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We compare calcium ion signaling (Ca2+) between two exposures;
the data are present as movies, or, more prosaically, time series of im-
ages. This paper describes novel uses of singular value decompositions
(SVD) and weighted versions of them (WSVD) to extract the signals
from such movies, in a way that is semi-automatic and tuned closely
to the actual data and their many complexities. These complexities
include the following. First, the images themselves are of no interest:
all interest focuses on the behavior of individual cells across time, and
thus, the cells need to be segmented in an automated manner. Second,
the cells themselves have 100+ pixels, so that they form 100+ curves
measured over time, so that data compression is required to extract
the features of these curves. Third, some of the pixels in some of the
cells are subject to image saturation due to bit depth limits, and this
saturation needs to be accounted for if one is to normalize the images
in a reasonably unbiased manner. Finally, the Ca2+ signals have os-
cillations or waves that vary with time and these signals need to be
extracted. Thus, our aim is to show how to use multiple weighted and
standard singular value decompositions to detect, extract and clarify
the Ca2+ signals. Our signal extraction methods then lead to simple
although finely focused statistical methods to compare Ca2+ signals
across experimental conditions.
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1. Introduction. Scientifically, this paper is about the study of the ef-
fects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on calcium ion signal-
ing (Ca2+) in myometrial cells. The importance of Ca2+ signaling in cell
function, for example, metabolism, contraction, cell death, communication,
cell proliferation, has been studied in numerous types of cells; see Putney
(1998). TCDD itself is a toxicant by-product of incomplete combustion of
fossil fuels, woods and wastes and is known to adversely effect reproduction,
development and the immune system as well as being a probable carcinogen.

The essential feature of these data is that they present themselves as
movies of 512 images, or time series of images after oxytocin exposure. To
best appreciate the complexity of the data, and thus this paper, readers
should first look at two of the movies, in the Supplementary Materials, one
without and one with TCDD exposure.

The experiment leading to these images is described in detail in Section 2.
However, the movies show that the data are complex, and analysis of them
is not simple. This paper describes novel uses of singular value decomposi-
tions (SVD) and weighted versions of them (WSVD) to extract the signals
from such movies, in a way that is semi-automatic and tuned closely to the
actual data and their many complexities. Here we describe a few of these
complexities:

Basic background. The data consist of 512 images. Myometrial cells can be
seen in these images, which start out in their native state and are then
exposed to an oxytocin stimulus, at which point Ca2+ expression becomes
pronounced. The cells themselves are fixed to a substrate and do not move
over time.

I. Cell segmentation. The images themselves are of no intrinsic interest:
what matters is how the individual cells express Ca2+. This means that
segmenting the image to obtain the cells is a crucial first step. To see
what has been done in the past, consider Figure 1, which gives a se-
quence of images in the first 2 minutes of the experiment. Because it is
difficult to distinguish cell boundaries before oxytocin is delivered, it is
common to use a static approach. Specifically, the brightest image is used
to isolate the cells, with cell boundaries drawn by hand. This technique,
although practical, is not semi-automatic and uses only a small fraction
of the information available because it ignores the 511 other images that
could have pertinent information about the cell boundary. This could po-
tentially lead to under or overestimation of the cell boundaries. Instead,
we will describe a method that allows use of all 512 images in order to
determine cell location. Our approach utilizes the brightest image to get
a rough idea of the cell location and then obtains a summary of the
resulting pixel-wise matrix of all 512 images to refine the cell boundaries.
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Fig. 1. Oxytocin-induced calcium response in myometrial cells during the first 2 minutes
of the experiment. Cells were cultured in a low level of estrogen/progesterone and were
treated with 10 nM TCDD for 24 hours. Cells were then loaded with the Fluo-4, washed
and then stimulated with 20 nM oxytocin following identification of basal calcium levels in
cells. The movie of this cell line as well as the nontreated one cultured in low hormone
level are available as part of the Supplementary Materials.

II. Ca2+ signal extraction. Each segmented cell will contain 100+ pixels,
and each of these pixels is its own movie or curve. Immediately, one
is faced with the problem of summarizing these curves. The usual choice
of a summary statistic in Ca2+ signal publications is the normalized aver-
age signal across time, where “normalized” means that the whole signal is
divided by the initial signal values recorded before the stimulus is deliv-
ered to the cells; see Barhoumi et al. (2002) and Burghardt et al. (1999).
Hence, signal amplitude is measured in units of “fold change,” compared
to the Ca2+ signal before stimulus. While convenient, this method ignores
the potential for additional information in the wealth of pixel informa-
tion, information we aim to extract, and it is in addition not necessarily
the best way to normalize the data.

III. Ca2+ signal clarification. Having extracted the basic signal, we face a
further obstacle. An unusual feature of these data is that some of the
pixels in most of the cells reach image saturation. This type of image
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censoring has the potential to distort downstream statistical analysis, is
generally ignored in the literature, and needs to be accounted for. That
is, we wish to clarify the original signal to account for image saturation.

IV. Ca2+ treatment comparisons. Having segmented the cells, and extracted
and clarified the cell Ca2+ signal, we are then in a position to understand
some of the effects of TCDD exposure.

Ca2+ information extraction is the key. The main point of this paper is to
extract the information in the movies, in a semi-automatic way that re-
duces the potential for bias.

Ca2+ singular value decompositions. In this paper we will show how to use
the singular value decomposition (SVD) and a novel weighted singular
value decomposition (WSVD) to perform the four crucial steps I–IV.
Each step requires a different use of the SVD or WSVD. We demonstrate
that novel uses of SVD/WSVD help us understand the effect of TCDD
exposure.

Our paper is organized in the following manner. In Section 2 we describe
the experiment and the data. We proceed to restate the singular value de-
composition (SVD) in Section 3 and demonstrate how to use it to obtain
the EigenPixel and EigenSignal vectors. In Section 4 we outline the use of
the SVD to detect the Ca2+ signal from images, that is, to segment the
cells. In Section 5 we use yet another SVD to isolate the Ca2+ signal from
the resulting pixel-wise matrices. We implement a weighted SVD, WSVD,
with a clever choice of weights in Section 6, and use it to remove the satura-
tion effect on the Ca2+ signal. Finally, in Section 7 we compare the control
and treated cells by applying the SVD once more to obtain one point sum-
mary values for each cell, that is, EigenCells, which enable us to distinguish
between control and treated groups. We offer some concluding remarks in
Section 8.

2. Experiment.

2.1. Introduction. The essential statistical details of this experiment are
that there are myometrial cells fixed to different substrates, one of which
is exposed to TCDD and the other of which is not. Shortly after image
capturing commences, the cells are exposed to oxytocin, thus stimulating
the Ca2+ signal. The main goal is to compare the TCDD exposure to the
control. What follows are some of the details of the experiment.

2.2. Treatments. Myometrial cells, which comprise the contractile mid-
dle layer of the uterine wall, were cultured in three levels of an estro-
gen/progesterone hormone combination: basal, low and high. The “basal”
level is the one in which the cells were cultured, the “low” level of hormone



SVD OF CALCIUM ION SIGNALS 5

is slightly higher than that found in women before pregnancy and the “high”
level is the level of a pregnant woman at full term. Our work presents data
from two different treatments (control or TCDD) with 3 different levels of
hormones in the culture medium (basal, low and high).

The treated cells received a 100 nM solution of TCDD 24 hours before the
experiment. Cells are cultured on coverglass chambered slides. All cells were
then washed and loaded with 3 µM Fluo-4 for 1 hour at 37◦C: fluorescent
probe Fluo-4 is one of many dyes used to detect changes in Ca2+ within
cells. Fluo-4 is typically excited by visible light of about 488 nM, and emits
about 100 fold greater fluorescence at about 520 nM upon binding free Ca2+.
Following loading, cells were washed and placed on the stage of the confocal
microscope. Cells were then scanned five times to establish the basal level of
Ca2+ prior to addition of 20 nM oxytocin, the hormone used in this study
to stimulate Ca2+ signal in these cells. Scanning continues at 10 second
intervals for approximately 85 minutes, leading to 512 images (100 × 100
pixels) containing 20–50 cells per treatment.

2.3. Imaging. The data captured in these experiments are digital images
of Ca2+ fluorescence of individual cells. The bit depth of images used in this
study is of 8 bits, which translates to 28 or 256 possible grayscale values in the
image. Unfortunately, it often happens that the maximum concentrations
detected in these images are limited by the bit depth. This may sometimes
result in saturation and lead to underestimation of changes in Ca2+ signals,
especially when multiple treatments are performed and accurate evaluation
of these differences is required.

Figure 1 shows a response to the oxytocin stimulus, in cells treated with
TCDD and cultured in a low estrogen/progesterone hormone level. The max-
imal reaction due to the oxytocin challenge appears at 60 seconds and then
the cells return to their steady state. Notice that not all cells go back to
their steady state at the same rate. In fact, there is residual fluorescence in
some cells at the top of each of the images in Figure 1, long after the initial
peak of fluorescence at 60 seconds.

2.4. Overview of what is to come. In order to study the intracellular
Ca2+ signal, we make use of the singular value decomposition in four ways.
First we isolate or (a) detect the cell itself. To do this we perform a singular
value decomposition on a matrix made up of pixels from a rough segmen-
tation of each cell. The spatial plot of the first EigenPixel resulting from
this SVD is used to determine which pixels are important when harnessing
the signal. The next step is to (b) extract the Ca2+ signal. In this step we
apply the SVD on the resulting pixel-wise matrix from the previous step
and obtain the first EigenSignal, which contains most of the Ca2+ signal
information of the cell of interest. The third step is to (c) clarify that signal.
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In this step we adapt the usual SVD and introduce a weighted SVD which
takes care of two problems: (1) it imputes values where pixel saturation oc-
curs and (2) it weights the influence of each pixel based on variance. Finally,
the last step in our study of intracellular Ca2+ signal is to (d) compare the
effect of the carcinogen TCDD across experimental conditions to see how
it affects the Ca2+ response. To accomplish this, we use the SVD again to
obtain one point summary values for each cell.

3. SVD after rough segmentation.

3.1. Outline. This section describes the well known SVD and outlines
part of how we will use it, after large rectangular regions containing each cell
have been obtained (rough segmentations). We particularly need to describe
some terminology for future use.

3.2. EigenPixels and EigenSignals. The singular value decomposition
(SVD) is a widely used matrix factorization technique. For example, the
SVD was used to analyze microarray expression data, where the rows of
the matrix in question comprise the genes and the columns represent the
expression arrays [Alter et al. (2000)]. This use of the SVD introduced the
idea of transforming the gene, array space to an “eigengene,” “eigenarray”
space that is reduced and diagonalized. We will draw inspiration from this
approach and show that we can use “eigen Ca2+ signal” or EigenSignal vec-
tors to summarize the Ca2+ response for each cell in the experiment and we
will later describe how we acquired matrix representations for each cell.

We first describe how to obtain “eigen pixel” and “eigen Ca2+ signal”
vectors, using the SVD. To accomplish this, we will present the singular
value decomposition in the context of our data, assuming that a rough seg-
mentation of the cells has been performed. For all treatments considered in
this work, we represent each cell as a matrix of Ca2+ intensity, in grayscale
values, that has a number of pixels which comprise the cell, for all 85 min-
utes of the experiment. Each matrix has n rows and m columns, where
n is the number of pixels that represent the cell and m is the number of
time points in the experiment. All cells were observed the same number of
times so m= 512. Let Xk represent the n×m calcium signal matrix for the
kth-cell. The singular value decomposition of Xk is

Xk = UkSkV
T
k .(3.1)

Here Vk is an m× n matrix whose column vectors, vkj ∈ R
m, form an or-

thonormal basis for the Ca2+ signal, and are called EigenSignal vectors.
In (3.1) Uk is an n × n matrix whose column vectors, ukj ∈ R

n, form an
orthonormal basis for the pixels of the cell, called EigenPixel vectors. In ad-
dition, Sk is an n×n square matrix of singular values arranged from largest
to smallest sk1 ≥ sk2 ≥ · · · ≥ skn.
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We can generate a rank-L matrix that approximates Xk by using the first
L ukj and vkj vectors, that is,

XL
k =

L∑

j=1

ukjskjv
T
kj .(3.2)

In equation (3.2) XL
k is the best rank-L matrix that approximates Xk, in the

sense that it minimizes the sum of squares difference between XL
k and Xk

among all rank-L matrices [Trefethen and Bau (1997)]. Low rank approx-
imations are useful because less data are needed to represent the original
matrix; these techniques are often used in image compression. We will use
the smallest number of EigenPixel and EigenSignal vectors that summarize
both pixel and Ca2+ signal information.

4. Ca
2+ cell segmentation.

4.1. Peak image. The cells used in this study are cultured as monolayer
on coverglass chambered slides. This allows easy imaging of the cells over
time without any movement: the cells in this study are fixed in a substrate.
This fact is essential to the work that follows.

As may be apparent from the sequence of images shown in Figure 1, it
is difficult to distinguish cell boundaries before oxytocin is delivered. For
this reason, in order to determine the location of the cells, as well as their
boundaries, it is common to use the brightest image to isolate the cells. This
technique, although practical, only uses a small fraction of the information
available because it ignores the 511 other images that could have pertinent
information about the cell boundary. Instead, we propose that a summary
of these 512 images should be used to determine cell location. Our approach
makes use of the brightest image, or “peak” image, to get a rough idea of
the cell location and then uses a summary of the resulting pixel-wise matrix
of all 512 images to refine the cell boundary that will be used for the rest of
the analysis. We use the image where we see the most distinction between
cell boundaries as the “peak” image.

4.2. Ca2+ signal detection via first eigenpixel. Once the “peak” image
from each cell line is identified, we draw very large rectangular regions each
containing a cell. Each rectangular region assures that the boundaries of
the cell of interest are contained within it, although there may be parts of
other cells that fall in this rectangular region. Figure 2 shows the rectangular
region chosen from the “peak” image to represent the rough segmentation of
cell 2, from the treated group in the low hormone level. Figure 2 also displays
the resulting 777 × 512 pixel-wise matrix derived by taking the 777 pixels
that represent the rectangular region from each distinct image at every one



8 J. G. MARTINEZ ET AL.

of the 512 time points. The right panel of Figure 2 does not respect the
spatial location of the pixels. A better view of how the 3-dimensional time
series of Ca2+ intensity evolves is shown in Figure 3. This perspective plot
of every third pixel in the rough segmentation shows the spatial location of
pixels over time. Notice that the oscillations in the signal concentrate in the
center of the x–y plane and evolve over time in the z-axis.

If X2 represents the 777 × 512 pixel-wise matrix of pixels × time for cell 2,
shown in the right panel of Figure 2, then we obtain a summary of the pixel
information by taking the SVD of X2 and obtaining the first EigenPixel.
As explained in Section 5.2 below, only the first singular value explains the
majority of the variance in these data, hence, the first EigenPixel summarizes
all the pixel information to one vector of size 777. We take this vector and
plot it spatially on the corresponding pixel location. What we get is a 2-
dimensional image where the pixel intensity reflects the importance of the
pixel in representing the Ca2+ signal of this cell (top left panel of Figure
4). This image is a better candidate for use in identification of the Ca2+

signal than the “peak” image because it summarizes the importance of each
pixel across the 512 images in the experiment. This is our first use of the
SVD and the way in which we will detect the Ca2+ signal for all cells in this
experiment.

4.3. Ca2+ final segmentation. Once we obtain this first EigenPixel image
from X2, we use the EBImage package from Bioconductor to segment and

Fig. 2. The initial rough rectangular segmentation of cell 2 from the treated group of
low hormone level and the corresponding 777 × 512 pixel-wise matrix for this rectangular
region.
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Fig. 3. 3D plot of the Ca2+ intensity in the rough segmented region of cell 2 from the
treated group of low hormone level, corresponding to the left panel of Figure 2. The x–y
coordinates correspond to space and the vertical coordinate to time. Every fourth pixel is
shown.

index the cell [R Development Core Team (2008)]. We first blurred the image
to smooth out any noisy pixels. We then used thresholding to pick out the
region of high pixel values which usually contains the cell, and finally used a
watershedding algorithm to close the cell boundaries and separate other cell
chunks that are close together. The result is the final segmentation of the
cell shown in the top right panel of Figure 4. Notice that all we have done is
pick the region with highest EigenPixel intensity which in turn should give
us the spatial location of the pixels that contain most of the Ca2+ signal
information. We then collect each of the 131 pixels in this final segmentation
from each of the 512 images and get a matrix representation of the cell; see
the bottom left panel of Figure 4. As before, this matrix does not respect
the spatial location of the pixels, hence, we provide a 3-dimensional plot
where each of the pixels in the final segmentation is displayed over time; see
Figure 5. It is easier to appreciate the spatial pattern of the Ca2+ signal and
where it concentrates on the x–y plane at any time.

We used this segmentation process to generate contours of each cell, and
used these contours to pick out the cell position from every image at ev-
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Fig. 4. Top row: Image of the first EigenPixel vector obtained from the SVD of the
rough 777 × 512 pixel-wise matrix and the resulting segmentation of cell 2 after using the
first EigenPixel to perform the segmentation. Bottom row: The corresponding 131 × 512
pixel-wise matrix for this new segmentation and the corresponding first EigenSignal over
the 85 minute experiment.

ery one of the 512 time points. This process yielded 20–50 cells from each
treatment.

The oscillatory behavior observed in Figures 4 and 5 and throughout the
text are present because calcium ions (Ca2+) are responsible for many im-
portant physiological functions. In smooth muscle cells that surround hollow
organs of the body, transient increases in intracellular Ca2+ can be stimu-
lated by a number of hormones to activate smooth muscle contraction. Be-
cause sustained elevation of Ca2+ is toxic to cells, Ca2+ signals in many
cell types frequently occur as repetitive increases in Ca2+, referred to as
Ca2+ oscillations. The periodic Ca2+ spikes which increase with increasing
hormone concentration are thought to constitute a frequency encoded signal
with a high signal-to-noise ratio which limits prolonged exposure of cells to
high intracellular Ca2+; see Sneyd, Keizer and Sanderson (1995). Interest-
ingly, the frequency of Ca2+ oscillations in smooth muscle cells is relatively
low (e.g., 2–10 MHz) [see Burghardt et al. (1999)], whereas in liver cells
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Fig. 5. 3D plot of the Ca2+ intensity for the final segmentation of cell 2 from the treated
group of low hormone level, corresponding to the left panel of Figure 4. The x–y coordinates
correspond to space and the vertical coordinate to time. Every fourth pixel is shown.

which use Ca2+ oscillations to stimulate ATP production in mitochondria
and the breakdown of glycogen to glucose, the frequency of Ca2+ oscillations
is much greater (e.g., range from 5 to 100 MHz); see Barhoumi et al. (2002).
The spatial and temporal organization and the control of these intracellular
Ca2+ signals is of considerable interest to cellular biologists.

5. Signal extraction.

5.1. Overview. The top right panel of Figure 4 shows the region that
represents cell 2 and the bottom left panel shows the resulting 131 × 512
pixel-wise matrix for the final segmentation, which we will label as X ′

2. We
then use the singular value decomposition once again and obtain the first
EigenSignal from the X ′

2 matrix shown in the bottom right panel of Figure 4;
this is our Ca2+ signal extraction step. The Ca2+ signal produced from this
step is a candidate signal that represents a summary of the Ca2+ intensity
for the cell in question.

5.2. First EigenPixel and EigenSignal. When we take the SVD of each
matrix for each cell, in all cell lines, we find that the first EigenSignal vector
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Fig. 6. Left: Variance explained by the first 5 components in the SVD of the pixel-wise
matrix that represents one cell (11) from the control group in the high hormone treatment.
Right: Variance explained by the first component in the SVD in each of the 187 cells
examined in all six treatments used in the study.

is enough to give a good representation of the Ca2+ signal in these data,
because the first singular value basically dominates the signal in the data.
In fact, if we take the ratio of first to second singular values for each cell and
take the mean, we find that on average the first singular value is between 8
to 10 times larger than the second, and many times larger than the 3rd and
4th singular values. The left panel of Figure 6 shows the variance explained
by the first five singular values of the SVD of cell 11 in the control group of
the high hormone level cell line, where the first component explains 97% of
the variance. On average, the variance explained by the first component in
each of the 187 cells considered across all cell lines in this experiment is 97%.
The right panel of Figure 6 shows the distribution of the variance explained
by the first component for each of the 187 cells. The minimum variance
explained by the first singular value among the 187 cells is 83%, hence the
first EigenSignal and EigenPixel vectors that correspond to this first singular
value summarize almost all the Ca2+ signal and pixel information in each of
these matrices. For this reason we will assume that only the first EigenSignal
and first EigenPixel are needed to summarize the Ca2+ signal and pixel
information in the data.

6. Ca
2+ signal clarification and cell saturation.

6.1. The problem of saturation. The saturation phenomenon is based
upon the fluorescence detection system. The fluorescence detection system
utilized in experiments presented in this report is a photomultiplier detector
tube (PMT). This detector does not count individual photons; rather it re-
quires a certain minimum number of photons to activate an electrode which
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will emit a small number of electrons which are subsequently amplified in a
stepwise fashion. The readout of the PMT is on a 256 grey scale level. Occa-
sionally the amplified signal can reach saturation if the fluorescence output
of the calcium signal being detected is very high. Normally, the settings of
the PMT are adjusted so as not to reach saturation, however, detection of
the low end of the fluorescence signal is very important.

Notice that the grayscale values of some of the pixels that represent cell
2, shown in Figure 4, reach a ceiling of 255; see Figure 7. This is especially
noticeable after the cell received the oxytocin stimulus around 1 minute into
the experiment. Because the individual pixel values reflect the Ca2+ level in
the cell, Ca2+ summary measures will undoubtedly be affected if the pixels
reach the ceiling of 255. Also notice the variability in individual pixel values.
The bottom panel of Figure 7 shows the intensity of 20 pixels over time and
it is clear that some may reach maximum intensity values that are larger
than 255 and some at much lower values. We do not model the behavior
of individual pixels in this work but it can certainly be considered in the
future.

Two questions are immediate. First, how is the EigenSignal affected when
pixel values reach the saturation level of 255? Second, how should one process
the Ca2+ signal once pixel saturation has been detected? We implement the
algorithm introduced by Gabriel and Zamir (1979) and let the saturated
pixels be missing data to address this issue. To our knowledge, there are
no methods in the literature available to deal with the clarification of Ca2+

signal curves and our attempt is the first of its kind.

6.2. The weighted SVD. Although the first EigenSignal is a reasonable
measure to use when summarizing the Ca2+ signals of the pixel-wise ma-
trices, there are drawbacks if used without adjustment. If there are too
many pixels that reach the saturation point, the signal can be under or
over-estimated at different time points in the experiment and a misinterpre-
tation of the signal amplitude can occur. It is intuitive to understand how
the signal can be under-estimated due to saturation, but over-estimation
of the summary signal is certainly an unexpected phenomenon which we
will explain. Because pixels reach a saturation, the signal summary is un-
doubtedly affected by this lack of information on maximal values attained
by such pixels. In the course of the time series where many pixels reach
saturation, the signal is under-estimated around the peaks, but the effect of
this under-estimation results in an over-estimation during a time where no
pixels reached saturation. Figures 8 and 9 show this phenomenon. The over-
estimation is due to the normalization requirement of the singular vectors
and the right skewness of the cross-sectional intensity distribution.

To correct these over- and under-estimation effects, we must remove the
effect of the saturated pixels and recalculate the Ca2+ signal without their
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Fig. 7. Top: The Calcium intensity curves over the 85 minute experiment of the 131
pixels in the 131 × 512 pixel-wise matrix X ′

2. Bottom: 20 randomly selected pixels from
X ′

2.

influence. One approach is to simply remove every row of the pixel-wise data
matrix which contains a saturated pixel and recompute the Ca2+ signal using
the resulting matrix; however, this could lead to the removal of a significant
number of rows from the data matrix. Instead, we propose to implement the
weighted SVD, WSVD, using the low rank matrix approximation of Gabriel
and Zamir (1979) where we introduce the use of indicators in the weights,
as in Beckers and Rixen (2003), to treat the saturated pixels as missing data
and use a clever choice of weights that allows for accurate recovery of the
original signal.

It is important to note that our “missing data” is not really missing, we
know that the saturated pixels must at least attain a value of 255. Hence,
if we observe values that are below this threshold in our imputation, we
would certainly know that we’ve made an error. We implement a check in
our algorithm that gives us a flag if a value that is initially saturated falls
below its saturation point.

Imputation of missing values in the SVD is not a new subject. As noted
by Kurucz, Benczúr and Csalogány (2007), it was first addressed in Ruhe
(1974) and then refined by Gabriel and Zamir (1979). Recently, Liu et al.
(2003) extended the work of Gabriel and Zamir (1979) to use outlier re-
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Fig. 8. Top row: Simulated data matrix (before adding noise) to be tested. Bottom row:
First EigenSignal and EigenPixel curves obtained from the data matrix shown above.

sistant regressions instead of simple least squares. Several new EM based
imputation methods have been introduced. In particular, Troyanskaya et al.
(2001) uses such a method to impute missing values into microarray experi-
ments while using the SVD to obtain relevant eigen-genes and eigen-arrays.
For further discussion on EM type estimators and a more complete review
of the literature, see Kurucz, Benczúr and Csalogány (2007).

Although an EM type method could certainly be applied in this context,
we choose to use the iterative algorithm of Gabriel and Zamir (1979) because
of its speed in convergence and because we do not wish to make distributional
assumptions about the data. Now, because the signal variance in our data
follows the behavior of the signal itself, we opt to use a variance weight in
the imputation scheme. Of course initialization of the algorithm is tricky, in
particular, when wij = 0, but our use of the first EigenPixel and EigenSignal
to initialize the algorithm proves to work well; see Gabriel and Zamir (1979)
for more discussion on initialization.

The premise of our approach is that each cell has a “true” Ca2+ signal and
we are not able to observe that signal because there are only a finite number
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Fig. 9. Top row: EigenPixel vectors of the original, saturated, weighted SVD (WSVD)
and WSVD with no weights (WSVD-No Weight) and the relative error of the satu-
rated and final WSVD and WSVD-No Weight EigenPixels. Bottom row: EigenSignal
vectors of the original, saturated, weighted SVD (WSVD) and WSVD with no weights
(WSVD-No Weight) and the corresponding error curves of the saturated and final WSVD
and WSVD-No Weight EigenSignals.

of pixel values available to capture it. The details of our implementation are
provided below.

Let u and v be the first EigenPixel and EigenSignal associated with
the second SVD used to extract the putative Ca2+ signal, which includes
saturated pixels, so that u and v comprise most of the pixel and signal
information of some cell. Continuing with the example from the previous
section, the matrix of interest is X ′

2. Let the dimensions of the X ′

2 be n×m;
because most of the variation is explained by the first component in the
SVD, the rank one approximation can be obtained by minimizing the error

n∑

i=1

m∑

j=1

(x′2ij − uivj)
2(6.1)

with respect to u and v. We also wish to weight each term in the double
summation so that it removes the influence of saturated pixels and takes into
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account the appropriate variation. We let the weights be wij = Iij/(uivj)
2,

where Iij = 0 when x′2ij = 255, that is, pixel is saturated, and Iij = 1, oth-

erwise. Beckers and Rixen (2003) proposed using an indicator to deal with
missing data. We supplement this approach by using (uivj)

2 to scale the
term in the summation of (6.1) so that the variance is no larger than 1. Now
our new minimization problem becomes

n∑

i=1

m∑

j=1

wij(x
′

2ij − uivj)
2.(6.2)

We solve the minimization by alternating between ui and vj . Fixing j, we
can expand the expression in (6.2), let Aj(u) =

∑
i Iij(x

′

2ij/ui)
2 and Bj(u) =∑

i Iij(x
′

2ij/ui) and we get that v′j = Aj(u)/Bj(u) solves that portion of

the minimization. Similarly, if we fix i, u′i = Ai(v)/Bi(v), where Ai(v) =∑
j Iij(x

′

2ij/vj)
2 and Bi(v) =

∑
j Iij(x

′

2ij/vj). The new proposed EigenPixel

and EigenSignal vectors are unew = u
′/‖u′‖ and v

new = v
′/‖v′‖ respectively.

This gives us a recurrence relation that we can use to obtain a clearer version
of the EigenPixel and EigenSignal, where the EigenSignal will represent the
clarified Ca2+ signal of interest. Beckers and Rixen (2003) offer a similar
recurrence as a way of imputing missing values in oceanographic data. We
change the number of relevant components in the SVD and add a weight
that includes a rescaling factor 1/(uivj)

2. We include this variance rescaling
factor because the variance of the signal and the signal are synchronized and
we want to account for that effect. The pseudo code used to program this is
shown below:

1. Let u0 and v
0 be the initial EigenPixel and EigenSignal vectors obtained

by taking the SVD of the pixel-wise matrix that comprises all the pixel
and signal information about the cell of interest, including saturated val-
ues.

2. The first proposed EigenPixel and EigenSignal are u1 = u
′/‖u′‖ and v

1 =
v
′/‖v′‖ respectively, where u′i =Ai(v

0)/Bi(v
0) and v′j =Aj(u

0)/Bj(u
0).

3. The (k + 1)st proposed EigenPixel and EigenSignal are u
k+1 = u

′/‖u′‖
and v

k+1 = v
′/‖v′‖ respectively, where u′i = Ai(v

k)/Bi(v
k) and v′j =

Aj(u
k)/Bj(u

k).
4. Iterate until convergence.

The missing values are imputed by the corresponding uivj after the con-
vergence of the algorithm. We check to make sure that any imputed value
for initially saturated pixels do not fall below its saturated value. In our
application of the algorithm to the real data, all imputed values passed this
test. Very rare numbers of pixels experience total saturation, that is, Iij = 0
for all j = 1, . . . ,512 given some fixed i. This is particularly true if we only
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consider a subinterval of the 85 minute run. Since it is not possible to impute
values for such pixels, they are dropped from our analysis to avoid creating
bias.

Consider X ′

2, the n×m pixel-wise matrix of n pixels and m time points.
For a fixed pixel i, x′2ij has a total of m potential saturated values. If Iij is

the indicator described above and if we let pi =
∑m

j=1 Iij be the number of
nonsaturated values for the ith pixel across time, then we made it a rule to
remove the ith pixel if ⌊pi/m⌋< 1/8. This means that we remove any pixel
row of the matrix X if more than 7/8 of it is saturated.

6.3. Application of the WSVD to simulated data. To evaluate the accu-
racy of our method, we applied it to a simulated data set where we used
sine curves to emulate the behavior of typical cell data as shown in Figure 4.
Our simulated data matrix, and first EigenSignal and EigenPixel are shown
in Figure 10. The data shown in Figure 10 represent the true signal we are
trying to recover. Real data, however, have noise and also possess saturated
pixels that dampen the signal. To duplicate this behavior, we threshold the
data matrix so that everything larger than 0.50 is replaced by 0.50; this
mimics a saturation at pixel locations that have values larger than 0.50.
To add noise, we introduce realizations from a Gaussian distribution with
mean 0 and variance proportional (uivj)

2. We introduced this variance into
the simulated data because it is consistent with the type of variance ob-
served in the real data and we wanted to emulate that behavior. Figure 8
shows the original and saturated first EigenPixel and EigenSignal curves.
The first EigenSignal and EigenPixel vectors from the saturated data are
both dampened and exaggerated in different regions.

After applying the weighted SVD to the saturated data matrix, we see
that upon convergence of the algorithm the resulting first EigenPixel and
EigenSignal both come very close to the original curves. The relative error
at every pixel and time point are shown on the right panel of Figure 8. When
we compare the ratio of the error sum of the saturated over the WSVD Eigen
vectors, we see an 11 fold difference in the EigenPixel and a 8 fold difference
in the EigenSignal. To see the effect of our weight on the results, we removed
the weights and repeated the analysis. Comparing the ratio of the error sum
of the saturated over the WSVD Eigen vectors with no weights, only a 1
fold difference in the EigenPixel and a 1 fold difference in the EigenSignal
are observed.

6.4. Application of the WSVD to actual data. For illustration we apply
the weighted SVD to the pixel-wise matrices of cell 2 from the treated group
of low hormone level and cell 11 from the control group of high hormone
level. Figure 10 shows the first EigenPixel and EigenSignal of both cell 2 and
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Fig. 10. Original and WSVD 1st EigenPixel and EigenSignal Vectors for cell 2 (left
column) and cell 11 (right column).

cell 11. We see that in the peak region of both, between 0–4 minutes into the
experiment, there is a large difference in the EigenSignal vectors, especially
for cell 11. This is not surprising since most of the saturation occurs in the
peak region of the experiment, hence, pixel imputation will mostly affect
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this region. To further explore this phenomenon, we apply the WSVD only
in the peak region (0–4 minutes) and results are also shown in Figure 9.
We see that the saturated pixels were dampening the expression in the peak
region. This is a key finding since it is believed that Ca2+ expression in this
peak region could be used to characterize cells studied.

We have shown that the weighted SVD can be used to clarify the Ca2+

signal in the cells presented. This is an important step when harnessing Ca2+

expression from these cells, especially because Ca2+ expression is dampened
drastically if we do not take into account the saturation effect.

7. Comparison of Ca
2+ signals: Control and treated.

7.1. Initial analysis. Experience of the third and fourth authors led us
to believe that the Ca2+ expression observed immediately after oxytocin
exposure is indicative of cell behavior and can predict the response to a
given treatment. This leads us to consider use of the “peak” Ca2+ signal
and the “post peak” Ca2+ signal, where the “peak” signal is obtained by
recovering the signal from the region in the first 4 minutes of the experiment,
and the “post peak” Ca2+ signal is harnessed from the region 40–80 minutes
after the experiment had begun. One goal is to compare how predictive the
initial “peak” Ca2+ signal is compared to the “post peak” Ca2+ signal. In
addition, we have the crucial questions (a) how does TCDD affect the cells
over all, and (b) how is this response affected by each of the hormone levels
in question?

We first take the weighted SVD as described in the previous section and
plot the first EigenSignal for every cell and for the “peak” and “post peak”
regions; see Figure 11. The first thing to note is that it is easiest to distin-
guish between the control and treated cell in the low group. The peaks of
the first EigenSignals in the low hormone cells do not coincide, so it is quite
easy to tell the two groups apart there. About half of the peaks in the high
hormone group coincide and all of the peaks of the control and treatment
first EigenSignals in the basal hormone group coincide. It is much more diffi-
cult to see differences between the control and treated cell lines in the “post
peak” region.

7.2. EigenCells. We next show how to use the SVD a fourth time to
extract the effect of the treatment given to the myometrial cells.

One of our goals is to identify differences, if they exist, between control
and treated cells. There are many ways in which this comparison can be
performed, but we introduce a new way of distinguishing between these two
levels of drug. Our approach simply performs an additional SVD on the
set of first EigenSignal vectors obtained from the WSVD. Each cell in the
experiment is represented by a first EigenSignal vector as shown in Figure
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Fig. 11. First EigenSignal vectors of the “peak” signal (left column ) and the “post peak”
signal (right column) obtained from control and treated cells for the three levels of hormone:
basal, low and high.

11 and we combine the first EigenSignal vectors of both the treated cells and
nontreated cells into three matrices, one per hormone level: basal, low and
high. Finally we perform a standard SVD and obtain single value summary
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points for each cell, or EigenCell values. Each of the three hormone levels
correspond to a collection of these one point summaries for a group of cells,
which we will call the EigenCell vector. Figure 12 shows the resulting scatter
plots of the first two EigenCell vectors. Because almost 100% of the variance
is explained by the first two components, we choose to plot only these two.
Notice how easy it is to distinguish between the control and treatment groups
in the “peak region” for the low and high hormone level. It is much more
difficult to separate the control and treatment groups in the “peak” basal
hormone level and in all the hormone levels of the “post peak” region.

This clearly shows that the onset of the peak Ca2+ signal in control cells
is highly organized and occurs immediately following the oxytocin stimulus
in control cells; see Figure 11. In the case of TCDD treated cells that where
cultured in low hormone, there is a delayed peak in the Ca2+ signal that is
thought to result from suppression of membrane Ca2+ channels and pumps
that control the release and/or uptake of intracellular Ca2+. Further, the
effects of TCDD on myometrial cells appear to vary as a function of the
level of the oxytocin stimulus.

To verify the validity of these claims, we use a 2-fold cross-validation
scheme where 80% of the data are used to train the classifier and 20% to
test it. For each random split of data into training and test sets, we use a
k-NN classifier with k = 1–5 nearest neighbors on the training and take the
average of the error rates on the test set. The error rates averaged over 1000
runs of the cross validation are shown in Table 1. Notice that the errors
reflect our observations, but also show that the “post peak” region could be
more useful in the basal hormone level if one tries to predict between the
control and treated cell lines.

7.3. Ca2+ peak comparison. Of course, all these results depend on the
original structure of the data, meaning that no manipulation was made
to alter the original Ca2+ response other than the imputation of values
where saturation occurs. If we wanted to compare the peaks of the initial
Ca2+ signal directly, we would have to align the peaks by normalizing them,
that is, dividing the EigenSignal by the first 3 initial values, and also per-
form landmark registration, where the landmark would be the point where

Table 1

Mean error of 1000 runs of our cross-validation scheme to test the proper classification
of the treated and control cell lines using the EigenCell vectors

Hormone level Peak region Post peak region

Basal 53% 20%
Low 0% 46%
High 9% 26%
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Table 2

Test statistic (difference of mean) between control and treated peak height and peak area
and p-values after running permutation tests with 1,000,000 permuted samples

Hormone level Test stat./p-value Peak height Peak area

Basal x̄C − x̄T 0.129 1.906
p-value 0.074 0.001

Low x̄C − x̄T −0.32 2.71
p-value 0.902 0.046

High x̄C − x̄T 0.669 8.883
p-value 0.000 0.000

the signal begins to rise. Figure 13 shows the normalized and landmarked
first EigenSignal curves obtained from the “peak” region after applying the
WSVD. A comparison of the peak height and peak area between control
and treatment groups is made. By looking at the boxplots in Figure 13,
it is reasonable to hypothesize that the mean peak height and area in the
control group are greater than those of the treated group. We performed an
exact test where we permuted the labels of the peak height and peak area
1,000,000 times. Table 2 shows the resulting test statistic and p-value for
the peak height and area.

We see a significant difference in the area of the Ca2+ signals when com-
paring the control and TCDD treated cells. This suggests that TCDD may
perturb one or more pathways that regulate Ca2+ entry through channels
in the plasma membrane, Ca2+ release from intracellular stores in the en-
doplasmic reticulum (ER) or other mechanisms to remove Ca2+ from the
cytosol by pumps in the plasma membrane or ER membrane. Each of these
pathways can now be analyzed in turn to identify the molecular basis for
altered Ca2+ signals in these cells and, therefore, the physiological relevance
of the decrease in Ca2+ signaling will be determined. Nevertheless, a sig-
nificant alteration in calcium signaling indicates a significant change in the
myometrial cell contractile response.

The differences in peak height, however, seem to be a bit mixed. One
important result to note is that for both the peak height and peak area the
permutation test is highly significant in the high hormone group, indicating
a strong difference between the control and treated cell lines. A decrease in
Ca2+ signaling corresponds with a decrease in myometrial contraction (i.e.,
uterine contraction), and a high level of estrogen/progesterone hormone level
in myometrial cells is meant to simulate a response of these cells at the late
stages of pregnancy. This means that “normal” function of the uterus could
be compromised by TCDD at the late stages of pregnancy, an important
finding that deserves further investigation and expansion of our research.
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Fig. 12. A scatter plot of the first and second EigenCell vectors for the “peak” region
(left column) and the“post peak” region (right column). The control ‘◦’ and treated ‘+’
groups are shown for the three levels of hormone: basal, low and high.

8. Conclusion. In this work we use the SVD in four different ways:

1. First, we use it to detect the Ca2+ signal by using the initial first Eigen-
Pixel vector. This approach summarizes cell location information across
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Fig. 13. Left column: Normalized and landmarked first EigenSignal vectors of the “peak”
region in the control and treated cells for each of the three hormone levels: basal, low and
high. Middle column: Boxplots of the peak height for the control and treated cells in each
of the three hormone levels: basal, low and high. Right column: Boxplots of the area in the
“peak” region for the control and treated cells in each of the three hormone levels: basal,
low and high.
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all 512 images instead of using only one image as is typically done for
these data.

2. Second, another SVD was then used to extract the Ca2+ signal from the
pixel-wise matrix derived after segmenting the cell region in raw images.
These first EigenSignal and first EigenPixel vectors serve as the templates
used to “clean up” the signal.

3. Third, we used those candidate EigenSignal and EigenPixel vectors to
clarify the Ca2+ signal by applying a new weighted SVD, the WSVD, to
impute values where saturation occurs in the signal.

4. Finally, we use the singular value decomposition once more to discrimi-
nate between control and treated EigenSignal vectors resulting from the
WSVD. We summarize the variation in the control and treated cell lines
by capturing the variability of each cell into one value per cell, giving us
the EigenCell vector.

To our knowledge Ca2+ signal detection, extraction, clarification and com-
parison using the SVD has not been previously performed. These four ap-
plications of the singular value decomposition to analyze Ca2+ signaling in
myometrial cells show its utility and flexibility for analyzing complex Ca2+

signals such as oscillations and waves.
An additional finding is that saturation undermines the Ca2+ signal ob-

tained by simply averaging the pixels representing the cell. Correcting the
effects of saturation must be an integral step while studying these type of
data. Moreover, the hypothesized importance of the “peak” region as being
a way of characterizing cells of this type seems to be a valid claim. From our
analysis we were able to clearly distinguish between the treated and con-
trol groups by using the area in the “peak” region and by using the scatter
plots of EigenCells vectors obtained in our fourth and final application of
the SVD.

To conclude, we have shown the importance of the initial peak in Ca2+

signaling of myometrial cells by the SVD, and also exhibit new uses of the
SVD to segment, extract, clarify and compare Ca2+ signals in this context.

SUPPLEMENTARY MATERIAL

Supplement A: Calcium ion signaling movies with TCDD exposure (DOI:
10.1214/07-AOAS253SUPPA; .zip). When unzipped, the movie is in .avi
format, and is 30 MB in size. One can view it, for example, using windows
media player.

Supplement B: Calcium ion signaling movies without TCDD exposure
(DOI: 10.1214/07-AOAS253SUPPB; .zip). When unzipped, the movie is in
.avi format, and is 40 MB in size. One can view it, for example, using
windows media player.

http://dx.doi.org/10.1214/07-AOAS253SUPPA
http://dx.doi.org/10.1214/07-AOAS253SUPPB
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