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Microscopic detection of Cryptosporidium parvum oocysts is time-consuming, requires trained analysts, and
is frequently subject to significant human errors. Artificial neural networks (ANN) were developed to help
identify immunofluorescently labeled C. parvum oocysts. A total of 525 digitized images of immunofluorescently
labeled oocysts, fluorescent microspheres, and other miscellaneous nonoocyst images were employed in the
training of the ANN. The images were cropped to a 36- by 36-pixel image, and the cropped images were placed
into two categories, oocyst and nonoocyst images. The images were converted to grayscale and processed into
a histogram of gray color pixel intensity. Commercially available software was used to develop and train the
ANN. The networks were optimized by varying the number of training images, number of hidden neurons, and
a combination of these two parameters. The network performance was then evaluated using a set of 362 unique
testing images which the network had never “seen” before. Under optimized conditions, the correct identifi-
cation of authentic oocyst images ranged from 81 to 97%, and the correct identification of nonoocyst images
ranged from 78 to 82%, depending on the type of fluorescent antibody that was employed. The results indicate
that the ANN developed were able to generalize the training images and subsequently discern previously
unseen oocyst images efficiently and reproducibly. Thus, ANN can be used to reduce human errors associated
with the microscopic detection of Cryptosporidium oocysts.

Cryptosporidium parvum is a coccidian protozoan that is an
opportunistic pathogen in humans. The disease symptoms of
cryptosporidosis within healthy hosts vary. Tzipori (15) de-
scribed in a review that the diarrhea-like symptoms are very
similar to other diseases, but loose, watery stools that can last
from 2 to 18 days are not uncommon. However, in immuno-
logically compromised individuals, cryptosporidosis can result
in chronic diarrhea that may be fatal (9, 15). Contamination of
drinking water is a serious concern because host infection with
C. parvum occurs as a result of the ingestion of viable oocysts
(8, 9). The monitoring of this organism in source water and
finished water, given the apparent low dosage of infectivity (5)
and the ability to persist in a viable state within finished water
(8), is very important.

For the routine detection of C. parvum in surface and fin-
ished water samples, oocysts are labeled with fluorescent
monoclonal antibodies (FA). Fluorescent microscopic exami-
nation is then used to characterize the morphology of the
labeled oocysts. Interpretation of properly stained oocysts by
using FA is critical to the monitoring of C. parvum, but there
are some inherent difficulties with utilizing this technique to
identify oocysts. Cross-reactivity with non-C. parvum species
(11), variable intensity of fluorescence with different commer-
cial kits (6), and human error can contribute to problems with
oocyst identification. Additionally, an analyst must scan the
entire surface of a well slide by FA microscopy, and this can be
a time-consuming process. If several samples are observed,

human fatigue may impede proper identification. The Envi-
ronmental Protection Agency Method 1622 recommends that
each analyst have at least 2 years of college lecture and labo-
ratory courses in microbiology (or a related field) and extensive
training with the FA technique (17). Hence, it is evident that
the presumptive identification and confirmation of C. parvum
oocysts is highly dependent on the experience of the analyst,
and laboratories may interpret the presence of oocysts from
similar samples differently (3).

Neural networks and artificial neural networks (ANN), al-
gorithms which mimic neural network function, are a form of
problem solving that possess a functional architecture of inter-
connected neurons in layers (1, 18). Each neuron receives an
input signal (information) from other connected neurons and
makes a computation applied to an activation function. If the
inputs exceed a set threshold, the neuron is activated, and the
active neuron then passes an output signal to other neurons
within the network (18).

In traditional computer expert systems, a programmer pro-
vides an existing framework of rules for the system to utilize in
a decision-making process. However, a neural network devel-
ops its own set of rules (and/or probabilities) to find correct
solutions as it is trained. Unlike traditional computer expert
systems, the programmer does not know (or need to know)
what criteria the neural network implements to find a solution.
Neural networks are more adept at predicting outcomes with
certain types of data that cannot be defined by a specific model
or set of “rules” (7). Simpson et al. (12) demonstrated that
neural networks were capable of differentiating two species of
plankton, with some networks identifying over 90% of these
images correctly. Such work indicated that efficient classifica-
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tion was possible with images never presented previously to
trained networks.

The development of a computer expert system that can
reliably identify C. parvum may provide a means to alleviate
the inherent problems associated with FA microscopy. It was
the goal of this research to develop an ANN that could reliably
identify images of Cryptosporidium oocysts.

MATERIALS AND METHODS

C. parvum samples and image processing. The C. parvum (positive) samples
used in the training and testing of the ANN were obtained from a commercial
supplier (Waterborne Inc., New Orleans, La.). Portions of the stock oocyst
solution were placed on 25-mm well slides and labeled with a working solution of
a commercially available, fluorescein-labeled monoclonal antibody (AquaGlo;
Waterborne Inc., New Orleans, La.). Following the manufacturer’s protocol, the
slides were incubated, washed, and mounted with roughly 10 �l of 1,4
diazabicyclo[2 � 2 � 2]octane-glycerol (2% solution). The slides were stored at 4°C
in the dark until later microscopic observation. All slides were observed at 500�
total magnification with a BH-2 Olympus microscope. The samples were ob-
served under fluorescent light generated by an attached mercury lamp possessing
a UV excitation filter at 490 nm.

Fluorescent images from the microscope were collected by using a charge
coupled device (CCD) color digital camera (SPOT CCD; catalog no. SP100;
Diagnostic Instruments, Inc., Sterling Heights, Mich.). The software (2.1 SPOT
Software; Diagnostics Instruments, Inc., Sterling Heights, Mich.) used to operate
the digital camera was run using a personal computer (PC) system. The camera
collected the images utilizing the default exposure and color settings, and the
images were saved in a TIFF format, 1,315 by 1,035 pixels in size. The images
were collected from January 1998 to December 1999. Images of individual
oocysts were cropped from the original images with a digital image software
program (Adobe PhotoShop 5.5; Adobe Systems Incorporated, San Jose, Calif.).
The cropped oocyst images were retained as a 36- by 36-pixel image. The color
information was discarded, utilizing PhotoShop 5.5, and each of the cropped
images was converted into a grayscale TIFF file.

Using a digital image processing software program (ImageTool 2.0; University
of Texas Health Science Center, San Antonio, Tex.), each grayscale image was
converted into a histogram measuring pixel color intensity. This conversion
generated a text file with 256 entries. Each of these entries represented the sum
of pixels in a 36 by 36 image that had a specific gray value. Hence, for each of the
histogram categories that ranged from absolute black (0) to absolute white (255),
there was a number representing the sum of pixels matching that specific color
of gray.

Non-C. parvum (negative) sample images. (i) Organic non-C. parvum objects.
Negative images were collected from an algal sample previously known to cross-
react with the AquaGlo FA kit obtained by Henry Stibbs (Waterborne Inc., New
Orleans, La.). From 10 to 30 �l of the stock algal sample was placed on well
slides for labeling and FA processing. Additional negative images (Texas A&M
University Research Center, El Paso, Tex.) were obtained from 18 different
surface water samples processed using a protocol for the detection of Giardia
and Cryptosporidium in surface water (16). All the negative images were samples
processed in the same manner as the oocyst (positive) samples.

(ii) Inorganic, non-C. parvum objects: microspheres. Images of green fluores-
cent spheres with a size similar to C. parvum oocysts were used to simulate
oocysts. Commercially available fluorescent microspheres (5 �l; Fluoresbrite
carboxylate microspheres YG, 6 �m, catalog no. 9003-53-6; Polysciences Inc.,
Warrington, Pa.) were added to a glass slide. The samples were mounted on a
well slide and kept in the dark at 4°C until microscopic observation was con-
ducted. Since no staining or labeling was necessary for these samples, the images
were obtained directly as described above.

(iii) Inorganic, non-C. parvum objects: artwork and background. Two addi-
tional types of negative images were generated. The first type were cropped
portions of background containing no FA from previously collected digital im-
ages of positive and negative samples, while the others were color TIFF files of
artwork (Japanese animé). These images were cropped from various portions of
the original images. Both of these image types were converted to grayscale and
processed using a pixel intensity-based histogram protocol as detailed earlier.

Spiked environmental samples. Fluorescent images of oocysts within a soil
matrix were obtained from an earlier study (10). In that study, replicates of three
10-g (wet weight) samples of sandy loam soil collected from West Texas were
spiked with roughly 850 C. parvum oocysts. The soil and oocysts were mixed with

sterile distilled water, totally saturating the soil samples, in a 50-ml polypropylene
tube. The soil slurries were agitated in a wrist action shaker for 30 min and
centrifuged, and the soil pellets were underlaid with a Percoll-sucrose flotation
solution to further concentrate the oocysts. The resulting concentrates were
further purified with commercially available immunomagnetic beads (G/C Di-
rect; Dynal, Oslo, Norway) using procedures described by the manufacturer. The
samples were stained and images were collected with the AquaGlo FA kit in a
manner similar to that for the C. parvum positive samples.

Samples prepared with a second commercial FA kit. A different commercial
FA kit for C. parvum oocysts (Crypto/Giardia IF Test; TechLab, Blacksburg,
Va.) was also used to prepare additional test images. Replicates of four 20-�l
volumes of C. parvum oocysts and algal samples known to cross-react with the
AquaGlo FA kit were labeled as per the manufacturer’s instructions. Both
sample types were examined microscopically, and digital images were captured
and processed as previously described. A total of 100 images of oocysts labeled
with the commercial FA kit were processed. No images of algal cells were
collected, as none of the four samples cross-reacted with the TechLab FA kit.

Network image file generation for testing and training. Each text file was given
a unique number to identify which of the original cropped images it represented.
Using a text editor, two sets of files were created, one file set of positive images
(C. parvum oocysts), and the second file set including all the negative images
(organic non-C. parvum images and the inorganic images). To reduce bias, each
of the files had the order of the images randomized using a utility function from
the ANN program (BrainMaker Professional; California Scientific Software,
Nevada City, Calif.). With a text editor, a group of images were randomly
selected for network training, and the remaining images were used for network
testing. Hence, the images in both the training and testing sets were of randomly
selected images and were mutually exclusive. More importantly, the trained
networks would be tested against images never previously presented.

Two types of training and testing files were generated, the initial training and
testing files and the final training and testing files. The initial training file
consisted of 300 total images (200 positive images and 100 negative organic
images). This simplified image file was used to determine which factors during
training would influence the performance of the ANN. The initial testing files
comprised 200 total images (100 positive and 100 organic negative images). The
final training file was designed for performance optimization of the ANN utiliz-
ing the network basic designs generated from initial training. The final training
file consisted of 525 total images (325 positive images, 148 organic negative
images, and 52 inorganic negative images). The final testing files consisted of 200
images (100 positive images, 20 inorganic negative images, and 80 organic neg-
ative images).

To determine the influence that commercial FA kits had on the efficiency of
ANN identification and how different sample matrixes may affect performance,
a testing image set was created possessing 100 images (oocysts labeled with the
TechLab antibodies). In addition, a set of 62 testing images was created using
oocyst images collected from the spiked soil matrix samples labeled with the
AquaGlo antibodies.

Network training and testing. All ANN were developed using a commercial
software program (BrainMaker Professional; California Scientific Software, Ne-
vada City, Calif.). The program utilized a backpropagation algorithm and was
run on a PC system. During training, statistics measuring training performance
were collected. Statistical information from saved networks was then used to
select networks for testing against a testing image set. The underlying assumption
was that the networks that correctly identified the most images in training would,
in turn, have the best network performance for further testing.

Each network was tested with the appropriate testing file. During this proce-
dure, no adjustments were made to the network. The output of the testing was
saved as a text file. Each image within the file had two outputs, Crypto and
Negative. Each of the outputs had a value associated with it ranging from 0 to 1.
A value close to 1 indicated a correct identification while a value of 0 indicated
an improper identification. An image was scored as correct or incorrect after
comparing the output values to the image’s identification number. Each network
that was tested would have an overall percentage of correct identifications for the
positive and negative images. A correct identification was an output value of
0.900 or higher, while any other result was considered an incorrect identification.
Table 1 provides examples of network testing results and how the output values
were interpreted.

Using the initial training and testing image sets, a number of variables were
evaluated during initial training, including the number of training images, num-
ber of hidden neurons, and the combination of these two parameters. Once a
preliminary network design was selected, further training was done with the final
training image sets to ensure that a proper design was selected. From the final
network design experiments, networks were tested against the final image set,
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and incorrect images were classified by their predicted output values. Using an
expanded output value (0.8) as a correct identification threshold, selected net-
works were retested against all of the testing image sets.

RESULTS

Initial network training experiments. It was critical to ini-
tially determine which design factors would influence the ANN
training and testing performance. After training with the initial
training image set, selected networks (networks that identified
the most training images correctly) were tested with the initial
testing image set. The number of testing images correctly iden-
tified from select networks was summed and compared with
each other using chi-square tests for homogeneity (Table 2).
The null hypothesis (H0) was that a specific training parameter
(number of hidden neurons, number of training images, or a

combination of the two) would not lead to a better testing
performance (� � 0.01). The expected values, used for statis-
tical analysis, were the best training performances observed.
Experimental results indicated that the number of training
images (300 to 2,400 training images with ANN possessing 150
hidden neurons) or the number of hidden neurons (50 to 500
hidden neurons trained with a total of 600 training images) had
no effect on testing performance (Table 2). However, certain
combinations of these two parameters did lead to significantly
different training performances (Table 2). Notably, the lower
number of hidden neurons (less than 250) coupled with fewer
repetitions of training images (less than 600) resulted in rela-
tively poor testing performances.

Final network design experiments. From Table 2 it is ap-
parent that the number of images combined with different
numbers of hidden neurons did have a significant difference on
network testing performance. Network performance was fur-
ther analyzed by varying the number of hidden neurons using
the final training image set (one repetition of the 525 images).
Statistical analysis using a chi-square test for homogeneity in-
dicated that networks containing a higher number of neurons
resulted in better testing performances. A network design of
750 hidden neurons had the best testing performance (Table
3).

To ensure that selecting networks for further testing based
on the number of correct identification of training images was
a proper condition, networks with various training perfor-
mance averages (ranging from 48 to 86%) were tested against

TABLE 3. Final network training

Network training
parameters

% Correct
identifications

(no.)
�2 (df) Statistical

significance

Percentage of training
images correctly identified

Low (48%) 56 (445)a 55.836 (2) Difference
observed

Midrange (70%) 69 (555)a

High (86%) 79 (633)a

No. of hidden neurons
5 17 (100)b 320.35 (3) Difference

observed
50 70 (417)b

500 80 (477)b

750 82 (489)b

a Percentage of correct identifications with the final testing image set (200
images) from four selected networks.

b Percentage of correct identifications with the final testing image set (200
images) from three selected networks.

TABLE 1. Examples of scoring ANN identifications with testing image data

True image
classification

Testing image output
values ANN prediction Identification score of ANN prediction

Crypto Negative

Crypto 0.999 0.002 Crypto Correct (prediction over 0.9 threshold for correct output value)
Crypto 0.004 0.978 Negative Incorrect (prediction does not match true image identification)
Crypto 0.721 0.241 Crypto Incorrect (prediction not over 0.9 threshold for correct output value)
Negative 0.767 0.256 Crypto Incorrect (prediction does not match true image identification)
Negative 0.478 0.745 Negative Incorrect (prediction not over 0.9 threshold for correct output value)

TABLE 2. Initial network training

Network training
parameters

% (no.) correct
identificationsa �2 (df) Statistical

significance

No. of training images
300 73 (436) 1.816 (4) None
600 75 (451)
900 73 (438)

1,200 74 (443)
2,400 72 (432)

No. of hidden neurons
50 75 (602) 6.872 (5) None

100 74 (590)
150 71 (564)
200 69 (555)
250 74 (588)
500 74 (590)

No. of hidden neurons
(no. of training images)
50 (300) 66 (396) 30.828 (11) Difference

observed
50 (600) 77 (460)
50 (900) 71 (427)

100 (300) 67 (403)
100 (600) 75 (450)
100 (900) 71 (423)
250 (300) 78 (466)
250 (600) 75 (448)
250 (900) 75 (447)
500 (300) 74 (445)
500 (600) 74 (444)
500 (900) 75 (451)

a Percentage of correct identifications with the initial testing image set (200
images) from three selected networks or, for number of hidden neurons, with the
initial testing image set (200 images) from four selected networks.
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the final image set. Utilizing a chi-square test for homogeneity,
the results indicated that the greater number of correct iden-
tifications during training was the proper criterion for selecting
networks for further testing (Table 3).

A final network design possessing 256 input, 750 hidden, and
2 output neurons, an adjusted linear learning rate of 0.25
(correct) and 1.5 (incorrect), and a training tolerance of 0.05
was trained with 1,050 total images. Four networks that dem-
onstrated the best training performance were selected for net-
work testing using the final testing image set (Table 4). The
first and last training runs were recorded as a comparison of
overall network training against the top four networks, but
were not selected for further testing (Table 4). The rates of
correct identification among the top four networks were not
significantly different.

Most of the incorrect image classifications were the false-
positives or false-negatives, as these output values were 0.900
or greater (Fig. 1). The second highest number of images that
were misclassified had values less than 0.599, and these images
could be considered poor identifications or images that the
network could not classify with any degree of certainty (ANN
could not identify the images as oocyst or nonoocyst).

By expanding the correct output values to 0.800, each test
image was reevaluated to determine if network performance
would increase. With this new criterion for classifying the test
images (output 0.800 or greater), each network was reevalu-
ated to determine ANN classification performance (Table 5).
Network performance was not significantly improved with the
positive and negative testing image sets, but there was a slight
increase in the number of correct identifications (roughly 2 to
3% increase for the positive image set and 1 to 2% increase for
the negative image set). Additionally, any increase of false-
positives and/or false-negatives that resulted by expanding the
output value threshold would be minimal (an average of fewer
than five additional misclassifications for the top four net-
works) (Fig. 1).

An interesting observation was the difference in network
performance with the inorganic and organic negative images
(60 to 65% correct identification compared to 82.5 to 86.3%
correct). Looking at the organic negative images alone, they
were identified at a very similar level to the Cryptosporidium
oocyst images, yet the inorganic negative images resulted in a
much poorer network performance (Table 5).

If a single network were to be selected for future testing and
implementation into an identification system, network run
number 212 would be the likely candidate. This network per-

formed adequately among all of the test image files, and more
importantly, the network tested well with the artificial negative
images. A second choice would be run number 226. However,
all of the networks tested very closely to each other, the poor-
est performance being run 234 (Table 5).

DISCUSSION

Overall, final network performances were promising and
identified positive and negative images with a high degree of
success when an output value of 0.8 was implemented. All four
of the final networks demonstrated a high degree of correct
identification with the testing images. If the networks were
simply “guessing” at image identification, it would be expected
that network performance would reach roughly 50% (as out-
puts were either a positive or negative classification). The cor-
rect positive and overall negative identifications of each net-
work were well over this percentage (an overall range of 78 to
97%).

The technique employed to process the digital images into a
format utilized by the neural networks shows promise. A his-
togram measuring the pixel intensity of grayscale images is a
relatively simple algorithm to program. Because of this, it
would not be difficult to design processing techniques for im-
ages that were at different resolutions (magnifications). Since
the histogram processing is also based on the entire image, as
long as the entire image is within the field, the histogram
produced will not vary due to differences in orientation, and
this would simplify the image acquisition process.

The use of more complex image processing techniques, such
as a fast Fourier transformation (FFT), has been implemented
in other ANN designs. FFT processing was applied in a study
where ANN were designed to discern between two species of
marine plankton. In this study, trained networks were able to
classify over 90% of the previously unseen plankton images
correctly (12). Another study by Culverhouse et al. (4) at-
tempted to create an ANN that could classify five species of
marine plankton employing FFT processing. The trained net-
works were tested against 98 unique, unseen images, with some
of the species being classified at 100% correct identification,
but the three best networks identified, as a range, only 60 to
77% of all five species correctly (4). The results presented here
appear to mimic the performances of trained ANN developed
in other studies, despite the differences in network design and
image-processing techniques employed.

Another significant difference in this study compared to sim-
ilar studies is the number of hidden neurons used in the ANN
design. It would be expected that a design with fewer hidden
neurons would result in networks capable of correctly classify-
ing images to a higher degree than those with a larger number
of hidden neurons. However, the data presented in Table 3
contradict this notion, as the networks with fewer neurons (5
and 50) did not test as well as those with higher numbers of
hidden neurons (500 and 750). The testing itself was very
rigorous, with 362 unique images being presented to the final
networks. This number is over half of the images used in
training the networks, as the final training image set contained
525 images (replicated once, for a total of 1,050 images). With
this large number of unique images, the final networks had
correct identifications ranging from 78 to 97% against the

TABLE 4. Final network training and testing performance

Trained
network
run no.

No. (%) of
training images

correcta

% of positive
testing images
correctb � SE

% of negative
testing images
correctc � SE

198 980 (93) 87 (3.4) 78 (4.1)
212 978 (93) 85 (3.6) 75 (4.3)
226 977 (93) 84 (3.7) 80 (4)
234 977 (93) 79 (4.1) 80 (4)
1 532 (51)
250 954 (91)

a Set of 1,050 training images from the final training set.
b Set of 100 positive testing images from the final testing set.
c Set of 100 negative testing images from the final testing set.
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testing sets, with only a small subset of the negative images
(inorganic negative) having poor identification percentages
(Table 5).

Larger numbers of hidden neurons demonstrated better
training performances than those with fewer neurons (Table
3). The histogram image-processing technique employed in
this study may provide an explanation. The image data for the
networks resulted in a large amount of input neurons (a total
of 256). Additionally, not every input neuron had a discern-
able, quantitative value associated with it. Many inputs had
numerical values of 0, and during training these inputs may
have been treated effectively by the ANN as data noise. Other
studies have attempted classification (or identification) of mi-
croorganisms through a variety of methods and provided suc-
cessful results, but such networks had (as a range) only 11 to 20
input neurons (2, 4, 12, 13, 14, 19), which is considerably
smaller than the 256 input neurons utilized in this study.

Compared to the organic negative images, the inorganic
images had a higher rate of incorrect responses. This may be
due to the lack of images presented in training. Only 52 inor-
ganic images were used in the final training set as opposed to
the 217 organic negative images. Also, the testing image set

was very small, since only 20 inorganic negative images were
used, compared to the 80 organic negative testing images.
Including additional testing images may help in providing a
more accurate assessment of network performance. The higher
standard error (roughly 11%) is partly due to the small number
of images, since the standard error is based on a Bernoulli
binomial. The significance of the greater difficulty in correctly
identifying artificial images may not be a concern, because
images collected from environmental samples are different
from the artificial images used for testing ANN performance
and could be easily distinguished by an analyst.

The robustness of ANN in identifying C. parvum oocysts is
further supported by the consistency of identification. The 429
AquaGlo FA-labeled images were collected over a period of 10
months. Slight differences in the images due to variations in
sample preparation and staining were observed. Despite vari-
ations of the oocyst images and extended periods between
sample preparations, the networks demonstrated a high degree
of success in identifying oocysts (81 to 90%). It is also impor-
tant to note that none of the testing images were ever pre-
sented to the networks during training. The ANN correctly
identified, as a range, 87.1 to 93.5% of the environmental

FIG. 1. Output values of misclassified testing images.

TABLE 5. Final network testing performances with output value of 0.8

Network
run no.

% of images correctly identified (SE)

Positive testing
images

Negative testing
imagesa

Organic negative
imagesb

Inorganic negative
imagesc

Positive TechLab
imagesa

Soil-spiked oocyst
imagesd

198 90 (3) 78 (4.1) 82.5 (4.2) 60 (11) 97 (1.7) 93.5 (3.1)
212 86 (3.5) 79 (4.1) 82.5 (4.2) 65 (11) 96 (2) 93.5 (3.1)
226 86 (3.5) 81 (3.9) 85 (4) 65 (11) 95 (2.1) 90.3 (3.8)
234 81 (3.9) 82 (3.9) 86.3 (3.9) 65 (11) 95 (2.1) 87.1 (4.3)

a Set of 100 images.
b Set of 80 images.
c Set of 20 images.
d Set of 62 images.
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oocyst images and 95 to 97% of the oocysts labeled with the
TechLab FA kit (Table 5). The similarity in results from the
AquaGlo and the TechLab FA kits indicates the robustness of
trained ANN in correctly identifying oocysts originating from a
variety of samples and labeled with different commercial anti-
bodies. Further indications of such robust performances are
provided by the results from the 80 organic negative images
(cross-reacting, nonoocysts, and organic debris similar in size
and shape to oocysts), where 82.5 to 86.3% of these images
were correctly identified (Table 5).

It is apparent that some variance in ANN performance did
occur when different FA kits were used. The positive images of
oocyst samples labeled with the AquaGlo FA (100 images)
resulted in ANN performances of 81 to 90% correct identifi-
cation (Table 5), whereas the same networks identified up to
97% of the oocysts correctly when labeled with a different
commercial FA kit (Crypto/Giardia IF Test; TechLab, Blacks-
burg, Va.) (Table 5). Additionally, the TechLab antibodies
possessed greater specificity for C. parvum oocysts, since none
of the algal samples were labeled, whereas the same algal
sample demonstrated a high degree of affinity with the Aqua-
Glo FA kit. Hoffman et al. (6) also observed variations within
lots and nonspecific fluorescence with the same commercial
FA kits employed here. Despite differences in staining charac-
teristics between the FA kits, the trained ANN still produced a
high degree of correct presumptive identifications.

The classification of misidentified images (Fig. 1) led to
rather interesting results. For all of the networks, roughly half
of the misidentified images had output values of 0.900 or
greater, such as the second example in Table 1. The remaining
output values of the images were scattered between 0.600 and
0.899, with a substantial number of images possessing output
values of 0.599 or less (Fig. 1). Such trends indicate that if a
network were to misclassify an image, it would most likely be
classified as a false-positive (classify a negative image as an
oocyst) as or false-negative (classify an oocyst as a negative
image). There were also images that were unidentifiable by the
network, as a large number of output values for the misclassi-
fied images were less than 0.599.

The ANN outputs do not produce a single result (yes/no) but
a range of numbers associated with two possible classifications.
Because of this, a user would have additional information that
could help in identifying misclassified images. If an image
resulted in two outputs of 0.500 (an image not identified as
either an oocyst or nonoocyst), this would be an indication that
the user should attempt to find other means to identify the
image, such as further inspection of the sample by a human
analyst.

The ANN developed in this study would need some modi-
fication before this system could be readily integrated into an
industrial setting. Automation of digital image manipulation
should be done to simplify the process of creating images for
ANN analysis. Further refinement and testing of network per-
formance should also be conducted. Environmental images of
oocysts and organic debris or artifacts that were processed with
other commercial FA would help in clarifying network perfor-
mance. More training is also required if the complete identi-
fication of C. parvum oocysts is to be done using neural net-
works. Currently, only the presumptive identification of this
organism has been attempted. The observation of internal

sporozoites by differential interference contrast optics and the
inclusion of the stain 4�,6�-diamidino-2-phenylindole (DAPI)
within the oocyst are methods used for the confirmation of C.
parvum (17). Such a network may dramatically improve the
interpretation of oocysts when both FA- and DAPI-labeled
images are employed. A questionable FA-labeled image may
be more discernable when the neural network attempts iden-
tification by using DAPI staining. However, it is unlikely that a
single neural network will be used for both presumptive iden-
tification and confirmation of oocysts. Rather, two separate
networks will have to be designed, each capable of identifying
images by different criteria.

The application of ANN for identifying microscopic Crypto-
sporidium images has several possible uses. One such use is to
offer an analyst a second opinion. A questionable image could
be passed to the trained neural network, providing the user a
second classification of the image. This information would help
the human analyst in determining if a particular sample was a
C. parvum oocyst. An ideal application of this technology
would be the implementation of trained ANN as the primary
means of identifying C. parvum oocysts through automated
procedures. A user could prepare a sample slide and have a
computer-controlled stage and digital camera capture any sus-
pect images. The ANN could be accessed through the Internet
by passing cropped images (processed or unprocessed) to a
single remote system. Since the neural network could handle
the initial processing (and classification) of images remotely, a
single primary analyst could then be used to confirm or clarify
identifications made by the ANN at the same location. This
would result in more uniform sample analysis. Also, the abso-
lute requirement for an on-site trained person as the primary
analyst would be removed. This aspect of remote analysis may
be particularly advantageous in developing countries. Since
image identification could be handled remotely, only the sam-
pling, labeling, and collection of images would be completed
on site and not require the user to have great deal of technical
expertise or experience with the identification of C. parvum
oocysts.

The development of an ANN to identify Cryptosporidium
oocysts has broader applications. Other protozoa, such as Cy-
clospora and Microsporidium, could also be identified by using
this technology. It is possible that several networks could be
trained to identify protozoa and other parasitic organisms. The
advantage of such systems is that the networks could conduct
the routine monitoring of such organisms with little direction
from highly trained human analysts.

Utilizing histograms of grayscale pixel intensity for image
processing, the data presented represent one of the first studies
to date that examine the feasibility of using neural networks to
identify C. parvum oocysts. We recognize that further rigorous
testing would be needed before ANN could be introduced as
an effective alternative to human analysis. However, the dem-
onstration that ANN is able to distinguish unique images of
Cryptosporidium oocysts from nonoocysts indicates the poten-
tial application of this technology for routine monitoring of C.
parvum in the water industry.
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