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Abstract

Motivation: Mass spectrometry is a complex technique used for large-scale protein profiling with clinical and
pharmaceutical applications. While individual components in the system have been studied extensively, little work
has been done to integrate various modules and evaluate them from a systems point of view.

Results: In this work, we investigate this problem by putting together the different modules in a typical
proteomics work flow, in order to capture and analyze key factors that impact the number of identified peptides
and quantified proteins, protein quantification error, differential expression results, and classification performance.
The proposed proteomics pipeline model can be used to optimize the work flow as well as to pinpoint critical
bottlenecks worth investing time and resources into for improving performance. Using the model-based approach
proposed here, one can study systematically the critical problem of proteomic biomarker discovery, by means of

simulation using ground-truthed synthetic MS data.

Background

Mass spectrometry-based proteomics

Mass spectrometry (MS) is widely used for large-scale
protein profiling with applications in biomarker discovery
[1], signaling pathway monitoring [2,3], drug develop-
ment, and disease classification [4]. In clinical applica-
tions of mass spectrometry, the number of samples
available is usually in the range of tens to a few hundred
(small sample size). The samples are analyzed by an MS
instrument and transformed into a series of mass spectra
containing hundreds of thousands of intensity measure-
ments with signal generated by thousands of proteins/
peptides (large feature dimension). This small-sample,
high-dimensionality problem requires the experiment
and analysis to be carefully designed and validated in
order to arrive at statistically meaningful results.
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Motivation

The MS analysis pipeline consists of many steps, including
sample preparation, protein digestion, ionization, peptide
detection, protein quantification, and so on. The pipeline
can be viewed as a noisy channel, where each processing
step introduces some loss or distortion to the underlying
signal and the end results are affected by the combined
effects of all upstream steps. While individual components
of the MS pipeline have been studied at length, little work
has been done to integrate the various modules, evaluate
them in a systematic way, and focus on the impact of the
various steps on the end results of differential analysis and
sample classification. In real experiments, it is not easy to
decouple the compound parameter effects and determine
the marginal influence of various modules on the end
results, due to variations and the complicated nature of
the work flow. Moreover, owing to contaminants and
unknown or incomplete ground-truth, it is hard to mean-
ingfully evaluate and compare results across different
experiments. However, by employing a model-based
approach, we may better understand the characteristics of
the MS data, the contributions of the individual modules,
and the performance of the full pipeline.
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A key goal of MS-based proteomics is to discover pro-
tein biomarkers, which can be used to improve diagnosis,
guide targeted therapy, and monitor therapeutic response
across a wide range of diseases [1]. But to date, the rate
of discovery of successful biomarkers is still unsatisfac-
tory. This is due to challenges in the candidate discovery
and biomarker validation phases, such as the high
dynamic range of proteins [5,6], the tandem MS under-
sampling problem [6], peptide redundancy and signal
interference in the mass-to-charge domain [7], and inac-
curate quantification of proteins [8,9]. Through the pro-
posed model-based approach and by means of simulation
using ground-truthed synthetic data, the problem of bio-
marker discovery can be studied and evaluated.

Results

In this work, we propose to model the Liquid Chromato-
graphy (LC) coupled MS system by identifying critical fac-
tors that influence system performance. Different modules
are identified and integrated into the framework (see
Figure 1). The input of the pipeline can be any standard
FASTA file containing proteins of interest. Here, we focus
on analyzing protein drug targets downloaded from Drug-
Bank [10], since LC-MS is an essential technology used to
monitor these target proteins for drug development. We
would like to point out that we are not trying to develop a
detailed physical model for mass spectrometry as is, for
instance, attempted in [11], which models the mass spec-
tra generated by MALDI-TOF instruments. Rather, our
purpose is to simulate the data flow realistically, but with-
out descending into the physical parameters of the instru-
ment itself. In addition, we do not focus only on MS data
modeling, as done in [12], but we also address subsequent
processes, including low level data analysis (e.g. peptide
identification and quantification), and high level analysis
(e.g. differential analysis and sample classification).

Application of the proposed model

The proposed LC-MS proteomic pipeline model can be
used to determine the working range of important para-
meters and may shed light on experimental design. Also, if
knowledge of sample complexity, instrument configura-
tion, system variation and detection accuracy is known
beforehand, then by tuning corresponding parameters to
their estimated values, the pipeline can be used to predict
results on protein identification rates, protein differential
analysis, quantification accuracies and classification perfor-
mance. These results can be used to assess the efficacy of
biomarker discovery in MS data.

Methods

Protein mixture model

In a typical label-free MS experiment, two sample
classes (e.g. control vs. treatment) are considered.
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Figure 1 The proposed MS-based proteomics workflow. The
proposed MS-based proteomics pipeline.

Assume each class has M samples and all samples share
up to N, possible protein species of a given proteome.
Protein concentration in the pooled control sample is
modeled by a Gamma distribution in accordance with
the observations in [13]:
m ~ Gamma(t,0), 1=1,2,.., Ny, (1)
where t = 2 and § = 1000 are the shape and scale
parameters. The concentration has a dynamic range of
approximately 4 orders of magnitude representing typi-
cal real-world scenarios. For the pooled treatment sam-
ple, expression levels of some proteins (e.g. biomarkers)
may differ from those in the control sample, which can

be captured by fold change:

a;, if protein [ is over-expressed
fi= al,' if protein [ is under-expressed 2)
1,  otherwise
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where the fold change parameter, a; > 1, is sampled
from a uniform distribution, as specified in the Results
section.

Sample variation of each protein is modeled by a Gaus-
sian distribution [14], with means 1, and 7, f; in the con-
trol and treatment sample classes, respectively.
Considering the fact that protein expression levels are
often correlated, the following multivariate Gaussian
(MVQ@) distribution is appropriate to model the interac-
tions among proteins and their concentrations. Let CZ.TO
denote the molar concentration of protein species [ in
sample j, then we have

jeclass 0
jedass1

o {MVG([m, 127 s NNy |0 2, (3)

y MVG([m1f1, n2f2s v N SN | ),

where the covariance matrix X has a block-diagonal
structure-proteins within the same block (e.g. proteins
belonging to the same pathway) are correlated with cor-
relation coefficient p and proteins of different blocks are
uncorrelated [15]:

2
X = [al] ]NmeNpm’
. )
oy = ougjhj,

where oy, is proportional to the control protein mean
1, by a constant factor ¢y (i.e., the coefficient of varia-

tion), and the correlation coefficient matrix is

R, 0 0
0 R, 0
R= [nj]NmeNpm = : : .. : !

where R, is a D x D matrix with 1 on the diagonal
and p elsewhere. The correlation p and block size D are
tunable parameters, with values specified in the Results
section.

Peptide mixture model

Before being analyzed by the MS instrument, proteins are
usually digested into peptides. In the proposed simulation
pipeline, in-silico tryptic digestion is performed, and
retention time of peptide products is predicted using the
PNNL Protein Digestion Simulator [16]. Different protein
species may share the same peptide sequence. Thus, the
molar concentration of peptide species i in sample j, CZEP,
is given by the following equation:

ep 0 .
P =" i=1,2,. Ny,

ke

] = 1,2,...,2M, (5)

where the set Q; comprises all proteins sharing the pep-
tide species i, and N,, is the number of peptide species.
The concentration CZ-Ep is represented by ion abundance in
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MS data. Thus, the expected abundance readout y;; of
peptide species i in sample j can be modeled as
i = ¢ ik, (6)
where e¢; is a peptide efficiency factor similar to the one
used in [17], and & is the MS instrument response factor
converting the original analyte concentration to the output
ion current signal. The parameter e; is affected by many
factors: first, various peptides differ in hydrophobicity,
which mainly determines their efficiencies in passing
through the liquid chromatography column. Then, upon
entering the ionization chamber, peptides demonstrate
great disparities in ionization efficiency, which is affected
by sample complexity, peptide concentration and charac-
teristics such as polarity of side chains, molecular bulki-
ness, and so on [18]. In addition, some amino acids at the
N-terminal end of peptides have destabilizing effects that
can reduce the efficiency factor. Although there are meth-
ods attempting to predict e; [17], they often neglect the
fact that peptide efficiency and expected peptide ion abun-
dance depend not only on the underlying peptide, but also
on the combinational effects of other peptides present
(e.g., LC elution competition, ion competition and sup-
pression). In reality, it is unfeasible to predict e; for all pos-
sible peptide combinations. Thus, we model e; from a
uniform distribution and evaluate a wide range of interval
bounds in simulations — we are not really interested in the
precise value of e;, but rather we aim to examine how the
dispersion of e; affects subsequent analysis. As for the
parameter &, it can be estimated through calibration and
is related to the efficiency by which molecules are con-
verted into gas-phase ions, the efficiency by which ions are
transferred through various stages of the mass spectro-
meter, and how well experiment conditions are optimized.
For a typical MS instrument, its response is linear for
three to five orders of magnitude [18]. At high analyte
concentration, instrument response plateaus because of
detector saturation, restricted amount of excess charge, or
limited space for ionization, as depicted in Figure 2. To
account for instrument saturation, an upper limit, sat, is
set for the expected abundance readout: ;; = min(u;;, sat).

Peptide detection and identification

Peptide abundance

The actual abundance v;; of peptide species i in sample j is
modeled as the expected abundance plus Gaussian noise:

Vij = [ij + Eij, (7)
where
& ~ Gaussian(0,apf + Buy),  i=1,2,..Npep, j=1,2,...2M.  (8)

The sources of noise include variation in experimental
conditions, instrument variance, thermal noise and
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Figure 2 The MS calibration curve. MS ion signal as a function of
analyte concentration in solution. The slope of the linear portion of
the curve is the instrument response factor (i.e. instrument
sensitivity). The curve departs from linear at high analyte
concentration. A wider linear dynamic range is desired for
quantitative analysis.

measurement error. It is reported that the noise variance
follows a quadratic dependence on the expected abun-
dance [19], which is reflected by Eq. (8). The two para-
meters in the noise model, o and f3, determine the noise
severity. Their value can be estimated using replication
analysis, as explained in [19].

In electrospray ionization, peptides can be multiply
charged. But we do not model the charge distribution,
considering the following facts: (1) Peptide charge distri-
bution and the maximum charge states are complicated by
many factors such as sample composition, analyte concen-
tration and peptide conformation [20,21]. The distribution
is hard to predict and has not been well characterized. (2)
In order to get the abundance of a peptide, and further, its
parent protein, the abundance of peptide charge variants
will eventually be summed up. We omit the intermediate
process since in reality many factors involved are not well
understood.

Peptide detection

Peptide detection from mass spectra is not an easy
task — the observed peptide signals are corrupted by
noise and may also be affected by signals of other pep-
tides, and thus may deviate significantly from the
expected pattern. The performance of a peptide detec-
tion algorithm on a specific MS instrument and the
underlying signal-to-noise ratios (SNRs) ultimately affect
the number of detected true positives, i.e., the true posi-
tive rate (TPR), as shown in [22-25]. The SNR is defined
as the ratio of signal power to noise power, i.e.,
SNR £ E[v]?/Var(v) = 1/(« + 5), see Egs. (7)-(8). It can
be seen that SNR increases as signal strength u
increases. The relationship between TPR and SNR can
be approximated by a polynomial function, for algo-
rithms such as those in [22,23,25]:
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TPR =k x SNR? + b, )

where b represents the worst TPR when the SNR
approaches zero.

Besides SNR, signal interference and mass resolving
power may also have considerable impact on TPR
[12,23]. Over the years, much effort has been made
towards enhancing instrument resolution, leading to
improved mass accuracy, better separated MS peaks,
and less convoluted peptide signals. But for complex
samples, substantial overlapping of peptide signals is still
frequently encountered, due to peptide isoforms or co-
elution. It has been reported that if two peptides have
overlapping signal regions, some detection algorithms
may fail to report one of them even when the underly-
ing SNRs are high, while other algorithms are shown to
be superior in the detection of overlapping peptides
[22]. To account for signal interference, we modify
Eq. (9) by introducing an overlapping factor o, so that
the TPR of peptide species i in sample j becomes

TPR; = (k x SNR +b) x 05, 05 < 1. (10)

For algorithms such as NITPICK [24], BPDA [22] and
BPDA2d [23], which are effective in detecting overlap-
ping peptides, the overlapping factor o;; can be approxi-
mated by 1, whereas for algorithms that are ineffective
in detecting convoluted peptides, o0;; is assumed to be
inversely proportional to the number of overlapping
peptides, which is a function of the sample composition
and the mass resolution. In our simulation, two peptide
species i; and i, are said to overlap if their mass and
retention time (RT) are close, in the sense that

[RTy — RT,|

|mass, — mass | 1
< < 0.005.

(11)

mass, mass resolution #scans

Peptide identification

The output of the MS1-based peptide detection algo-
rithm is a list of detected peptides annotated by monoi-
sotopic mass, retention time, abundance, and so on. To
obtain peptide sequence information, i.e. peptide identi-
fication, which can be used to infer the parent protein
from which the peptide was digested, database searching
is required. To do so, the acquired MS/MS (MS2) spec-
tra are searched against a protein database containing
theoretical MS2 spectra generated from in-silico digested
peptide sequences by popular software such as
SEQUEST [26] and Mascot [27].

Several machine learning methods have been proposed
to predict the probability (i.e., identifiability) of a peptide
being identified through MS2 database searching [14,28].
These methods try to extract the common trends resid-
ing in peptide identifiability that can be explained by
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peptide sequence-specific properties. Their successful
application may suggest that the peptide sequence largely
affects the chance of a peptide getting selected for MS2
analysis, whether the peptide can be sufficiently fragmen-
ted, and the quality of its fragmentation spectra. In our
simulation, the identifiability p; of the true peptide spe-
cies i is predicted by the APEX software [14], trained on
the human serum proteome [29], and whether peptide
species i in sample j is identified or not through database
searching is determined by the outcome of a Bernoulli
trial with success rate p;.

Linking of detection and identification results

For both MS1-based and MS2-based algorithms, sources
of error exist that give rise to false positives (FPs). For the
former, error sources include shot noise, abundance mea-
surement error, signal interference, and so on. For the lat-
ter, co-eluting precursor ions, spectra matching ambiguity,
or post-translational modifications may all lead to false
identifications. By confronting the results of the two
orthogonal algorithms (i.e., a feature is treated as a true
positive if it is reported by both algorithms), dubious fea-
tures reported by either algorithm can be filtered out.

High-level analysis
Peptide to protein abundance roll-up
As demonstrated in the previous sections, each step of
the MS analysis pipeline introduces a degree of loss or
distortion to the underlying true signal. Thus, “decoding”
protein abundance from observed peptide abundance
corrupted by noise is nontrivial. To reduce noise, three
levels of filtering are applied: (1) only unique peptides
that exist only in one protein of the analyzed proteome
are kept; (2) peptides with large missing value rates (lar-
ger than 0.7) are filtered out, since low reproducibility
may be a red flag for false identifications; (3) among the
remaining peptides, those having sufficiently high corre-
lations (larger than 0.6) with other peptides digested
from the same protein are retained. The estimated abun-
dance of protein / in sample j is then obtained by aver-
aging the abundances of its children peptides that pass
the previous filters; if less than two peptides pass the fil-
ters, the estimated protein abundance is set to zero. The
estimated protein concentration is calculated by dividing
the estimated protein abundance by the instrument
response factor k.

Quantification accuracy can be assessed by the com-
monly adopted mean quantification error, defined by

Noro 244 1ot _ oty prot
L2l =&l
A =l)=
gerr = ,
2M Niro

where C’l;-mtand ﬁzmare the original and estimated con-
centrations of protein / in sample j, respectively.
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Differential expression analysis

Differential expression analysis is performed via a two-
sample t-test with equal sample size and variance. The t
statistic (or t score) is calculated as below:

1 0
a Imp —my|

1= ’
\/ Var] +Var)
M

where the superscripts identify the two classes, and m,
and Var; represent the estimated class mean and var-
iance of the abundance of protein /, respectively. The
standard 0.05 significance level is used to detect differ-
entially expressed markers.

Feature selection and classification

In the simulation, t-test feature selection is first per-
formed to reduce the data dimension, by selecting the
top 20 differentially expressed features. Then two classi-
fiers, namely K-nearest neighbor (KNN, K = 3) and linear
discriminant analysis (LDA) are trained using the
observed protein expression data. Classification perfor-
mance is validated by independent ground-truth (testing)
data sets (each with 1000 samples, generated from the
same data model), and the classification error is recorded.
In addition, the KNN and LDA classification error on the
original protein data (before entering the MS analysis
pipeline) is obtained using a similar approach. The latter
may serve as a benchmark to gauge how much loss in
classification performance the analysis pipeline has
introduced.

Results

To illustrate the application of the proposed pipeline
model, a FASTA file containing around 4000 drug targets
(human proteins) was compiled from DrugBank [10],
which serves as the underlying proteome to be studied. In
each run, 500 background proteins along with 20 marker
proteins are randomly selected from the proteome to
serve as the input of the pipeline. For each experimental
setting studied, the simulation is repeated 50 times. We
are interested in the effects of various factors on quantifi-
cation, differential analysis, and classification. The study
should be carefully designed to minimize parameter con-
founding effects. Thus, while examining the effects of one
parameter, we either fix the values of other parameters, or
try to eliminate their effects. Parameter configurations are
given in Table 1, unless otherwise mentioned.

Sample characteristics

Effect of peptide efficiency factor

Though the exact distribution of the peptide efficiency
factor e; is unknown, we evaluate a wide range of values
and try to find the common trend. It can be seen from
Figure 3(a) that as the lower bound of e; increases, the
quantification error decreases. This is expected since
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Table 1 Proteomics pipeline model summary

Parameters Default values

No. of classes 2

Sample size of each class M =50

Proteome Homo sapiens
No. of marker proteins 20
No. of non-markers 500
Protein block size D=2
Protein block correlation p=06
Fold change a; ~ Unif(15, 2)
Instrument response k=5
Instrument saturation effect sat = Inf
Noise level o =003 pB=36
Peptide efficiency factor e; ~ Unif(0.1, 1)

Peptide detection algorithm b=0k=.0016p=2

No. of MS2 replicates 1

more ions can be detected by the instrument and trans-
mission loss is reduced as efficiency increases. Figure 3
(b) suggests that the percentage of observed differen-
tially expressed proteins is positively correlated with e;:
this may be explained by the fact that as e; increases,
fewer missing values occur at the peptide level, and
more proteins can be quantified in more samples, as
can be seen in Figure 3(c), resulting in more markers
being detected by the differential expression test. Figure
3(d) shows that the additional detected markers help to
improve classification accuracy by decreasing the classi-
fication error.

Effect of protein abundance

The distribution of in-solution protein abundance can
affect various detection results [30]. While high-abundance
proteins are easily detectable, low-abundance proteins are
hard to detect since their signals are more likely to be bur-
ied in background noise. Hence, improving detection of
low-abundance proteins has become a central issue in pro-
teomic research.

To demonstrate the effect of protein abundance on the
detection of low-abundance marker proteins, we conduct
an experiment where all markers are exclusively designed
to have low abundance, distributed in the lower 25%
quantile of the Gamma distribution; see Eq. (1). Figure 4
depicts the corresponding plots to Figure 3(b) and 3(d) in
the case of the low-abundance markers. It can be
observed that the percentage of detected differentially
expressed markers and the classification results become
worse compared to the results in Figure 3(b) and 3(d).
On average, the number of detected markers drops by
33.3% and the classification error increases by 42.4%.
Similar trends are observed under other parameter set-
tings (data not shown).

These results indicate that it is essential to develop
methods to enhance the identification results of low

Page 6 of 15

abundance peptides which are often of more biological
interests. Relative to hardware, sample fractionation and
protein depletion through immunoaffinity-based
approaches [31] can be helpful. Relative to software,
there exist algorithms shown to be efficient for the
detection of low-abundance peptides, such as BPDA2d
[23].

Effect of sample size

Figure 5 shows the effect of sample size. The range of
values used is typical in proteomic experiments. It is
observed that as more samples become available, the dif-
ferential expression results and the classification accuracy
improve notably. For instance, when sample size increases
from 30 to 110, the number of detected markers increases
by 41% and the classification error decreases by 40%.

In Figure 5(b), the classification error of the (unob-
served) original protein sample, before passing through
the MS pipeline, is plotted side by side with that of the
observed protein data, after analysis by the MS pipeline.
The performance degradation caused by various noise
conditions throughout the pipeline is clearly visible.

Instrument characteristics

Effect of instrument response

The effect of instrument response factor x is displayed
in Figure 6. The experimental value of x spans seven
orders of magnitude. As « first increases (from 0.1 to
100), true signals get amplified and SNRs become better,
resulting in fewer missing values and false negatives at
both peptide and protein levels (Figure 6(a)), which in
turn render better quantification and differential expres-
sion results (Figures 6(b) and 6(c)). But when s > 100,
various performance indices level off. This illustrates
that beyond a certain point, merely boosting the instru-
ment response factor cannot help produce enhanced
results. Rather, the performance bottleneck is deter-
mined by other factors such as noise in the system and
efficiency of peptide detection algorithms.

Effect of saturation

In the previous experiment, the MS instrument is
assumed to be working in the linear range. But for com-
plex samples, for which analyte concentrations span
orders of magnitude, saturation effects need to be taken
into account (see Figure 2). The previous experiment is
repeated with the same settings, except that the satura-
tion upper limit sat is changed from infinity to 10% cor-
responding to a 10* linear dynamic range when x = 1.
Interestingly, the resulting plots shown in Figure 7 are no
longer monotone as observed in Figure 6. As the instru-
ment response « increases, the linear dynamic range
(LDR) actually shrinks given the saturation ceiling is
fixed (LDR can be approximated by sat/k). Therefore,
the percentage of peptides with saturated ion signals
increases, and fewer peptides can pass the correlation
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filter, adversely affecting protein detection, quantification,
and classification. To wit, when x >10, the protein miss-
ing value rate shoots up, fewer markers get detected, and
classification performance and protein quantification
results deteriorate.

The compound effects of instrument sensitivity and
saturation demonstrate that the effectiveness of MS in
quantitative analysis relies on achieving a wide linear
dynamic range with a high saturation ceiling and a
matching sensitivity. For example, in electrospray ioniza-
tion mass spectrometry, the linear range may be
extended by enhancing gas-phase analyte charging, facil-
itating droplet evaporation, or introducing ionization
competitors [32].

Effect of noise

Noise in the MS analysis pipeline and the performance of
peptide detection algorithms affect the number of pro-
teins that can be quantified. To study noise impact
directly, we eliminate the confounding effects of the pep-
tide detection algorithm by assuming perfect detection,
with TPR = 1 for SNR >0 and TPR = 0 for SNR = 0. It is
observed in Figure 8(a) that the peptide missing value
rate stays relatively flat except at the end points where
the accumulated effects of increasing noise levels are dis-
cernable: more of the true signal is obscured by noise
and more peptides have infinitesimal SNR, which prevent
their detection. The increasing trend in missing value
rate at the protein level is more apparent: the fact that
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less proteins can be quantified as the noise level increases
is not only due to fewer detectable peptides, but also
because fewer peptides can pass the correlation filter for
a protein to be quantified. Figures 8(b), (c) and 8(d) eluci-
date the adverse effects of noise on quantification accu-
racy, differential expression and classification results,
respectively.

Peptide detection and experimental design characteristics
Effect of MS1 peptide detection algorithm

Given the same experimental settings, the performance
of peptide detection algorithms may significantly affect
the number of detected true positives (TPs). Three
hypothetic detection algorithms with increasingly better

performance are considered, in terms of TPR vs. signal
strength curves; see Figure 9(a). It can be seen in Figure
9(b-e)) that the application of these detection algorithms
leads to increasingly better results in terms of missing
value rate, quantification accuracy, detectable markers,
and classification performance.

Effect of overlapping peptides and mass resolving power
To quantitatively evaluate the performance of MS1-
based peptide detection algorithms under various mass
resolutions and in the presence of overlapping peptides,
two categories of detection algorithms are compared:
the first characterizes those which can effectively detect
convoluted peptides, such as NITPICK [24], BPDA [22]
and BPDA2d [23], which are modeled by an overlapping
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factor o; = 1 in Eq. (10), and the second represents
those that are sensitive to mass resolution and ineffec-
tive in detecting overlapping peptides (e.g. algorithms

based on greedy template-matching), which are modeled
by letting o;; be inversely proportional to the number
of overlapping peptides with peptide i in sample j.
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For algorithms in the first category, robust performance
is expected for a range of mass resolutions (data not
shown). In contrast, for algorithms in the second cate-
gory, various performance indices generally become
worse as mass resolving power declines, since more pep-
tides cannot be resolved and are lost in detection (see
Figure 10). Summing up, the superiority of the first cate-
gory over the second will be more evident for complex
samples with more proteins and co-eluting analytes ana-
lyzed by a MS instrument with limited mass resolution.
Effect of MS2 replication

In tandem MS analysis, the precursor ions selected for
fragmentation have low reproducibility across runs, and

only a subset of peptides present in the sample can be
analyzed for each run; this problem is known variously
as MS2 random sampling and MS2 under-sampling
[33]. Hence, though laborious and costly, replicate MS2
measurements are frequently conducted for in-depth
proteomic profiling or for building an AMT database to
facilitate quantitative and high-throughput proteome
measurements [34].

The effect of MS2 replication on various performance
metrics is illustrated in Figure 11. It is observed that
even with a few replicate assays (as low as two or three),
peptide and protein identification rates are remarkably
boosted. As more replicates are made available, the
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Figure 11 Effect of MS2 replication. Effect of MS2 replication on (a) missing value rates, (b) quantification accuracy, (c) differential expression
results, and (d) classification errors. It can be seen that replicate analysis can significantly boost peptide and protein identification rates,
quantification and classification results even only a few replicates are made available.

protein identification rate levels off faster than the pep-
tide rate, which was also observed in [29], indicating
that newly identified peptides are mostly associated with
already identified proteins. This may be explained as a
bias towards relatively easily detectable proteins. Those
proteins that are hard to detect may be a result of
degradation, a spare amount of children peptides, inef-
fective ionization, and so on. Figures 11(a) and 11(b)
show that more proteins are detectable with improved
quantification accuracy as the number of replicates
increase. Comparing the use of three replicates against a
single assay, Figure 11(c) shows that the number of
detected differentially-expressed marker proteins nearly

doubles, while Figure 11(d) indicates that the LDA clas-
sification error enjoys a 67% decrease.

Summary

The median value of each performance index across all
previously studied cases with default sample size 100 is
given in Table 2. It can be seen that the protein quanti-
fication rate exceeds the peptide identification rate. This
may be explained by the one-to-many map from protein
to its digested peptides: a protein can be quantified if
more than one of its children peptides are identified and
can pass the aforementioned quality filter. In the pro-
teome studied, on average, one protein can be digested
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Table 2 Results summary

Performance indices Median values

Peptide identification rate 0.17
Protein quantification rate 0.54
Protein quantification error 0.67
Percentage of detected markers 52%
LDA error on the original protein data 0.01
KNN error on the original protein data 0.03
LDA error on the observed protein data 0.18
KNN error on the observed protein data 0.24

into around 20 peptides, and if we simply assume that
each child peptide can be identified with a probability
0.17 (the calculated average peptide identification rate),
independent of other peptides, and ignore the additional
effects of the quality filter, then the protein quantifica-
tion probability (an upper bound) can be approximated
by 1-(1-0.17)* -20 x 0.17 x (1 - 0.17)* = 0.88. The
typical percentage of detected differentially-expressed
protein markers is around 50% and the median value of
the LDA classification error on the observed protein data
is 0.18, which is 17 times larger than that of the original
protein data — this exemplifies the signal corruption and
error propagation introduced by the MS analysis pipeline,
as well as the intricacy of biomarker discovery and their
applications in disease diagnosis due to limited sample
size, signal interference, ubiquitous noise, measurement
errors, and so on.

Conclusion
We have identified and analyzed different modules in a
typical MS based proteomic work flow, resulting in a pro-
teomic pipeline model that captures key factors in system
performance. Through simulation based on ground-
truthed synthetic data, we studied the effect of the various
model parameters on the number of identified peptides
and quantified proteins, quantification errors, detectable
differentially expressed protein markers, and classification
performance.

The main observations that were gleaned from the
results of this study are as follows.

« Regarding sample characteristics, we observed a
positive correlation between peptide efficiency and
performance. The intricacy in detecting low-abun-
dance peptides was demonstrated, thereby elucidat-
ing the advantage of sample fractionation and
protein depletion through immunoaffinity-based
approaches. Moreover, we showed that results could
be improved by increasing sample size.

+ As for instrument characteristics, the compound
effects of instrument response and saturation were
first examined and it was shown that the effectiveness
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of MS in quantitative analysis relies on achieving a
wide linear dynamic range with a high saturation ceil-
ing and matching instrument sensitivity. Enhancing
gas-phase analyte charging, facilitating droplet eva-
poration, or introducing ionization competitors can
be beneficial in extending the linear dynamic range.
The adverse effects of noise was illustrated, highlight-
ing the need in strictly following experiment proto-
cols to minimize variance and measurement error.

+ Peptide detection and experimental design character-
istics were also studied. It was shown that improving
peptide detection algorithms in the direction of enhan-
cing true positive rate for a wide range of SNR (espe-
cially for low SNR) and tackling convoluted peptide
signals could be invaluable, especially for complex
samples and for MS instruments with limited mass
resolution. It was also observed that the use of only a
small number of replicate tandem MS assays could
effectively reduce the MS2 under-sampling problem
and improve performance.

To enable the performance analysis of such a complex
system, many reasonable assumptions are made and the
pipeline is simplified and reduced to a few key characteris-
tics; nevertheless corruption of the true signal caused by
the pipeline is evident and readily seen. This is expected to
become worse as more steps are considered.

Though we used two sample types to illustrate the use
of the LC-MS based pipeline model, the extension to
multiple sample types is straightforward. In addition, the
same methodology can be applied to study other MS plat-
forms such as matrix-assisted laser desorption/ionization
(MALDI). In addition, a similar strategy applies to labeled
experiments.

The proposed pipeline model can be used to optimize
the work flow and to pinpoint critical steps to which it
is worth allocating resources in order to improve bio-
marker detection performance, thereby giving it wide
application potential in the current drive to enable pro-
teomic biomarker discovery from MS data.
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