010; Wang et al., 2011

miR-34a Stimulation of HCC proliferation. Targeted c-Met and
reduced both mRNA and protein levels of c-Met, thus
blocking cell migration. Reduce invasion

Meng et al., 2007; Pogribny et al., 2007; Budhu et al., 2008;
Gramantieri et al., 2008; Li et al., 2008, 2009a; Wong et al.,
2008; Chen, 2009; Pineau et al., 2010

miR-92 The physiological significance of deregulation is still
unknown

Meng et al., 2007; Shigoka et al., 2010

miR-93 Prevention of E2F1 acumulation. Proliferation Kutay et al., 2006; Wong et al., 2008; Li et al., 2009c; Su et al.,
2009; Pineau et al., 2010

miR-101/b-2 Downstream target of v-fos oncogene. Apoptosis inhibition.
Inhibits cell proliferation and colony formation. Inhibits
invasion and migration

Kutay et al., 2006; Gramantieri et al., 2008; Jiang et al., 2008; Li
et al., 2008, 2009b; Su et al., 2009

miR-106a/b Prevention of E2F1 acumulation. Proliferation Kutay et al., 2006; Pogribny et al., 2007; Shah et al., 2007; Jiang
et al., 2008; Ji et al., 2009a; Li et al., 2009c; Pineau et al., 2010

miR-122/a Stimulation of HCC proliferation. Enhanced cell cycle
progression. Modulates cyclin G1, influences p53 protein
stability, and transcriptional activity and reduces migration
and invasion capability of HCC-derived cell lines. Also Bcl-w
is its direct target. Apoptosis inhibition

Kutay et al., 2006; Gramantieri et al., 2007; Meng et al., 2007;
Budhu et al., 2008; Ladeiro et al., 2008; Lin et al., 2008; Wong
et al., 2008; Bai et al., 2009; Chen, 2009; Coulouarn et al., 2009;
Fornari et al., 2009; Huang et al., 2009; Liu et al., 2009; Tsai
et al., 2009; Fan et al., 2011; Kerr et al., 2011; Li et al., 2011; Qi
et al., 2011; Xu et al., 2012; Karakatsanis et al., 2013

miR-124/a-2 Stimulation of EMT. Supress cell proliferation Gramantieri et al., 2007, 2008; Budhu et al., 2008; Huang et al.,
2009; Furuta et al., 2010; Lang and Ling, 2012; Zheng et al.,
2012a

miR-125a/b/b-2 Inversely correlated with aggressiveness and poor
prognosis. Ectopic expression can inhibit the proliferation,
invasion, and metastasis

Murakami et al., 2006; Meng et al., 2007; Budhu et al., 2008;
Gramantieri et al., 2008; Li et al., 2008; Wong et al., 2008, 2010;
Huang et al., 2009; Su et al., 2009; Kerr et al., 2011; Bi et al.,
2012

(Continued)
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Table 1 | Continued

miR- Effects over References

miR-130/a/a-1/b It is still unknown if contribute to HCC development and
tumor progression

Kutay et al., 2006; Gramantieri et al., 2007; Jiang et al., 2008;
Wong et al., 2008; Liu et al., 2009, 2012

miR-143 Promotes cancer cell invasion/migration and tumor
metastasis by repression of fibronectin type III domain
containing 3B (FNDC3B) expression

Gramantieri et al., 2007, 2008; Huang et al., 2009; Zhang et al.,
2009

miR-145 Invasion and development Gramantieri et al., 2007, 2008; Varnholt et al., 2008; Wang
et al., 2008; Wong et al., 2008, 2010; Huang et al., 2009; Liu
et al., 2009; Borel et al., 2012b; Karakatsanis et al., 2013

miR-146 Promote cell growth Gramantieri et al., 2007; Xu et al., 2008; Karakatsanis et al., 2013
miR-148a/b Metastasis Budhu et al., 2008; Li et al., 2008, 2009b; Wong et al., 2008
miR-150 Cell differentiation and survival Gramantieri et al., 2007, 2009; Jiang et al., 2008; Fornari et al.,

2009; Zhang et al., 2009, 2012; Pineau et al., 2010
miR-151 Migration and invasion Wang et al., 2008; Wong et al., 2008; Ding et al., 2010
miR-155 Development and invasion Gramantieri et al., 2007; Wang et al., 2008; Huang et al., 2012
miR-181a/a-1/a-
2/b/c/d

Migration. Enhanced MMP2 and MMP9 Gramantieri et al., 2007; Meng et al., 2007; Li et al., 2008;
Garofalo et al., 2009; Ji et al., 2009a; Pogribny et al., 2009;
Wang et al., 2010; Song et al., 2013

miR-182 Metastasis Wang et al., 2008, 2012b; Wong et al., 2008, 2010
miR-183 Onset and progression, Apoptosis Wang et al., 2008; Wong et al., 2008, 2010; Liang et al., 2013
miR-185 Metastasis Budhu et al., 2008; Wong et al., 2008, 2010; Huang et al., 2009;

Zhi et al., 2013
miR-192 Inhibition of DNA excision repair Xie et al., 2011
miR-194 Metastasis Budhu et al., 2008; Huang et al., 2009; Meng et al., 2010; Xu

et al., 2013
miR-195 Proliferation, colony formation. Repressing Rb-E2F

signaling. Enhanced G1-S transition
Murakami et al., 2006; Gramantieri et al., 2007, 2008; Wong
et al., 2008, 2010; Huang et al., 2009; Liu et al., 2009; Xu et al.,
2009

miR-199a/a*/a-1/a-
2/b/-3p/-5p

MET, the tyrosine kinase HGF receptor, is
post-transcriptionally regulated

Murakami et al., 2006; Gramantieri et al., 2007, 2008; Meng
et al., 2007; Jiang et al., 2008; Wong et al., 2008, 2010; Chen,
2009; Liu et al., 2009; Su et al., 2009; Wang et al., 2009a; Kerr
et al., 2011; Borel et al., 2012b

miR-200a/b/c Stimulation of EMT Murakami et al., 2006; Gramantieri et al., 2007; Jiang et al.,
2008; Huang et al., 2009; Wong et al., 2010; Kim et al., 2011;
Zhou et al., 2012; Karakatsanis et al., 2013

miR-203 Progression Ladeiro et al., 2008; Chen et al., 2012b
miR-205 Proliferation Huang et al., 2009; Wei et al., 2013a
miR-207 Metastasis Budhu et al., 2008; Huang et al., 2009
miR-210 Metastasis Meng et al., 2007; Wong et al., 2008; Su et al., 2009; Pineau

et al., 2010; Ying et al., 2011
miR-214 Cell growth and invasion Gramantieri et al., 2007; Jiang et al., 2008; Li et al., 2008; Wang

et al., 2008; Wong et al., 2008, 2010
miR-221 Proliferation, colony formation, apoptosis, migration.

Down-regulation of p27 and p57. Involved in the modulation
of CDKN1B/p27 and CDKN1 C/p57, cell cycle proteina, and
Bmf, a proapoptotic BH3-only protein. Promote cell cycle
progression, reduce cell death and favor angiogenesis and
invasion. TSC1/2 complex inhibition and enhanced AKT
pathway. Enhanced MMP2 and MMP9. Inhibition of
caspases 3, 6, 7, and 8

Volinia et al., 2006; Gramantieri et al., 2007, 2008, 2009; Meng
et al., 2007; Fornari et al., 2008; Jiang et al., 2008; Li et al.,
2008, 2011; Wang et al., 2008; Wong et al., 2008; Chen, 2009;
Garofalo et al., 2009; Huang et al., 2009; Liu et al., 2009;
Pogribny et al., 2009; Pineau et al., 2010; Wang et al., 2010; Kerr
et al., 2011; Karakatsanis et al., 2013

miR-222 Enhanced AKT pathway. Enhanced MMP2 and MMP9.
Inhibition of caspases 3, 6, 7, and 8. Migration, invasion

Gramantieri et al., 2007; Meng et al., 2007; Ladeiro et al., 2008;
Li et al., 2008; Wang et al., 2008, 2010; Wong et al., 2008, 2010;
Garofalo et al., 2009; Huang et al., 2009; Liu et al., 2009;
Pogribny et al., 2009; Su et al., 2009; Pineau et al., 2010;
Karakatsanis et al., 2013

miR-223 Proliferation. Inhibit cell viability. Inverse relationship with
its downstream target Stathmin 1. Microtubules
stabilization (G1-M transition)

Gramantieri et al., 2007, 2008; Jiang et al., 2008; Wong et al.,
2008; Liu et al., 2009; Xu et al., 2011; Karakatsanis et al., 2013

(Continued)
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Table 1 | Continued

miR- Effects over References

miR-224 Promotes proliferation and inhibits apoptosis inhibitor-5
(API-5) transcript expression

Murakami et al., 2006; Meng et al., 2007; Gramantieri et al.,
2008; Ladeiro et al., 2008; Li et al., 2008; Wang et al., 2008;
Chen, 2009; Huang et al., 2009; Liu et al., 2009; Su et al., 2009;
Pineau et al., 2010; Wong et al., 2010

miR-296-5p It is still unknown if contribute to HCC development and
tumor progression

Borel et al., 2012b; Katayama et al., 2012; Vaira et al., 2012; Wei
et al., 2013b

miR-338/-3p Associated with clinical HCC aggressiveness. Stimulation of
HCC proliferation

Budhu et al., 2008; Gramantieri et al., 2008; Huang et al., 2009,
2011

miR-373 Invasion and metastasis Meng et al., 2007; Bartels and Tsongalis, 2009; Wu et al., 2011

miR-374 Development Wang et al., 2008; Wong et al., 2008, 2010; Koh et al., 2013

miR-375 Stimulation of HCC proliferation Liu et al., 2010; He et al., 2012

miR-376a Proliferation and apoptosis Meng et al., 2007; Zheng et al., 2012b

miR-423 Enhanced CDK2 activity Lin et al., 2011

miR-491-5p Inhibition of TNF-α-related apoptosis Yoon et al., 2010

miR-500 Elevated in HCC, returned to physiologic level after surgical
intervention

Yamamoto et al., 2009

miR-637 Active STAT3 Zhang et al., 2011

let-7a/a-1/a-
2/b/c/d/e/f/f-2/g

Development. Enhanced HCC proliferation, colony
formation, and cell migration

Gramantieri et al., 2007, 2008; Budhu et al., 2008; Li et al.,
2008; Wong et al., 2008; Huang et al., 2009; Liu et al., 2009; Ji
et al., 2010; Pineau et al., 2010; Kerr et al., 2011; Lan et al., 2011;
Sukata et al., 2011; Zhou et al., 2012

Potential biomarkers of aflatoxin exposure.

fibronectin type III domain containing 3B (FNDC3B) expression
(Zhang et al., 2009).

The level of miR-338 expression can be associated with clinical
aggressiveness of HCC (Huang et al., 2009). miR-23b can recog-
nize target sites in the 3-UTR of uPA and of c-met mRNAs and
translationally repress the expression of uPA and c-met decreas-
ing migration and proliferation abilities in HCC cells (Salvi et al.,
2009).

MiR-126 down-regulation has been suggested to be directly
linked to alcohol-induced hepatocarcinogenesis (Morgan et al.,
2004). Microarray profiling studies showed reduction in miRNAs
expression specific of HCV and HBV-associated cases: down-
regulation of miR-190, miR-134, and miR-151 occurs in HCV
cases, and of miR-23a, miR-142-5p, miR-34c, in HBV cases (Ura
et al., 2009). MiR-96 was reported to be distinctively upregulated
in HBV-associated HCC (Ladeiro et al., 2008), whereas miR-193b
upregulation has been found upon transfection of HCV genome
(Braconi et al., 2010). As quoted above, up-regulation of miR-
NAs, including miR-17-92 cluster, miR-106a, and miR-34, occurs
during tamoxifen-induced hepatocarcinogenesis in female rats
(Pogribny et al., 2007), also long-term-administration of 2-AAF
resulted in disruption of regulatory miR-34a-p53 feed-back loop
(Pogribny et al., 2009). In mice administered a choline-deficient
and amino acid-defined diet, in which steatohepatitis precedes
HCC development, microarray analysis identified that miR-155
was consistently up-regulated (Wang et al., 2009b).

Ross et al. (2010) analyzed the miRNA expression levels in
control and conazole-treated mice. Conazol exposure induced
many more changes in miRNA expression. All but one of the
altered miRNAs were downregulated compared to controls. The
authors suggest that this pattern of the altered miRNA expression

represents a signature for tumorigenic conazole exposure in
mouse liver.

This newly emerging area of research should unravel novel
biomarkers of diagnostic as well as prognostic value in HCC.

microRNA AND AFLATOXIN B1
Exposure to environmental carcinogens may affect miRNAs
expression in liver cells. While this concept is largely acceptable
in principle, the specific miRNAs that are deregulated by various
toxic and/or carcinogenic agents are yet to be fully documented.
What we know at best today is the end-point of the process: the
miRNAs whose expression is altered in HCCs (Table 1). However,
results from some reports suggest that changes in expression of
miRNAs may occur early in the process (Jiang et al., 2008), and
these changes may be related to specific etiological factors, such
as AFB1. These still preliminary evidences suggest the possibility
of using miRNAs as early markers for aflatoxins exposure.

Exposure to natural or chemical environmental agents con-
tributes to HCC development (Wild, 2009). In this context,
uncovering relationships between exposure to environmental car-
cinogens and expression of miRNAs may reveal practical and
sensitive biomarkers of toxic exposures and/or carcinogenicity
testing (Wang et al., 2009a). A few reports addressed this hypoth-
esis and revealed the existence of differential miRNAs expression
patterns in HCCs in accordance with specific risk factors suggest-
ing that exposure to specific risk factors could be responsible for
the appearance of characteristic pathogenetic miRNA signatures
(Elamin et al., 2011).

Although the precise roles of miRNA in the response to xeno-
biotics, drugs and chemical toxicants, remain to be established,
there is little doubt that miRNAs are important in the cellular

Frontiers in Microbiology | Food Microbiology March 2014 | Volume 5 | Article 102 | 6

http://www.frontiersin.org/Food_Microbiology
http://www.frontiersin.org/Food_Microbiology
http://www.frontiersin.org/Food_Microbiology/archive


Valencia-Quintana et al. microRNAs, markers of aflatoxin exposure

and in vivo responses to xenobiotics (Taylor and Gant, 2008). At
this time, no specific studies on the effect of AFB1 on miRNA
expression have been reported.

The field of miRNA and toxicology, particularly as it per-
tains to AFB1 toxicological outcome, is still in its beginnings.
Nonetheless, there seems to be an increasing interest among toxi-
cologists trying to understand the contribution of miRNA in reg-
ulating various toxicological outcomes through regulation of gene
expression. A number of questions need to be addressed, such
as a global role of miRNAs in cellular toxicity and disease; how
miRNA biogenesis and expression affect susceptibility/resistance
to xenobiotic-induced toxicity or disease (Taylor and Gant, 2008);
whether cellular miRNAs form a regulatory networks and how
perturbations of such network can cause toxicity/disease includ-
ing developmental toxicity; how miRNAs may regulate transgen-
erational toxicological response through epigenetic regulation of
gene and genome expression; as well as whether homologous
miRNAs can be identified in an animal species based on known
miRNA species and their action in other species or even in plant
kingdom (Choudhuri, 2010).

Until today specific microRNAs as markers for aflatoxin-
exposure and their reliability are currently lacking. The following
are some potential candidates based on their elucidated mecha-
nisms of action.

The high expression of miR-122 in the liver appears to cor-
relate with a central role in various functions of normal and
diseased livers (Lewis and Jopling, 2010; Negrini et al., 2011).
It provides a very attractive target for aflatoxins. Rather surpris-
ingly, given the high intracellular levels and numerous targets of
miR-122, inactivation of the miRNA does not have any appar-
ent adverse effects on liver physiology. However, reduced miR-122
expression does show an association with hepatocellular carci-
noma, and further work will be necessary. In HCC, miR-122 is
downregulated in approximately 70% of cases, suggesting a tumor
suppressor function for this miRNA (Bai et al., 2009; Fornari
et al., 2009; Ma et al., 2010; Callegari et al., 2013). In addition, loss
of miR-122 expression in patients with liver cancer is correlated
with the presence of metastasis and a shorter time to recurrence
(Coulouarn et al., 2009; Fornari et al., 2009; Tsai et al., 2009). The
role of miR-122 in liver cancer has been demonstrated directly by
the generation of miR-122 knockout mice (Hsu et al., 2012; Tsai
et al., 2012) These mice were characterized by hepatic inflamma-
tion, fibrosis, and development of spontaneous tumors similar
to HCC, demonstrating the tumor-suppressor function of this
miRNA and its important role in liver metabolism and differenti-
ation of hepatocytes (Jensen et al., 2003; Gramantieri et al., 2007;
Lin et al., 2008; Bai et al., 2009; Fornari et al., 2009; Tsai et al.,
2009; Callegari et al., 2013).

On the other hand, up-regulation of miR-221, may be involved
from the very early stage of hepatocarcinogenesis, and expression
of the miRNA may progressively increase during malignant trans-
formation. Especially, high expression of miR-221 can be used to
predict local recurrence of HCC, and fold changes in miR-221 less
than 1 can be used as a predictive marker of metastasis after cura-
tive surgical resection in patients with HCC (Yoon et al., 2011).
Thus, among the miRNAs that are upregulated in HCC, there is
evidence in support of the tumor-promoting activity of miR-221.

It is upregulated in 70–80% of HCC samples (Fornari et al.,
2008). From a functional point of view, HCC cells overexpress-
ing miR-221 show increased growth, proliferation, migration,
and invasion capability (Fornari et al., 2008; Medina et al., 2008;
Garofalo et al., 2009; Gramantieri et al., 2009; Pineau et al., 2010;
Callegari et al., 2012). Additionally, high level of miR-221 posi-
tively correlated with cirrhosis, tumor size and tumor stage, and
negatively correlated with overall survival. miR-221 serum level
monitoring could be of clinical relevance as a potential diagnosis
tool and biomarker of treatment efficacy. It remains to be estab-
lished which miRNA can sensitively and reliably be correlated
with the presence of HCC at early stages of disease development
and prognosis (Borel et al., 2012a).

miR-429 expression increased AFB1-DNA adducts in the
SMMC-7721 Cells. To explore the effects of miR-429 expression
on AFB1-DNA formation, Huang et al. (2013), accomplished a
toxin experiment of AFB1 in the SMMC-7721 cells transfected
by different mimics. Results showed that group with overex-
pression of miR-429 had elevated levels of AFB1-DNA adducts
compared with control group. MiR-429 is classified as a mem-
ber of miR-200 family and may play an important role in tumor
prognosis. Overexpression of miR-429 induces cell proliferation
and inhibits cell apoptosis. On the contrary, the suppression of
miR-429 expression hindered cell proliferation and promoted
cell apoptosis. These data suggest that this microRNA plays an
important role in liver tumorigenesis, and functionally acts as an
oncogene in HCC. Increasing evidence has shown that the levels
of AFB1-DNA adducts correlate with HCC risk and prognosis,
whereas the formation process of AFB1-DNA adducts can be
modified by some factors such as detoxifying enzymes and DNA
repair enzymes (Long et al., 2006, 2011; Xia et al., 2013). Is pos-
sibly that miR-429 can target some detoxification enzyme genes
and/or DNA repair genes and reduce their detoxification capacity
or DNA repair capacity and subsequently increase DNA damage
and promote AFB1-DNA adducts formation. These results pro-
vided new insights into the mechanism of HCC induced by AFB1
(Huang et al., 2013).

The maintenance of genomic integrity through efficient DNA
repair is essential for propagation of cellular life (Natarajan and
Palitti, 2008). Nucleotide excision repair (NER) is one of the
most versatile DNA repair system for elimination of bulky DNA
adducts caused by environmental agents (Nouspikel, 2009) as
AFB1 and other carcinogens. A possibility is that AFB1 could
interfere with cellular NER through the regulation of microR-
NAs. Several miRNAs involved in DNA repair have been identified
(Crosby et al., 2009; Yan et al., 2010; Hu and Gatti, 2011). A recent
study showed that miR-192 directly targets a NER-associated pro-
tein (Georges et al., 2008). A bioinformatic analysis of miRNAs
which potentially played a role in NER, show that miR-192, was
the most differentially upregulated miRNA. The expression of
ERCC3 and ERCC4 were reduced when miR-192 was overex-
pressed. Also has been observed that the relative repair capacity
of damage by HepG2 and HeLa cells was reduced (Xie et al.,
2011). Since of AFB1 is an important risk factor of HCC and
AFB1-DNA adducts are known to be repaired by NER, dietary
AFB1 exposure could impaired NER mediated by miRNAs like
miR-192.
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miR-500 is an oncofetal miRNA, which is highly expressed
in fetal liver, more than in adult normal liver, and aberrantly
expressed in HCC. This miRNA was associated with liver mat-
uration in a mouse model of liver development. Levels tended
to be higher in HCC lines and tumor samples when compared
with matched normal tissue. Importantly, significant difference
in miR-500 expression was found between normal liver and liver
cirrhosis samples, suggesting that miR-500 expression was upreg-
ulated during cirrhosis development. An increased amount of
miR-500 was found in the sera of 3 out of 10 HCC patients, which
means that liver cancer-specific miRNA such as miR-500 is cir-
culating in the peripheral blood and can be a novel diagnostic
marker. These results show that the miR-500 abundance profile
in serum of the HCC patients might reflect physiological and/or
pathological conditions. However, although results are promising
for miRNA-based HCC screening, further validation is suggested
(Yamamoto et al., 2009).

miR-148, another candidate. There are also reports suggest-
ing that drug-metabolizing enzymes such as CYP family genes
are targeted by certain miRNAs. The expression of drug- and
xenobiotic-metabolizing enzymes and nuclear receptors and their
regulation by miRNA could be important factors for the out-
comes of toxicity (Yokoi and Nakajima, 2011). Members of
the CYP family are the most important enzymes catalyzing
the metabolism of xenobiotics including drugs, environmen-
tal chemicals, and carcinogens. The different profiles of the
expression of P450 isoenzymes determine the amount of reac-
tive intermediates formed and the resulting toxic response.
P450s are also known to bioactivate many procarcinogens to
their ultimate carcinogens as in the case of AFB1. Recently,
some P450s and nuclear receptors have been found to be
post-transcriptionally regulated by miRNAs. Aflatoxin B1 and
G1 are known to be oxidized efficiently to genotoxic metabo-
lite(s) by CYP3A (Shimada et al., 1989; Forrester et al., 1990),
epoxidation of AFB1 is catalyzed by CYP1A2 and CYP3A4 in
humans (Gallagher et al., 1994; Ueng et al., 1995). The role of
miRNA in the regulation of the expression of CYP3A4 has been
reported, Takagi et al. (2008), found that miR-148 modulated
inducible and/or constitutive levels of CYP3A4 in human liver
cancer.

miRNAs are important regulators for CYP3A. Among these
differentially regulated miRNAs, miR-155 appears to be the most
prominent regulator as it was significantly associated with lower
hepatic CYP3A activity (Vuppalanchi et al., 2013). CYP3A4 is the
most abundant hepatic and intestinal CYP enzyme in humans,
contributing to the metabolism of various drugs (Gonzalez and
Yu, 2006), as AFB1. Pan et al. (2009) suggest that interven-
tion of miRNA pathways may modify CYP3A4 expression and
alter CYP3A4-catalyzed drug activation. Of particular note, miR-
148a has been shown to control post-transcriptional regulation of
PXR and, consequently, affect the expression of CYP3A4 (Takagi
et al., 2008). Another study suggests that miR-27a and miR-27b
may target RXR and regulated of CYP3A4 transcriptional expres-
sion (Ji et al., 2009b). The results indicate that intervention of
miRNA pathways can be translated into an altered sensitivity of
cells to xenobiotics. These findings may provide increased under-
standing of the complex regulation of CYP3A4 expression, as

well as determine the role of miRNAs in drug metabolism and
disposition (Pan et al., 2009).

Aflatoxin B1 (AFB1) is carcinogenic due its potential in induc-
ing the oxidative stress and distortion of the most antioxidant
enzymes (Abdel-Wahhab et al., 2007; El-Agamy, 2010; Alm-
Eldeen et al., 2013). Recently, the role of miRNAs in oxidative
stress-mediated etiology is emerging. Dong et al. (2013) found
that miR-214 directly bound to 3′-UTR of the GSR and POR
genes, and repressed their endogenous expressions and activities.
These findings suggested miR-214 mediating down-regulation of
glutathione reductase and CYP oxidoreductase genes might play
an important role in oxidative stress in live cells. Wang et al. (2008,
2013) reported that miR-214 is one of the most significantly
downregulated miRNAs in HCC patients. Extensive research has
suggested that continued oxidative stress is a common pathologic
pathway for most chronic diseases including cancer, and liver
diseases. Therefore, Dong et al. (2013) postulated that miR-214
could be a key post-transcriptional regulator in oxidative stress-
mediated human diseases. This microRNA will be also an impor-
tant molecule to study in oxidative stress induced by AFB1 in liver.

Future validation for all of these miRNAs will be needed to
assess their prognostic significance. It is notable that only a few
miRNA signatures could potentially be used for diagnosis and
prognosis, and even for these there is still a long way to go before
they can be used in clinics. To achieve this goal, the miRNA
signatures need to be further validated with high accuracy in
prospective studies (Ji and Wang, 2009).

FUTURE PERSPECTIVES IN TOXICOLOGICAL RESEARCH
There is a need for novel markers that would combine the less
invasiveness of a blood test and serve as a reliable early detection
method. miRNAs definitely have this potential because not only
they can be detected in plasma, but their sensitivity and stabil-
ity are suitable for a clinical setting. Depending on the method,
as little as one copy can be detected. The discovery of circulat-
ing miRNAs offers interesting clinical perspectives but this field
of research is quite recent and more work has to be done.

Recently, measurement of circulating miRNAs has shown
promise in identification of new biomarkers of liver injury.
Further studies are needed to evaluate the sensitivity and speci-
ficity as well as validate the omics biomarkers of hepatotoxicity-
xenobiotic exposure related.

It is difficult to establish the precise cause-effect relation-
ships among environmental chemicals, miRNA alterations, and
diseases. Future studies will need to demonstrate the contri-
bution of environment-miRNA interaction to environmental
human disease. The rapidly growing evidence linking miRNAs
and environmental chemical, coupled with the unique regula-
tory role of miRNAs in gene expression, makes miRNAs potential
biomarkers for elucidating the mechanisms and developing more
effective prevention strategies for environmental diseases (Hou
et al., 2011).

Currently, over five billion people worldwide experience
uncontrolled exposure to aflatoxin (Strosnider et al., 2006).
What remains unknown is how many liver cancer cases can be
attributed to this aflatoxin exposure worldwide. Recently Liu and
Wu (2010) have developed a risk assessment for the contribution
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of aflatoxin to the global burden of HCC. Of the 550,000–
600,000 new HCC cases worldwide per year, they estimate about
25,200–155,000 (4.6–28.2%) may be attributable to aflatoxin
exposure alone. The broad range in the estimate reflects limita-
tions in determining levels of aflatoxin exposures, uncertainties
in the nature of the dose-response curve, uncertainties in the
mode of interaction between aflatoxins and viruses, and incom-
plete data on the prevalence of HBV in different regions of the
world. Data driven estimates of the noncarcinogenic health effects
of aflatoxins in humans have not been undertaken (Kensler et al.,
2011).

The understanding of miRNA biology has advanced greatly in
recent years, and the continuous technological advances in accu-
rate miRNA detection, prospect a very promising role for miRNAs
as novel biomarkers of environmental chemical exposure-related
diseases Identifying chemical-specific miRNAs will not only help
our understanding of environmental disease, but may open the
way to novel biomonitoring and preventive strategies. Therefore,
it is critically important to be able to identify and validate miR-
NAs that can be induced by specific environmental chemicals and
regulate gene expression (Hou et al., 2011).

Understanding the miRNAs roles in toxicological processes
requires overall a toxicogenomic approach. On the other hand,
miRNA profiling data looks promising as a tool to predict the
potential toxicity of unknown compounds. Thus, miRNA signa-
tures of a known toxic compound may include miRNAs related to
cellular response to stress, xenobiotic metabolism, and/or DNA
repair. These signatures derived from supervised classification
algorithms may effectively identify potential toxic compounds.
Several examples of miRNAs active in cellular stress as well as
in interactions of a number of toxicants. miRNA profiling may
lead to the discovery of miRNA exposure biomarkers, which
might work as sentinel molecules to better predict both effi-
cacy and safety. The miRNA field in toxicology is still in its
early stages. However, progress is occurring at a fast pace and
the numbers of publications featuring miRNAs are increasing.
As the roles of miRNAs in cellular response to xenobiotic stress
and the development of physiological changes and other tox-
icological phenomenon such susceptibility and resistance are
gradually uncovered, the coming years promise to be full of excit-
ing avenues of miRNA research in toxicogenomics (Lema and
Cunningham, 2010).

Potential microRNAs that could serve as possible markers of
HCC by exposure to aflatoxins are miR-27a, miR-27b, miR-122,
miR-148, miR-155, miR-192, miR-214, miR-221, miR-429, and
miR-500. Future studies should include some of these microRNAs
and confirm their relationship with the induction of HCC due to
aflatoxin exposure.
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