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Abstract

We systematically construct flipped SU(5) × U(1)X models without and with bulk vector-like

particles from F-theory. To realize the decoupling scenario, we introduce sets of vector-like particles

in complete SU(5)× U(1) multiplets at the TeV scale, or at the intermediate scale, or at the TeV

scale and high scale. To avoid the Landau pole problem for the gauge couplings, we can only

introduce five sets of vector-like particles around the TeV scale. These vector-like particles can

couple to the Standard Model singlet fields, and obtain suitable masses by Higgs mechanism.

We study gauge coupling unification in detail. We show that the U(1)X flux contributions to

the gauge couplings preserve the SU(5) × U(1)X gauge coupling unification. We calculate the

SU(3)C×SU(2)L unification scales, and the SU(5)×U(1)X unification scales and unified couplings.

In most of our models, the high-scale or bulk vector-like particles can be considered as string-scale

threshold corrections since their masses are close to the string scale. Futhermore, we discuss the

phenomenological consequences of our models. In particular, in the models with TeV-scale vector-

like particles, the vector-like particles can be observed at the Large Hadron collider, the proton

decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even Higgs

boson mass can be increased, the hybrid inflation can be naturally realized, and the correct cosmic

primodial density fluctuations can be generated.
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I. INTRODUCTION

The goal of string phenomenology is to construct realistic string models with moduli

stabilization and without chiral exotics, and then make clean predictions that can tested

at the Large Hadron Collider (LHC) and other future experiments. As we know, there are

three kinds of string models which have been studied extensively

(1) Heterotic E8 ×E8 string model building. The supersymmetric Standard Model (SM)

can be constructed via the orbifold compactifications [1–3] and the Calabi-Yau manifold

compactifications [4, 5]. The orbifold compactifications are based on the weakly coupled

heterotic E8×E8 string theory, and the Minimal Supersymmetric Standard Model (MSSM)

without chiral exotic particles can be constructed [1, 2]. However, the gauge coupling uni-

fication scale in the MSSM is around 2× 1016 GeV [6], while the string scale Mstring in the

weakly coupled heterotic string theory is [7]

Mstring = gstring × 5.27× 1017 GeV , (1)

where gstring is the string coupling constant. Note that gstring ∼ O(1), we have

Mstring ≈ 5× 1017 GeV . (2)

Thus, there exists a factor of approximately 20 to 25 between the MSSM unification scale

and the string scale. This problem can be solved in the strong coupled heterotic E8 × E8

string theory or M-theory on S1/Z2 [8] with Calabi-Yau manifold compactifications since the

eleventh dimension can be relatively large about 1014 GeV [9], and the Grand Unified Theo-

ries (GUTs) can be realized [4, 5]. To break the GUT group via the Wilson line mechanism,

the fundamental group of the Calabi-Yau manifolds should be non-trivial. Although the

desirable Calabi-Yau manifolds can be constructed [4, 5], there do exist the following prob-

lems: the vanishing down-type quark Yukawa couplings; the possible R-parity violations;

and the extra massless U(1) if the rank of GUT group is five or higher.

(2) Free fermionic string model builing. Realistic models with clean particle spectra can

only be constructed at the Kac-Moody level one [10–14]. Note that the Higgs fields in the

adjoint representation or higher can not be generated at the Kac-Moody level one, only

three kinds of models can be constructed: the Standard-like models, Pati-Salam models,

and flipped SU(5) models [10–14].

(3) D-brane model building. There are two kinds of such models: (i) Intersecting D-

brane models [15–23]; (ii) Orientifolds of Gepner models [24, 25]. The standard-like models,

Pati-Salam models, trinification models, SU(5) models, as well as flipped SU(5) models

have been constructed [16–22, 24, 25]. However, in the trinification models, SU(5) models,

and flipped SU(5) models, some of the SM fermion Yukawa couplings are forbidden due to
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the remaining global U(1) symmetries at the perturbative level, for example, the up-type

quark Yukawa couplings 10i10j5H in the SU(5) model. This problem might be solved in the

Type IIB orientifold compactifications [26] due to non-perturbative instanton effects [27]. In

the standard-like models and Pati-Salam models, we can have all the SM fermion Yukawa

couplings at the stringy tree level in principle. However, there are some problems in the

generic standard-like models and Pati-Salam models: rank-one problem in the SM fermion

Yukawa coupling matrices, no gauge coupling unification, and additional exotic particles,

etc. These problems can be solved only in a few models [28, 29].

On the other hand, there are strong indications favoring GUTs from the known low-energy

particle physics. The gauge couplings in the MSSM are indeed unified at the GUT scale

MGUT around 2× 1016 GeV [6]. Moreover, one family of the SM fermions forms the 10 and

5 representations in SU(5) models and a single spinor 16 representation in SO(10) models.

Especially, we indeed can have the Yukawa coupling unification for the third family of the

SM fermions [30]. Also, GUTs can explain charge quantization naturally, etc. Therefore, it

is very interesting to construct GUTs especially SO(10) models from the string theory.

Recently, semi-realistic GUTs have been constructed locally in the F-theory with seven-

branes, which can be considered as the strongly coupled formulation of ten-dimensional Type

IIB string theory with a varying axion (a)-dilaton (φ) field τ = a+ie−φ [31–35] (For a briefly

review, see Section III.). Then further model building and phenomenological consequences

have been studied extensively [36–57]. Note that the known GUTs without additional chiral

exotic particles are asymptotically free, and asymptotic freedom can be translated into the

existence of a consistent decompactification limit. Also, the Planck scale MPl is about 10
19

GeV, so, MGUT/MPl is indeed a small number around 10−3 − 10−2. Thus, it is natural to

assume that MGUT/MPl is small from the effective field theory point of view in the bottom-

up approach, and then gravity can be decoupled. In the decoupling limit where MPl → ∞

while MGUT remains finite, semi-realistic SU(5) models and SO(10) models without chiral

exotic particles have been constructed locally. To decouple gravity and avoid the bulk

matter fields on the observable seven-branes, we can show that the observable seven-branes

should wrap a del Pezzo n surface dPn with n ≥ 2 for the internal space dimensions (For

a review of del Pezzo n surfaces, see Appendix A.) [33, 34]. The GUT gauge fields are

on the worldvolume of the observable seven-branes, while the matter and Higgs fields are

localized on the codimension-one curves in dPn. A brand new feature is that the SU(5)

and SO(10) gauge symmetries can be broken down to the SM and SU(5) × U(1) gauge

symmetries, respectively by turning on U(1) fluxes. Because the SO(10) models have not

only gauge interaction unification but also fermion unification, it seems to us that SO(10)

models is more interesting than SU(5). In the SO(10) models, to eliminate the zero modes

of the chiral exotic particles, we must break the SO(10) gauge symmetry down to the flipped
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SU(5)×U(1)X gauge symmetry [34]. Interestingly, in flipped SU(5)×U(1)X models [58, 59],

we can solve the doublet-triplet splitting problem via the missing partner mechanism [60].

In flipped SU(5) × U(1)X models of SO(10) origin, there are two unification scales:

the SU(2)L × SU(3)C unification scale M23 and the SU(5) × U(1)X unfication scale MU

where M23 is about the usual GUT scale around 2× 1016 GeV. To solve the little hierarchy

problem between the GUT scale and string scale Mstring, we have introduced extra vector-

like particles, and achieved the string-scale gauge coupling unification in flipped SU(5) ×

U(1)X models [61, 62]. Similarly, for the flipped SU(5) × U(1)X models from F-theory, we

can naturally obtain the decoupling scenario where M23/MU or M23/MPl can be small by

introducing the additional vector-like particles.

In this paper, we briefly review the flipped SU(5)×U(1)X models with string-scale gauge

coupling unification [61, 62]. We also review the F-theory model building. To separate the

mass scales M23 and MU and realize the decoupling scenario, we introduce sets of vector-

like particles in complete SU(5) × U(1)X multiplets, whose contributions to the one-loop

beta functions of the U(1)Y , SU(2)L and SU(3)C gauge symmetries, ∆b1, ∆b2 and ∆b3

respectively, satisfy ∆b1 < ∆b2 = ∆b3. To avoid the Landau pole problem for the gauge

couplings, we can only introduce five sets of vector-like particles around the TeV scale

which could be observed at the LHC. Moreover, we systematically construct the flipped

SU(5) × U(1)X models without bulk vector-like particles: (i) Type I models only have

the vector-like particles around the TeV scale; (ii) Type II models only have the vector-

like particles at the intermediate scale; (iii) Type III models have the vector-like particles

around the TeV scale and the high scale (for definitions, see Section IV). For a complete

study, we also construct the Type I, Type II and Type III models with one pair and two pairs

of bulk vector-like particles on the observable seven-branes. Interestingly, these vector-like

particles can couple to the SM singlet fields, and can obtain masses about from the TeV

scale to the GUT scale via Higgs mechanism. In addition, we study the gauge coupling

unification in all of our models without bulk vector-like particles, and in the Type IA and

Type IIA models (for definitions, see Sections IV and V) with bulk vector-like particles. We

also study string-scale gauge coupling unification defined in Eq. 1 in the Type III models,

and the Type IA and Type IIA models with bulk vector-like particles. We show that the

U(1)X flux contributions to the gauge couplings preserve the SU(5)×U(1)X gauge coupling

unification. We calculate the SU(3)C × SU(2)L unification scales, and the SU(5) × U(1)X

unification scales and unified couplings. Interesetingly, in most of our models, the high-scale

or bulk vector-like particles can be considered as the string-scale threshold corrections since

their masses are close to the string scale. We show that the Z0 and Z1 sets of vector-like

particles (for definitions, see Section II) can have masses below the 1 TeV scale, and then

they can be produced at the LHC. Thus, the corresponding models, which have Z0 or Z1
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sets of vector-like particles at about 1 TeV scale, can be tested at the LHC.

Furthermore, we discuss the phenomenological consequences of our models: (i) We point

out that there may exist additional chiral exotic particles or vector-like particles when we

embed the local F-theory GUTs into the global consistent setup. (ii) Considering suitable

threshold corrections at the supersymmetry breaking scale and the M23 scale, we might have

the Z2, Z3 and Z4 sets of vector-like particles (for definitions, see Section II) whose masses

can be below the 1 TeV scale. Thus, all of our models with TeV-scale vector-like particles

could be tested at the LHC. (iii) There are Yukawa interactions between the MSSM Higgs

fields and the TeV-scale vector-like particles. With relatively large Yuakwa couplings which

are consistent with the perturbative unification, we can increase the lightest CP-even Higgs

boson mass. (iv) Considering proton decay p → e+π0 via dimension-6 operator from heavy

gauge boson exchange and including the threshold corrections, we obtain that the proton

life time in our models is smaller than 1 × 1035 years [43]. Thus, our models can definitely

be tested at the future Hyper-Kamiokande proton decay experiment [63]. (v) The neutrino

masses and mixings can be generated via the seesaw mechanism, and the baryon asymmetry

can be explained via the leptogenesis. (vi) We can naturally realize the hybrid inflation in

our models, solve the monopole problem, and obtain the correct cosmic primodial density

fluctuations.

This paper is organized as follows: in Section II, we briefly review the flipped SU(5) ×

U(1)X models. In Section III, we review the F-theory model buildings, and discuss the

minimal flipped SU(5) × U(1)X model. In Sections IV and V, we systematically construct

the flipped SU(5)×U(1)X models without and with bulk vector-like particles, respectively.

We discuss the phenomenological consequences in Section VI. Our discussion and conclusions

are in Section VI. In Appendix A, we briefly review the del Pezzo surfaces. In Appendices

B and C, we present the vector-like particle curves and the gauge bundle assignments in our

models with one pair and two paris of bulk vector-like particles, respectively. In Appendix

D, we give the one-loop and two-loop beta functions for the bulk vector-like particles.

II. FLIPPED SU(5)× U(1)X MODELS

We first briefly review the minimal flipped SU(5) model [58–60]. The gauge group for

flipped SU(5) model is SU(5) × U(1)X , which can be embedded into SO(10) model. We

define the generator U(1)Y ′ in SU(5) as

TU(1)Y′
= diag

(

−
1

3
,−

1

3
,−

1

3
,
1

2
,
1

2

)

. (3)
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The hypercharge is given by

QY =
1

5
(QX −QY ′) . (4)

There are three families of the SM fermions whose quantum numbers under SU(5)×U(1)X

are

Fi = (10, 1), f̄i = (5̄,−3), l̄i = (1, 5), (5)

where i = 1, 2, 3. The SM particle assignments in Fi, f̄i and l̄i are

Fi = (Qi, D
c
i , N

c
i ), f i = (U c

i , Li), li = Ec
i , (6)

where Qi and Li are respectively the superfields of the left-handed quark and lepton doublets,

U c
i , D

c
i , E

c
i and N c

i are the CP conjugated superfields for the right-handed up-type quarks,

down-type quarks, leptons and neutrinos, respectively. To generate the heavy right-handed

neutrino masses, we introduce three SM singlets φi.

To break the GUT and electroweak gauge symmetries, we introduce two pairs of Higgs

representations

H = (10, 1), H = (10,−1), h = (5,−2), h = (5̄, 2). (7)

We label the states in the H multiplet by the same symbols as in the F multiplet, and for

H we just add “bar” above the fields. Explicitly, the Higgs particles are

H = (QH , D
c
H , N

c
H) , H = (QH , D

c

H , N
c

H) , (8)

h = (Dh, Dh, Dh, Hd) , h = (Dh, Dh, Dh, Hu) , (9)

where Hd and Hu are one pair of Higgs doublets in the MSSM. We also add one singlet Φ.

To break the SU(5) × U(1)X gauge symmetry down to the SM gauge symmetry, we

introduce the following Higgs superpotential at the GUT scale

W GUT = λ1HHh+ λ2HHh+ Φ(HH −M2
H) . (10)

There is only one F-flat and D-flat direction, which can always be rotated along the N c
H and

N
c

H directions. So, we obtain that < N c
H >=< N

c

H >= MH. In addition, the superfields H

and H are eaten and acquire large masses via the supersymmetric Higgs mechanism, except

for Dc
H and D

c

H . And the superpotential λ1HHh and λ2HHh couple the Dc
H and D

c

H with

the Dh and Dh, respectively, to form the massive eigenstates with masses 2λ1 < N c
H > and

2λ2 < N
c

H >. So, we naturally have the doublet-triplet splitting due to the missing partner
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mechanism [60]. Because the triplets in h and h only have small mixing through the µ

term, the Higgsino-exchange mediated proton decay are negligible, i.e., we do not have the

dimension-5 proton decay problem.

The SM fermion masses are from the following superpotential

WYukawa = yDijFiFjh+ yUν
ij Fif jh+ yEij lif jh + µhh+ yNij φiHFj , (11)

where yDij , y
Uν
ij , yEij and yNij are Yukawa couplings, and µ is the bilinear Higgs mass term.

After the SU(5) × U(1)X gauge symmetry is broken down to the SM gauge symmetry,

the above superpotential gives

WSSM = yDijD
c
iQjHd + yUν

ji U
c
i QjHu + yEijE

c
iLjHd + yUν

ij N c
i LjHu

+µHdHu + yNij 〈N
c

H〉φiN
c
j + · · · (decoupled below MGUT ). (12)

Similar to the flipped SU(5) × U(1)X models with string-scale gauge coupling unifica-

tion [61, 62], we introduce vector-like particles which form the complete flipped SU(5) ×

U(1)X multiplets. The quantum numbers for these additional vector-like particles under the

SU(5)× U(1)X gauge symmetry are

XF = (10, 1) , XF = (10,−1) , (13)

Xf = (5, 3) , Xf = (5,−3) , (14)

Xl = (1,−5) , Xl = (1, 5) , (15)

Xh = (5,−2) , Xh = (5, 2) , (16)

XT = (10,−4) , XT = (10, 4) . (17)

Moreover, the particle contents from the decompositions of XF , XF , Xf , Xf , Xl, Xl,

Xh, Xh, XF , and XT , under the SM gauge symmetry are

XF = (XQ,XDc, XN c) , XF = (XQc, XD,XN) , (18)

Xf = (XU,XLc) , Xf = (XU c, XL) , (19)

Xl = XE , Xl = XEc , (20)

Xh = (XD,XL) , Xh = (XDc, XLc) , (21)

XT = (XY,XU c, XE) , XT = (XY c, XU,XEc) . (22)

Under the SU(3)C × SU(2)L ×U(1)Y gauge symmetry, the quantum numbers for the extra
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vector-like particles are

XQ = (3, 2,
1

6
) , XQc = (3̄, 2,−

1

6
) , (23)

XU = (3, 1,
2

3
) , XU c = (3̄, 1,−

2

3
) , (24)

XD = (3, 1,−
1

3
) , XDc = (3̄, 1,

1

3
) , (25)

XL = (1, 2,−
1

2
) , XLc = (1, 2,

1

2
) , (26)

XE = (1, 1,−1) , XEc = (1, 1, 1) , (27)

XN = (1, 1, 0) , XN c = (1, 1, 0) , (28)

XY = (3, 2,−
5

6
) , XY c = (3̄, 2,

5

6
) . (29)

To separate the mass scales M23 and MU in our F-theory flipped SU(5)×U(1)X models,

we need to introduce sets of vector-like particles around the TeV scale or intermediate scale

whose contributions to the one-loop beta functions satisfy ∆b1 < ∆b2 = ∆b3. To avoid the

Landau pole problem, we have shown that there are only five possible such sets of vector-like

particles as follows due to the quantizations of the one-loop beta functions [62]

Z0 : XF +XF ; (30)

Z1 : XF +XF +Xl +Xl ; (31)

Z2 : XF +XF +Xf +Xf ; (32)

Z3 : XF +XF +Xl +Xl +Xh+Xh ; (33)

Z4 : XF +XF +Xh+Xh . (34)

Thus, we will construct the flipped SU(5) × U(1)X models with these sets of vector-like

particles around the TeV scale, and two models respectively with Z0 and Z4 sets at the

intermedate scale.

III. F-THEORY MODEL BUILDING

We first briefly review the F-theory model building [31–35]. The twelve-dimensional F

theory is a convenient way to describe Type IIB vacua with varying axion-dilaton τ =

a + ie−φ. We compactify F-theory on a Calabi-Yau fourfold, which is elliptically fibered

π : Y4 → B3 with a section σ : B3 → Y4. The base B3 is the internal space dimensions

in Type IIB string theory, and the complex structure of the T 2 fibre encodes τ at each

point of B3. The SM or GUT gauge theories are on the worldvolume of the observable

seven-branes that wrap a complex codimension-one suface in B3. Denoting the complex
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coordinate tranverse to these seven-branes in B3 as z, we can write the elliptic fibration in

Weierstrass form

y2 = x3 + f(z)x+ g(z) , (35)

where f(z) and g(z) are sections of K−4
B3

and K−6
B3

, respectively. The complex structure of

the fibre is

j(τ) =
4(24f)3

∆
, ∆ = 4f 3 + 27g2 . (36)

At the discriminant locus {∆ = 0} ⊂ B3, the torus T 2 degenerates by pinching one of its

cycles and becomes singular. For a generic pinching one-cycle (p, q) = pα + qβ where α

and β are one-cylces for the torus T 2, we obtain a (p, q) seven-brane in the locus where the

(p, q) string can end. The singularity types of the ellitically fibres fall into the familiar ADE

classifications, and we identify the corresponding ADE gauge groups on the seven-brane

world-volume. This is one of the most important advantages for the F-theory model building:

the exceptional gauge groups appear rather naturally, which is absent in perturbative Type

II string theory. And then all the SM fermion Yuakwa couplings in the GUTs can be

generated.

We assume that the observable seven-branes with GUT models on its worldvolume wrap

a complex codimension-one suface S in B3, and the observable gauge symmetry is GS. When

h1,0(S) 6= 0, the low energy spectrum may contain the extra states obtained by reduction of

the bulk supergravity modes of compactification. So we require that π1(S) be a finite group.

In order to decouple gravity and construct models locally, the extension of the local metric

on S to a local Calabi-Yau fourfold must have a limit where the surface S can be shrunk

to zero size. This implies that the anti-canonical bundle on S must be ample. Therefore, S

is a del Pezzo n surface dPn with n ≥ 2 in which h2,0(S) = 0. By the way, the Hirzebruch

surfaces with degree larger than 2 satisfy h2,0(S) = 0 but do not define the fully consistent

decoupled models [33, 34].

To describe the spectrum, we have to study the gauge theory of the worldvolume on

the seven-branes. We start from the maximal supersymmetric gauge theory on R3,1 × C2

and then replace C2 with the Kähler surface S. In order to have four-dimensional N = 1

supersymmetry, the maximal supersymmetric gauge theory on R
3,1 ×C

2 should be twisted.

It was shown that there exists a unique twist preserving N = 1 supersymmetry in four

dimensions, and chiral matters can arise from the bulk S or the codimension-one curve Σ

in S which is the intersection between the observable seven-branes and the other seven-

brane(s) [33, 34].

In order to have the matter fields on S, we consider a non-trivial vector bundle on S with

a structure group HS which is a subgroup of GS. Then the gauge group GS is broken down
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to ΓS ×HS, and the adjoint representation ad(GS) of the GS is decomposed as

ad(GS) → ad(ΓS)
⊕

ad(HS)
⊕

j

(τj , Tj) . (37)

Employing the vanishing theorem of the del Pezzo surfaces, we obtain the numbers of the

generations and anti-generations by calculating the zero modes of the Dirac operator on S

nτj = − χ(S,Tj) , nτ∗j
= − χ(S,Tj

∗) , (38)

where Tj is the vector bundle on S whose sections transform in the representation Tj of HS,

and Tj
∗ is the dual bundle of Tj. In particular, when the HS bundle is a line bundle L, we

have

nτj = − χ(S, Lj) = −
[

1 +
1

2

(

∫

S

c1(L
j)c1(S) +

∫

S

c1(L
j)2
)

]

. (39)

In order to preserve supersymmetry, the line bundle L should satisfy the BPS equation [33]

JS ∧ c1(L) = 0, (40)

where JS is the Kähler form on S. Moreover, the admissible supersymmetric line bundles

on del Pezzo surfaces must satisfy c1(L)c1(S) = 0, thus, nτj = nτ∗j
and only the vector-

like particles can be obtained. In short, we can not have the chiral matter fields on the

worldvolume of the observable seven-branes.

Interestingly, the chiral superfields can come from the intersections between the observ-

able seven-branes and the other seven-brane(s) [33, 34]. Let us consider a stack of seven-

branes with gauge group GS′ that wrap a codimension-one surface S ′ in B3. The intersection

of S and S ′ is a codimenion-one curve (Riemann surface) Σ in S and S ′, and the gauge sym-

metry on Σ will be enhanced to GΣ where GΣ ⊃ GS ×GS′. On this curve, there exist chiral

matters from the decomposition of the adjoint representation adGΣ of GΣ as follows

adGΣ = adGS ⊕ adGS′ ⊕k (Uk ⊗ U ′

k) . (41)

Turning on the non-trivial gauge bundles on S and S ′ respectively with structure groups HS

and HS′, we break the gauge group GS × GS′ down to the commutant subgroup ΓS × ΓS′.

Defining Γ ≡ ΓS × ΓS′ and H ≡ HS × HS′, we can decompose U ⊗ U ′ into the irreducible

representations as follows

U ⊗ U ′ =
⊕

k
(rk, Vk), (42)

where rk and Vk are the representations of Γ and H , respectively. The light chiral fermions

in the representation rk are determined by the zero modes of the Dirac operator on Σ. The

net number of chiral superfields is given by

Nrk −Nr∗
k
= χ(Σ, K

1/2
Σ ⊗Vk), (43)
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where KΣ is the restriction of canonical bundle on the curve Σ, and Vk is the vector bundle

whose sections transform in the representation Vk of the structure group H .

In the F-theory model building, we are interested in the models where GS′ is U(1)′, and

HS and HS′ are respectively U(1) and U(1)′. Then the vector bundles on S and S ′ are line

bundles L and L′. The adjoint representation adGΣ of GΣ is decomposed into a direct sum

of the irreducible representations under the group ΓS × U(1) × U(1)′ that can be denoted

as (rj,qj,q
′

j)

adGΣ = ad(ΓS)⊕ adGS′ ⊕j (rj,qj,q
′

j) . (44)

The numbers of chiral supefields in the representation (rj,qj,q
′

j) and their Hermitian con-

jugates on the curve Σ are given by

N(rj,qj,q
′

j
) = h0(Σ,Vj) , N(̄rj,−qj,−q′

j
) = h1(Σ,Vj) , (45)

where

Vj = K
1/2
Σ ⊗ L

qj
Σ ⊗ L′

q′j
Σ , (46)

where K
1/2
Σ , L

rj
Σ and L′

q′j
Σ are the restrictions of canonical bundle KS, line bundles L and L′

on the curve Σ, respectively. In particular, if the volume of S ′ is infinite, GS′ = U(1)′ is

decoupled. And then the index q′

j can be ignored.

Using Riemann-Roch theorem, we obtain the net number of chiral supefields in the rep-

resentation (rj,qj,q
′

j)

N(rj,qj,q
′

j
) −N(̄rj,−qj,−q′

j
) = 1− g + deg(Vj) , (47)

where g is the genus of the curve Σ.

Moreover, we can obtain the Yukawa couplings at the triple intersection of three curves

Σi, Σj and Σk where the gauge group or the singularity type is enhanced further. To have

the triple intersections, the corresponding homology classes [Σi], [Σj ] and [Σk] of the curves

Σi, Σj and Σk must satisfy the following conditions

[Σi] · [Σj ] > 0 , [Σi] · [Σk] > 0 , [Σj ] · [Σk] > 0 . (48)

In this paper, we will construct flipped SU(5)× U(1)X models systematically. Thus, we

will choose GS = SO(10) and HS = U(1)X . Under SU(5)× U(1)X , the SO(10) representa-

tions are decomposed as follows

10 = (5,−2)⊕ (5, 2) , (49)

16 = (10, 1)⊕ (5,−3)⊕ (1, 5) , (50)

45 = (24, 0)⊕ (1, 0)⊕ (10,−4)⊕ (10, 4) . (51)
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Moreover, the Higgs fields h and h and the vector-like particles Xh and Xh are on the

curves where the SO(10) gauge symmetry is enhanced to SO(12). Under SO(10)× U(1),

the adjoint representation of SO(12) is decomposed as follows

66 = (45, 0)⊕ (1, 0)⊕ (10, 2)⊕ (10,−2) . (52)

All the other fields in our models are on the curves where the SO(10) gauge symmetry is

enhanced to E6. Under SO(10)× U(1), the adjoint representation of E6 is decomposed as

follows

78 = (45, 0)⊕ (1, 0)⊕ (16, 3)⊕ (16,−3) . (53)

In addition, the SM fermion Yukawa couplings in our models arise from the triple intersec-

tions where the gauge symmetry is enhanced to E7.

In this paper, we consider the del Pezzo 8 surface dP8. In the Section IV, we will choose

the line bundle L = OS(E1−E2)
1/4, and construct the flipped SU(5)×U(1)X models without

bulk vector-like particles XTi and XT i. Moreover, in the Section V, we will choose the line

bundles as L = OS(E1−E2+E4−E5)
1/4 and L = OS(E1−E2+E4−E5+E6−E7)

1/4, and

we construct the flipped SU(5)× U(1)X models with one and two pairs of bulk vector-like

particles XTi and XT i, respectively.

In our model building, the SM fermion and Higgs curves with homology classes and the

gauge bundle assignments for each curve in the minimal flipped SU(5)× U(1)X model are

universal in all of our models and are given in Table I. In short, all three generations

localize on the matter curve ΣF which is pinched. Because the homology classes for the SM

fermion and Higgs curves satisfy Eq. (48), the SM fermion Yukawa couplings are allowed.

There are singlets in the models from the intersections of the other seven-branes as well.

For simplicity, in the following discussions, we will assume the universal supersymmetry

breaking, and denote the supersymmetry breaking scale as MS.

Particles Curve Class gΣ LΣ L′n
Σ

h Σh 2H − E2 − E3 0 O
Σ

(d)
H

(−1)1/4 O
Σ

(d)
H

(1)1/2

h Σh 2H − E1 − E3 0 O
Σ

(u)
H

(1)1/4 O
Σ

(u)
H

(−1)1/2

16i ΣF (pinched) 3H 1 OΣF
OΣF

(3p′)
(

H +H
)

ΣH(pinched) 3H − E1 − E2 1 OΣH
(p12)

1/4 OΣh
(p12)

−1/4

TABLE I: The SM fermion and Higgs curves and the gauge bundle assignments for each curve in

the minimal flipped SU(5)× U(1)X model. Here i = 1, 2, 3, and p12 = p1 − p2.
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In the following, we will study the gauge couplings in details. For simplicity, we will

neglect the threshold corrections from the heavy KK modes [64] since their masses are

around the scale MU and higher in our F-theory flipped SU(5)×U(1)X models. In addition,

the U(1)X flux will also change the SU(5) and U(1)X gauge couplings at the unification

scale [35, 45]. From the particle physics point of view, only the relative changes between the

gauge couplings are physically important while the total shifts for the gauge couplings are

not relevant. For example, in the F-theory SU(5) models with U(1)Y flux, only the U(1)Y

flux contributions to the gauge couplings are relevant, and the SM gauge coupling relation

at the string scale is [35, 45]

α−1
1 − α−1

3 =
3

5
(α−1

2 − α−1
3 ) . (54)

Let us consider the flux contributions to the gauge couplings in our F-theory flipped

SU(5) × U(1)X models. For G = SO(10) gauge group, the generators T a of SO(10) are

imaginary antisymmetric 10 × 10 matrices. In terms of the 2 × 2 identity matrix σ0 and

the Pauli matrices σi, they can be written as tensor products of 2 × 2 and 5 × 5 matrices,

(σ0, σ1, σ3) ⊗ A5 and σ2 ⊗ S5 as a complete set, where A5 and S5 are the 5 × 5 real anti-

symmetric and symmetric matrices [65]. In particular, the generator for U(1)X is σ2 ⊗ I5

where I5 is the 5×5 indentiy matrix. Also, the generators for flipped SU(5)×U(1)X are [65]

σ0 ⊗ A3 , σ0 ⊗ A2 , σ1 ⊗AX

σ2 ⊗ S3 , σ2 ⊗ S2 , σ3 ⊗ AX , (55)

where A3 and S3 are respectively the diagonal blocks of A5 and S5 that have indices 1, 2,

and 3, while the diagonal blocks A2 and S2 have indices 4 and 5. AX and SX are the off

diagonal blocks of A5 and S5.

The flux contributions to the gauge couplings can be computed by dimensionally reducing

the Chern-Simons action of the observable seven-branes wrapping on S

SCS = µ7

∫

S×R3,1

a ∧ tr(F 4) . (56)

In our models, the relevant flux is the U(1)X flux, which is the following

〈FU(1)X〉 =
1

2
VU(1)Xσ2 ⊗ I5 . (57)

Let us noramlize the SO(10) generators T a as Tr(T aT b) = 2δab. Then, we obtain the U(1)X

flux contributions to the SU(5) and U(1)X gauge couplings at the string scale in our models

∆α−1
5 = ∆α′−1

1 = −
1

2
τ

∫

S

c21(L
4) , (58)
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where α′

1 is the U(1)X gauge coupling, and
∫

S
c21(L

4) is equal to −2, −4 and −6 for L =

OS(E1−E2)
1/4, L = OS(E1−E2+E4−E5)

1/4 and L = OS(E1−E2+E4−E5+E6−E7)
1/4,

respectively. Because there is no relavant change between the SU(5) and U(1)X gauge

couplings, the U(1)X flux contributions to the gauge couplings are irrelevant from the particle

physics point of view. In short, including the U(1)X flux contributions to the SU(5) and

U(1)X gauge couplings, we still have the SU(5) × U(1)X gauge coupling unification at the

string scale.

IV. FLIPPED SU(5)×U(1)X MODELS WITHOUT BULK VECTOR-LIKE PARTI-

CLES

In this Section, we will take the line bundle as L = OS(E1−E2)
1/4. Note that χ(S, L4) =

0, we do not have the vector-like particles XTi and XT i from the bulk of the observable

seven-branes. In order to separate the mass scales M23 and MU in our F-theory flipped

SU(5) × U(1)X models, we introduce sets of vector-like particles around the TeV scale, or

the intermediate scale, or the TeV scale and high scale. These vector-like particles can couple

to the SM singlet fields from the intersections of the other seven-branes, and then obtain

masses about from the TeV scale to the GUT scale by Higgs mechanism because the wave

functions for the singlet fields can be attractive or repulsive and the vacuum expectation

values of the singlet fields are free parameters.

A. Type I Models with TeV-Scale Vector-Like Particles

In the Type I models, the one-loop contributions to the beta functions from the sets of

vector-like particles satisfy ∆b2 = ∆b3 and ∆b2 − ∆b1 = 6/5. To avoid the Landau pole

problem for the gauge couplings, we can only have three models: Type IA, Type IB and

Type IC models. In the Type IA model, we introduce Z1 set of vector-like particles. In the

Type IB model, we introduce Z2 set of vector-like particles. And in the Type IC model, we

introduce Z3 set of vector-like particles. Also, the curves with homology classes for the extra

vector-like particles and the gauge bundle assignments for each curve in Type IA, Type IB

and Type IC models are given in Table II. For simplicity, we assume that the masses for

these vector-like particles are universal, and we denote the universal mass as MV .

Using the weak-scale data in Ref. [66] and the renormalization group equations (RGEs)

in Ref. [62], we study the gauge coupling unification at the two-loop level. In the

Type IA models, we choose (MV ,MS) = (200 GeV, 360 GeV), (200 GeV, 1000 GeV),

(1000 GeV, 360 GeV), (1000 GeV, 1000 GeV), and (20 TeV, 800 GeV). We find that M23
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Model Particles Curve Class gΣ LΣ L′n
Σ

Type I & II
(

XF +XF
)

ΣXF (pinched) 3H − E1 − E2 − E4 1 OΣXF
(p412)

1/4 OΣXF
(p412)

−1/4

Type IA
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 − E2 − E5 1 OΣXl
(p512)

1/4 OΣXl
(p512)

−5/4

Type IB
(

Xf +Xf
)

ΣXf (pinched) 3H − E1 − E2 − E5 1 OΣXf
(p512)

1/4 OΣXl
(p512)

3/4

Type IC
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 − E2 − E5 1 OΣXl
(p512)

1/4 OΣXl
(p512)

−5/4

(

Xh+Xh
)

ΣXh (pinched) 3H − E1 − E2 − E6 1 OΣXh
(p612)

1/4 OΣXh
(p612)

1/2

Type IIB
(

Xh+Xh
)

ΣXh (pinched) 3H − E1 − E2 − E5 1 OΣXh
(p512)

1/4 OΣXh
(p512)

1/2

TABLE II: The vector-like particle curves and the gauge bundle assignments for each curve in

Type I and Type II models. In particular, we have the vector-like particles (XF,XF ) in all the

Type I and II models. Here, pm12 = pm1 − pm2 for m = 4, 5, 6, and we denote the corresponding

blowing up points as pm1 or pm2 .

Models MV MS M23 gU MU

Type IA 200 360 1.21 × 1016 1.289 6.79 × 1017

Type IA 200 1000 1.25 × 1016 1.194 6.29 × 1017

Type IA 1000 360 1.13 × 1016 1.207 1.20 × 1018

Type IA 1000 1000 1.18 × 1016 1.143 9.33 × 1017

Type IA 2.0× 104 800 1.15 × 1016 1.051 5.54 × 1017

Type IB 2.0× 104 800 1.55 × 1016 1.774 1.04 × 1018

Type IC 2.0× 104 800 1.53 × 1016 1.790 1.32 × 1018

TABLE III: Mass scales in GeV unit and gauge couplings in the Type I F − SU(5) models for

gauge coupling unification.

and MU are respectively around 1.2 × 1016 GeV and 1017−18 GeV, and gU is about 1.2. In

Type IB and Type IC models, to avoid the Landau pole problem for gauge couplings, we

choose (MV ,MS) = (20 TeV, 800 GeV). We present the mass scales M23 and MU , and the

SU(5)× U(1)X unified gauge couplings gU in the Type I models in Table III. We find that

M23 and MU are respectively around 1.5 × 1016 GeV and 1018 GeV, and gU is about 1.8.

In Fig. 1, we plot the gauge coupling unification in the Type IA model with MV = 1 TeV

and MS = 800 GeV, and in the Type IB model with MV = 20 TeV and MS = 800 GeV.

Therefore, only the Type I models can be tested at the LHC since the universal mass for Z1

set of vector-like particles can be below 1 TeV. We emphasize that the SU(3)C × SU(2)L

unified counpling g23 (very close to gU) is stronger than that in the traditional minimal
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flipped SU(5)×U(1)X models due to the TeV-scale vector-like particles, which will be very

important in the proton decay as discussed in the Section VI [43].
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FIG. 1: Gauge coupling unification in the Type IA model with MV = 1 TeV and MS = 800 GeV

(left figure), and in the Type IB model with MV = 20 TeV and MS = 800 GeV.

B. Type II Models with Intermediate-Scale Vector-Like Particles

In the Type II models, the one-loop contributions to the beta functions from the sets of

vector-like particles satisfy ∆b2 = ∆b3 and ∆b2 − ∆b1 = 12/5. We consider two models.

In the Type IIA model, we introduce Z0 set of vector-like particles. And in the Type IIB

model, we introduce Z1 set of vector-like particles. Also, the curves with homology classes

for the extra vector-like particles and the gauge bundle assignments for each curve in Type

IIA and Type IIB models are given in Table II as well. For simplicity, we also assume that

the masses for the vector-like particles are universal, and we denote the universal mass as

MV .

We study the gauge coupling unification in Type II models at the two-loop level. Note

that ∆b2 = ∆b3 and ∆b2 − ∆b1 = 12/5, the SU(5) × U(1)X unification scale MU will be

much higher than the Planck scale MPl if we put the Z0 or Z4 set of vector-like particles

around the TeV scale, and then RGE running must include the supergravity corrections.

Thus, we assume that MV is at the intermediate scale so that we can avoid supergravity

corrections to the RGE running. Choosing MS = 800 GeV, and MV = 1010 GeV, 1011 GeV

and 1012 GeV, we present the mass scales M23 and MU , and the gauge couplings gU in the

Type II models in Table IV. To achieve the string-scale gauge coupling unification defined

in Eq. 1, with MS = 800 GeV, we obtain that MV is equal to 3.68× 1010 GeV in Type IIA

model, and equal to 4.12×1010 GeV in Type IIB model. We present the corresponding mass

scales and gauge couplings in Table IV as well. Moreover, we plot the string-scale gauge

16



Models MV MS M23 gU MU

Type IIA 1010 800 1.07 × 1016 0.817 6.10× 1016

Type IIA 1011 800 1.06 × 1016 0.795 3.17× 1017

Type IIA 1012 800 1.06 × 1016 0.774 1.67× 1017

Type IIA 3.68 × 1010 800 1.08 × 1016 0.804 4.23× 1017

Type IIB 1010 800 1.15 × 1016 0.896 6.98× 1017

Type IIB 1011 800 1.12 × 1016 0.853 3.49× 1017

Type IIB 1012 800 1.10 × 1016 0.816 1.78× 1017

Type IIB 4.12 × 1010 800 1.14 × 1016 0.868 4.57× 1017

TABLE IV: Mass scales in GeV unit and gauge couplings in the Type II F − SU(5) models with

gauge coupling unification and universal supersymmetry breaking.

coupling unification in the Type IIA and Type IIB models in Fig. 2. In short, we find that

M23 and MU are respectively around 1.1 × 1016 GeV and 1017 GeV, and gU is about 0.8.

Unfortunately, Type II models can not be tested at the LHC since the additional vector-like

particles are at the intermediate scale.
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FIG. 2: String-scale gauge coupling unification in the Type IIA model (left figure) and Type IIB

model (right figure) with MS = 800 GeV.

C. Type III Models with the TeV-Scale and High-Scale Vector-Like Particles

In the Type III models, in addition to the vector-like particles around the TeV scale, we

introduce the high-scale vector-like particles as well. For simplicity, we also assume that the

masses of the high-scale vector-like particles are universal, and we denote their universal mass
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as MV ′ . In almost all of the Type III models, M ′

V is around the GUT scale or higher, so, the

high-scale vector-like particles can be considered as the string-scale threshhold corrections.

We consider four kinds of models. In the Type IIIA models, we introduce the following

additional vector-like particles:

Z5 : XF +XF + 3× (Xli +Xli) , (59)

where i = 1, 2, 3. In the Type IIIA1 model, we assume that the vector-like particles

(XF , XF ) have masses around the TeV scale, while the vector-like particles (Xli, Xli) with

i = 1, 2, 3 have masses at the high scale. In the Type IIIA2 model, we assume that the

vector-like particles (XF , XF ) and (Xl1, Xl1) have masses around the TeV scale, while the

vector-like particles (Xlj , Xlj) with j = 2, 3 have masses at the high scale.

In the Type IIIB models, we introduce the following extra vector-like particles:

Z6 : XF +XF + 4× (Xlk +Xlk) , (60)

where k = 1, 2, 3, 4. In the Type IIIB1 model, we assume that the vector-like particles

(XF , XF ) have masses around the TeV scale, while the vector-like particles (Xlk, Xlk)

with k = 1, 2, 3, 4 have masses at the high scale. In the Type IIIB2 model, we assume

that the vector-like particles (XF , XF ) and (Xl4, Xl4) have masses around the TeV scale,

while the vector-like particles (Xli, Xli) with i = 1, 2, 3 have masses at the high scale.

In the Type IIIC models, we introduce the following additional vector-like particles:

Z7 : XF +XF + 3× (Xli +Xli) +Xf +Xf , (61)

where i = 1, 2, 3. In the Type IIIC1 model, we assume that the vector-like particles

(XF , XF ) have masses around the TeV scale, while the vector-like particles (Xli, Xli) with

i = 1, 2, 3, and (Xf , Xf) have masses at the high scale. In the Type IIIC2 model, we

assume that the vector-like particles (XF , XF ) and (Xl1, Xl1) have masses around the TeV

scale, while the vector-like particles (Xlj , Xlj) with j = 2, 3, and (Xf , Xf) have masses

at the high scale. In the Type IIIC3 model, we assume that the vector-like particles (XF ,

XF ) and (Xf , Xf) have masses around the TeV scale, while the vector-like particles (Xli,

Xli), with i = 1, 2, 3 have masses at the high scale.

In the Type IIID models, we introduce the following additional vector-like particles:

Z8 : XF +XF + 3× (Xli +Xli) +Xh+Xh , (62)

where i = 1, 2, 3. In the Type IIID1 model, we assume that the vector-like particles

(XF , XF ) have masses around the TeV scale, while the vector-like particles (Xli, Xli) with

i = 1, 2, 3, and (Xh, Xh) have masses at the high scale. In the Type IIID2 model, we
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assume that the vector-like particles (XF , XF ) and (Xl1, Xl1) have masses around the TeV

scale, while the vector-like particles (Xlj, Xlj) with j = 2, 3, and (Xh, Xh) have masses

at the high scale. In the Type IIID3 model, we assume that the vector-like particles (XF ,

XF ) and (Xh, Xh) have masses around the TeV scale, while the vector-like particles (Xli,

Xli) with i = 1, 2, 3 have masses at the high scale. In the Type IIID4 model, we assume

that the vector-like particles (XF , XF ), (Xl1, Xl1) and (Xh, Xh) have masses around the

TeV scale, while the vector-like particles (Xli, Xli) with i = 2, 3 have masses at the high

scale.

Models Particles Curve Class gΣ LΣ L′n
Σ

Type III
(

XF +XF
)

ΣXF (pinched) 3H − E1 − E2 − E4 1 OΣXF
(p412)

1/4 OΣXF
(p412)

−1/4

(

Xli +Xli
)

ΣXli (pinched) 3H − E1 −E2 − Ej 1 OΣXf
(pj12)

1/4 OΣXf
(pj12)

−5/4

Type IIIA
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 − E2 − E5 1 OΣXl
(p512)

1/4 OΣXf
(p512)

−5/4

Type IIIB
(

Xf +Xf
)

ΣXf (pinched) 3H − E1 − E2 − E5 1 OΣXf
(p512)

1/4 OΣXf
(p512)

3/4

Type IIID
(

Xh+Xh
)

ΣXh (pinched) 3H − E1 − E2 − E5 1 OΣXh
(p512)

1/4 OΣXh
(p512)

1/2

TABLE V: The vector-like particle curves and the gauge bundle assignments for each curve in

Type III models. In particular, we have the vector-like particles (XF,XF ) and (Xli, Xli) with

i = 1, 2, 3 in all the Type III models. Here, j = i+ 5, and pm12 = pm1 − pm2 for m = 4, 5, 6, 7, 8.

And we denote the corresponding blowing up points as pm1 or pm2 .

Moreover, the curves with homology classes for the additional vector-like particles and

the gauge bundle assignments for each curve in Type III models are given in Table V. We

also present the complete additional vector-like particles at the scales MV and MV ′ in Type

III models in the Table VI. In short, at the TeV scale, we have Z0 set of vector-like particles

in the Type IIIX1 models where X=A, B, C, D; we have Z1 set of vector-like particles in the

Type IIIX2 models; we have Z2 set of vector-like particles in the Type IIIC3 model; we have

Z3 set of vector-like particles in the Type IIID4 model; and we have Z4 set of vector-like

particles in the Type IIID3 model.

Furthermore, first, we study the gauge coupling unification in Type III models at the

two-loop level. We choose MS = 800 GeV and MV ′ = 1 × 1016 GeV. For the Type IIIX1

and Type IIIX2 models, we choose MV = 1 TeV. To avoid the Landau pole problem for

gauge couplings, we choose MV = 5 TeV in the Type IIIC3 and Type IIID4 models, and

choose MV = 50 TeV in the Type IIID3 model. We present the mass scales M23 and MU ,

and the gauge couplings gU in the Type III models in Table VII. Moreover, we find that

M23 and MU are respectively around 1.4× 1016 GeV and 1017−18 GeV. Also, gU is about 1.2

in the Type IIIX1 and Type IIIX2 models, 1.6 in the Type IIID3 model, 2.47 in the Type
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Models Particles at MV Particles at MV ′

Type IIIA1 (XF , XF ) (Xli, Xli) for i = 1, 2, 3

Type IIIA2 (XF , XF ), (Xl1, Xl1) (Xlj , Xlj) for j = 2, 3

Type IIIB1 (XF , XF ) (Xlk, Xlk) for k = 1, 2, 3, 4

Type IIIB2 (XF , XF ), (Xl4, Xl4) (Xli, Xli) for i = 1, 2, 3

Type IIIC1 (XF , XF ) (Xli, Xli) for i = 1, 2, 3, (Xf , Xf)

Type IIIC2 (XF , XF ), (Xl1, Xl1) (Xlj , Xlj) for j = 2, 3, (Xf , Xf)

Type IIIC3 (XF , XF ), (Xf , Xf) (Xli, Xli) for i = 1, 2, 3

Type IIID1 (XF , XF ) (Xli, Xli) for i = 1, 2, 3, (Xh, Xh)

Type IIID2 (XF , XF ), (Xl1, Xl1) (Xlj , Xlj) for j = 2, 3, (Xh, Xh)

Type IIID3 (XF , XF ), (Xh, Xh) (Xli, Xli) for i = 1, 2, 3

Type IIID4 (XF , XF ), (Xl1, Xl1), (Xh, Xh) (Xlj , Xlj) for j = 2, 3

TABLE VI: The additional vector-like particles at the scales MV and MV ′ , where i = 1, 2, 3,

j = 2, 3, k = 1, 2, 3, 4.

IIIC3 model, and 3.39 in the Type IIID4 model. Thus, the unified couplings in the Type

IIIC3 and Type IIID4 models are strong.

Second, we study the string-scale gauge coupling unification in Type III models at the

two-loop level, and the mass scales MV ′ are determined from the condition for string-scale

gauge coupling unification given in Eq. 1. We also choose MS = 800 GeV. For the Type

IIIX1 and Type IIIX2 models, we choose MV = 1 TeV. To avoid the Landau pole problem

for gauge couplings, we choose MV = 10 TeV in the Type IIIC3 and Type IIID4 models,

and MV = 50 TeV in the Type IIID3 model. We present the mass scales M23 and Mstring,

and the gauge couplings gstring in the Type III models in Table VIII. In Fig. 3, we plot

the string-scale gauge coupling unification in the Type IIIB1 and Type IIIB2 models with

MV = 1 TeV and MS = 800 GeV. Moreover, we find that M23 and Mstring are respectively

around 1.4 × 1016 GeV and 1017−18 GeV. Also, gstring is about 1.2 in the Type IIIX1 and

Type IIIX2 models, about 1.5 in the Type IIID3 model, and about 2.1 in the Type IIIC3 and

Type IIID4 models. In addition, in the Type IIIX2, Type IIIC3 and Type IIID4 models,

the high-scale vector-like particles can be considered as string-scale threshold corrections

since their masses are about 1017 GeV. While in the Type IIIX1 and Type IIID3 models,

the masses for the vector-like particles are at the intermediate scale 1012−13 GeV.
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Models MV MS M23 MV ′ gU MU

Type IIIA1 1000 800 1.17× 1016 1× 1016 1.142 7.22 × 1018

Type IIIA2 1000 800 1.17× 1016 1× 1016 1.161 4.05 × 1017

Type IIIB1 1000 800 1.17× 1016 1× 1016 1.145 4.04 × 1018

Type IIIB2 1000 800 1.17× 1016 1× 1016 1.163 2.92 × 1017

Type IIIC1 1000 800 1.17× 1016 1× 1016 1.226 4.11 × 1018

Type IIIC2 1000 800 1.18× 1016 1× 1016 1.207 2.93 × 1017

Type IIIC3 5000 800 1.72× 1016 1× 1016 2.470 4.41 × 1017

Type IIID1 1000 800 1.17× 1016 1× 1016 1.231 7.77 × 1018

Type IIID2 1000 800 1.17× 1016 1× 1016 1.209 4.19 × 1017

Type IIID3 5.0× 104 800 1.50× 1016 1× 1016 1.613 5.19 × 1018

Type IIID4 5000 800 1.69× 1016 1× 1016 3.390 9.97 × 1017

TABLE VII: Mass scales in GeV unit and gauge couplings in the Type III F −SU(5) models with

gauge coupling unification and universal supersymmetry breaking.
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FIG. 3: String-scale gauge coupling unification in the Type IIIB1 model (left figure) and Type

IIIB2 model (right figure) with MV = 1 TeV and MS = 800 GeV.

V. FLIPPED SU(5)× U(1)X MODELS WITH BULK VECTOR-LIKE PARTICLES

In all the above flipped SU(5) × U(1)X models, we can introduce the bulk vector-like

particles XTi and XT i on the observable seven-branes as well. If we choose the line bundle

L = OS(E1 − E2 + E4 − E5)
1/4, we have one pair of the bulk vector-like particles XT1

and XT 1 on the surface S since χ(S, L4) is equal to −1. And if we choose the line bundle

L = OS(E1−E2+E4−E5+E6−E7)
1/4, we have two pairs of the bulk vector-like particlesXTi

and XT i on the surface S since χ(S, L4) is equal to −2. For the Type I, Type II and Type
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Models MV MS M23 MV ′ gstring Mstring

Type IIIA1 1000 800 1.13 × 1016 2.04× 1012 1.161 6.12 × 1017

Type IIIA2 1000 800 1.18 × 1016 8.32× 1016 1.158 6.10 × 1017

Type IIIB1 1000 800 1.13 × 1016 4.79× 1012 1.161 6.12 × 1017

Type IIIB2 1000 800 1.18 × 1016 1.62× 1017 1.158 6.10 × 1017

Type IIIC1 1000 800 1.20 × 1016 5.67× 1012 1.302 6.86 × 1017

Type IIIC2 1000 800 1.18 × 1016 1.70× 1017 1.174 6.18 × 1017

Type IIIC3 1× 104 800 1.65 × 1016 5.64× 1017 2.087 1.10 × 1018

Type IIID1 1000 800 1.24 × 1016 1.92× 1012 1.375 7.25 × 1017

Type IIID2 1000 800 1.18 × 1016 8.55× 1016 1.182 6.23 × 1017

Type IIID3 5× 104 800 1.50 × 1016 2.38× 1013 1.533 8.08 × 1017

Type IIID4 1× 104 800 1.62 × 1016 1.46× 1017 2.074 1.09 × 1018

TABLE VIII: Mass scales in GeV unit and gauge couplings in the Type III F −SU(5) models with

string-scale gauge coupling unification and universal supersymmetry breaking.

III models with one pair and two pairs of the bulk vector-like particles XTi and XT i, we

present the curves with homology classes for the vector-like particles, and the gauge bundle

assignments for each curve in Appendices B and C, respectively. Moreover, the vector-like

particles XTi and XT i can obtain masses via instanton effects. Also, they can couple to the

singlets from the intersections of the other seven-branes, and then obtain masses from Higgs

mechanism. Thus, the vector-like particles XTi and XT i can have masses MV ′ close to the

string scale (or intermediate scale) and can be considered as the string-scale (or intermediate

scale) threshold corrections.

To avoid the Landau pole problem for the gauge couplings, we have shown that only the

Z0 and Z1 sets of vector-like particles can be below 1 TeV, which can be tested at the LHC.

Thus, in this Section, we will concentrate on the Type IA and Type IIA models with bulk

vector-like particles XTi and XT i. In the Type IA1 and Type IIA1 models, we introduce

one pair of vector-like particles XT1 and XT 1. Also, in the Type IA2 and Type IIA2 models,

we introduce two pairs of vector-like particles XTi and XT i with i = 1, 2. The particle

contents of these models are given in Table IX.

We give the one-loop and two-loop beta functions forXTi andXT i in the supersymmetric

Standard Model and in the flipped SU(5) × U(1)X model in the Appendix D. First, we

study the gauge coupling unification at the two-loop level. Choosing MV = 800 GeV,

MS = 800 GeV, and MV ′ = 1 × 1016 GeV, we present the mass scales M23 and MU , and

the gauge couplings gU in Table X. In these models, M23 and MU are respectively around
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Models Particles at MV Particles at MV ′

Type IA1 (XF , XF ), (Xl, Xl) (XT1, XT 1)

Type IA2 (XF , XF ), (Xl, Xl) (XTi, XT i) for i = 1, 2

Type IIA1 (XF , XF ) (XT1, XT 1)

Type IIA2 (XF , XF ) (XTi, XT i) for i = 1, 2

TABLE IX: The particle contents in the Type IA1, Type IA2, Type IIA1 and Type IIA2 models.

Models MV MS M23 MV ′ gU MU

Type IA1 800 800 1.18 × 1016 1× 1016 1.322 2.16× 1017

Type IA2 800 800 1.18 × 1016 1× 1016 1.428 9.85× 1016

Type IIA1 800 800 1.18 × 1016 1× 1016 1.527 3.87× 1018

Type IIA2 800 800 1.18 × 1016 1× 1016 1.996 7.53× 1017

TABLE X: Mass scales in GeV unit and gauge couplings in Type IA1, Type IA2, Type IIA1 and

Type IIA2 models with gauge coupling unification and universal supersymmetry breaking.

1.2× 1016 GeV and 1017−18 GeV, and gU is about 1.4 in the Type IA1, Type IA2 and Type

IIA1 models, and about 2.0 in the Type IIA2 model. Because the Type IA1 (IIA1) and

Type IA2 (IIA2) models respectively have one pair and two pairs of vector-like particles

XTi and XT i, the unified coupling gU in the Type IA1 (IIA1) model is smaller than that in

the Type IA2 (IIA2) model while MU in the Type IA1 (IIA1) model is larger than that in

Models MV MS M23 MV ′ gstring Mstring

Type IA1 800 800 1.18× 1016 2.46 × 1017 1.205 6.35 × 1017

Type IA2 800 800 1.18× 1016 3.95 × 1017 1.205 6.35 × 1017

Type IIA1 800 800 1.20× 1016 2.04 × 1014 2.020 1.06 × 1018

Type IIA2 200 360 1.21× 1016 4.42 × 1016 4.288 2.26 × 1018

Type IIA2 200 1000 1.25× 1016 1.70 × 1016 2.153 1.13 × 1018

Type IIA2 1000 360 1.17× 1016 1.91 × 1016 2.142 1.13 × 1018

Type IIA2 1000 1000 1.18× 1016 1.65 × 1016 1.862 9.81 × 1017

TABLE XI: Mass scales in GeV unit and gauge couplings in the Type IA1, Type IA2, Type IIA1

and Type IIA2 models with string-scale gauge coupling unification and universal supersymmetry

breaking.
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the Type IA2 (IIA2) model.

Second, we study the string-scale gauge coupling unification at the two-loop level, and the

mass scalesMV ′ are determined from the condition for string-scale gauge coupling unification

given in Eq. 1. In the Type IA1, Type IA2, and Type IIA2 models, we chooseMV = 800 GeV

and MS = 800 GeV. In the Type IIA2 model, we choose (MV ,MS) = (200 GeV, 360 GeV),

(200 GeV, 1000 GeV), (1000 GeV, 360 GeV), and (1000 GeV, 1000 GeV). We present

the mass scales M23 and Mstring, and the gauge couplings gstring in Table XI. In the Fig. 4,

we present the string-scale gauge coupling unification in the Type IIA1 model with MV =

800 GeV and MS = 800 GeV, and in the Type IIA2 model with MV = 1 TeV and MS =

800 GeV. We find that M23 is about 1.2× 1016 GeV in all the models. In the Type IA1 and

Type IA2 models, Mstring is about 6.35×1017 GeV, and gstring is about 1.2. In the Type IIA1

and Type IIA2 models, Mstring is about 1.0× 1018 GeV, and gstring is about 2.0 or larger. In

addition, in the Type IA1, Type IA2 and Type IIA2 models, the bulk vector-like particles

can be considered as string-scale threshold corrections since their masses are about 1016−17

GeV. While in the Type IIA1 model, the masses for the bulk vector-like particles are at the

intermediate scale 1014 GeV.
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FIG. 4: The string-scale gauge coupling unification in the Type IIA1 model with MV = 800 GeV

and MS = 800 GeV (left figure) and in the Type IIA2 model with MV = 1 TeV and MS = 800 GeV

(right figure).

VI. PHENOMENOLOGICAL CONSEQUENCES

In this Section, we will discuss the phenomenological consequences in our models. Similar

to the minimal flipped SU(5)× U(1)X models, the doublet-triplet splitting problem can be

solved in all of our models in general. Let us comment on the phenomenological consequences

one by one in the following:
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(i) Because GUTs in F-theory are constructed locally, we may have additional chiral

exotic particles or vector-like particles when we embed such F-theory GUTs into the global

consistent setup. The point is that there may exist additional seven-branes due to the global

consistent conditions, and these seven-branes may intersect with the observable seven-branes.

(ii) In the Type IA and Type IIIX2 models where X=A, B, C, D, we can have Z1 set of

vector-like particles below the 1 TeV scale. Also, in the Type IIA models with bulk vector-

like particles and in the Type IIIX1 models, we have Z0 set of vector-like particles below

the 1 TeV scale. Thus, these Z1 and Z0 sets of vector-like particles can be produced at the

LHC, and then the corresponding models can be tested. Moreover, at the low energy, in the

Type IB and Type IIIC3 models, we have Z2 set of vector-like particles; in the Type IC and

Type IIID4 models, we have Z3 set of vector-like particles; and in the Type IIB models with

bulk vector-like particles and the Type IIID3 model, we have Z4 set of vector-like particles.

The masses for the Z2, Z3, or Z4 set of vector-like particles in these models are around

10 TeV. Because of the threshold corrections at the scales MSUSY and M23, the masses of

these vector-like particles might be around the 1 TeV scale, and then these models could be

tested at the LHC as well. Therefore, all of our models with Z0, Z1, Z2, Z3, or Z4 set of

vector-like particles at the TeV scale might be tested at the LHC. The detail study will be

presented elsewhere [67].

(iii) It is well known that the lightest CP-even Higgs boson mass in the MSSM is smaller

than about 130 GeV if MS is smaller than 1 TeV, which is a several percents’ fine-tuning

problem in the MSSM. In all our models with TeV-scale vector-like particles, we have the

vector-like particles XF and XF . Then we can introduce the following Yukawa interactions

between the MSSM Higgs fields and these vector-like particles in the flipped SU(5)×U(1)X

models:

−L = ydXFXFXFh+ yuXFXFXFh , (63)

where ydXF and yuXF are Yukawa couplings. With relatively large Yukawa couplings ydXF

and yuXF that are consistent with the perturbative unification, we can increase the lightest

CP-even Higgs boson mass and solve the Higgs mass problem in the MSSM [67, 68].

(iv) The proton decay via dimension-5 operators from Higgsino exchange is suppressed.

Considering proton decay p → e+π0 via dimension-6 operator from heavy gauge boson

exchange, we obtain the proton life time [43, 69]

τp ≃ 9.97× 1034
(

M23

1.18× 1016GeV

)4(
1.193

g23

)4

yr , (64)

where g23 is the SU(3)C × SU(2)L unified gauge coupling. In all of our models with TeV-

scale vector-like particles (the Type I and Type III models, and Type II models with bulk
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vector-like particles), g23 is about 1.2 or larger. In addition, M23 can be another factor 2/3

smaller due to threshold corrections [69], thus, our models can definitely be tested at the

future Hyper-Kamiokande proton decay experiment which can search the proton life time via

p → e+π0 channel at least more than 1035 years [63]. Similar results can be applied to the F-

theory SU(5) models with vector-like particles. Our systematical and comprehensive study

will be presented elsewhere [70]. By the way, the Kaluza-Klein modes of the gauge bosons

could further enhance the proton decay. However, the details depend on the estimations of

the bulk Green’s functions for the gauge bosons which have some unknown constants [32].

(v) From Eq. (11), we obtain that the neutrino masses and mixings can be explained via

double seesaw mechanism [71]. Also, the right-handed neutrino Majorana masses can be

generated via the following dimension-5 operators after we integrate out the heavy Kaluza-

Klein modes [33, 34]

W =
y′Nij
MU

FiFjHH . (65)

So the neutrino masses and mixings can be generated via seesaw mechanism as well. With

leptogenesis [72], we can obtain the observed baryon asymmetry [71].

(vi) From Eq. (10), we can naturally have the hybrid inflation where Φ is the inflaton

field [73]. The inflation scale is related to the scale M23. Because M23 is at least one order

smaller than MU , we solve the monopole problem. Interestingly, we can generate the correct

cosmic primordial density fluctuations [74]

δρ

ρ
∼

(

M23

g23MPl

)2

∼ 1.7× 10−5 . (66)

Therefore, the key question is whether we can generate Φ(HH−MH2) terms in Eq. (10).

Our detail study will be given elsewhere [75]. Here let us briefly sketch the idea. Let us

suppose that the H and H arise from the intersection of the obsevable seven-branes and

the seven-brane that wraps a complex codimension-one surface SH in B3, and Φ arises from

the intersection between the seven-brane wrapping SH and the seven-brane that wraps a

complex codimension-one surface SΦ in B3. Because the curve ΣH is self pinched, we have

the trilinear superpotential ΦHH if the curve on which Φ is localized passes the pinched

point in B3. In addition, the term M2
HΦ can be generated via instanton effects [36]. Assume

that the volumes for SH and SΦ are the same and their compactification scale is MC2, we

obtain

MH ≃ MUexp

(

−
4π2

g2U

M4
U

M4
C2

)

. (67)

Without fine-tuning, we can choose MC2 = 2MU , and then we can obtain the correct scale

for MH .
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VII. DISCUSSION AND CONCLUSIONS

In this paper, we briefly reviewed the flipped SU(5)×U(1) models and the F-theory model

building. To separate the mass scales M23 and MU and realize the decoupling scenario, we

introduced sets of vector-like particles in complete SU(5)×U(1) multiplets at the low energy,

whose one-loop beta functions satisfy ∆b1 < ∆b2 = ∆b3. To avoid the Landau pole problem

for the gauge couplings, we can only introduce five sets of such vector-like particles around

the TeV scale. Moreover, we have systematically constructed the flipped SU(5) × U(1)X

models without bulk vector-like particles, and the flipped SU(5)×U(1)X models with bulk

vector-like particles. These vector-like particles can couple to the SM singlet fields, and

obtain suitable masses through Higgs mechanism. In addition, we considered the gauge

coupling unification in all of our models without bulk vector-like particles, and in the Type IA

and Type IIA models with bulk vector-like particles. We also studied the string-scale gauge

coupling unification in the Type III models, and the Type IA and Type IIA models with bulk

vector-like particles. We showed that the U(1)X flux contributions to the gauge couplings

preserve the SU(5)× U(1)X gauge coupling unification. We calculated the mass scales M23

and MU , and the unified couplings gU . In the Type IIIX2, Type IIIC3, Type IIID4, Type

IA1, Type IA2, and Type IIA2 models, the high-scale or bulk vector-like particles can be

considered as string-scale threshold corrections since their masses are close to the string

scale. We showed that the Z0 and Z1 sets of vector-like particles can have masses below the

1 TeV scale, and then they can be observed at the LHC. Thus, the corresponding models,

which have Z0 or Z1 sets of vector-like particles at about 1 TeV scale, can be tested at the

LHC.

Furthermore, we discussed the phenomenological consequences of our models. We pointed

out that there may exist additional chiral exotic particles or vector-like particles when we

embed our models into the global consistent setup. Due to the threshold corrections at

the scales MS and M23, the Z2, Z3, and Z4 sets of vector-like particles might also have

masses below the 1 TeV scale, and then the corresponding models with such sets could be

tested at the LHC as well. In all our models with TeV-scale vector-like particles, the proton

decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even

Higgs boson mass can be increased due to the Yukawa couplings between the Higgs fields

and TeV-scale vector-like particles, the neutrino masses and mixings can be explained via

the double seesaw or seesaw mechanism, the observed baryon asymmetry can be obtained

through leptogenesis, the hybrid inflation can be realized, the monopole problem can be

solved, and the correct cosmic primodial density fluctuations can be generated.
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Appendix A: Briefly Review of del Pezzo Surfaces

The del Pezzo surfaces dPn, where n = 1, 2, ..., 8, are defined by blowing up n generic

points of P1 × P1 or P2. The homological group H2(dPn, Z) has the generators

H, E1, E2, ..., En , (A1)

where H is the hyperplane class for P 2, and Ei are the exceptional divisors at the blowing

up points and are isomorphic to P1. The intersecting numbers of the generators are

H ·H = 1 , Ei · Ej = −δij , H · Ei = 0 . (A2)

The canonical bundle on dPn is given by

KdPn
= −c1(dPn) = −3H +

n
∑

i=1

Ei. (A3)

For n ≥ 3, we can define the generators as follows

αi = Ei −Ei+1 , where i = 1, 2, ..., n− 1 , (A4)

αn = H −E1 − E2 −E3 . (A5)

Thus, all the generators αi is perpendicular to the canonical class KdPn
. And the intersection

products are equal to the negative Cartan matrix of the Lie algebra En, and can be considered

as simple roots.

The curves Σi in dPn where the particles are localized must be divisors of S. And the

genus for curve Σi is given by

2gi − 2 = [Σi] · ([Σi] +KdPk
) . (A6)

For a line bundle L on the surface dPn with

c1(L) =
n
∑

i=1

aiEi, (A7)

where aiaj < 0 for some i 6= j, the Kähler form JdPn
can be constructed as follows [33]

JdPk
= b0H −

n
∑

i=1

biEi, (A8)

where
∑k

i=1 aibi = 0 and b0 ≫ bi > 0. By the construction, it is easy to see that the line

bundle L solves the BPS equation JdPk
∧ c1(L) = 0.
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Appendix B: The Vector-Like Particle Curves and the Gauge Bundle Assignments

in the Models with One Pair of the Bulk Vector-Like Particles

In the Type I, Type II, and Type III models, we can introduce one pair of the bulk vector-

like particles XT1 and XT 1. Let us choose the line bundle L = OS(E1 − E2 + E4 − E5)
1/4.

Note that χ(S, L4) is equal to −1, we have one pair of the bulk vector-like particles XT1

and XT 1. We present the curves with homology classes for the vector-like particles, and the

gauge bundle assignments for each curve in the corresponding Type I and Type II models

in Table XII, and in the corresponding Type III models in Table XIII.

Model Particles Curve Class gΣ LΣ L′n
Σ

Type I & II
(

XF +XF
)

ΣXF (pinched) 3H − E4 −E5 1 OΣXF
(p45)

1/4 OΣXF
(p45)

−1/4

Type IA
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 −E5 1 OΣXl
(p′15)

1/4 OΣXl
(p′15)

−5/4

Type IB
(

Xf +Xf
)

ΣXf (pinched) 3H − E1 −E5 1 OΣXf
(p′15)

1/4 OΣXl
(p′15)

3/4

Type IC
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 −E5 1 OΣXl
(p′15)

1/4 OΣXl
(p′15)

−5/4

(

Xh+Xh
)

ΣXh (pinched) 3H − E2 −E4 1 OΣXh
(p′42)

1/4 OΣXh
(p′42)

1/2

Type IIB
(

Xh+Xh
)

ΣXh (pinched) 3H − E1 −E5 1 OΣXh
(p′15)

1/4 OΣXh
(p′15)

1/2

TABLE XII: The vector-like particle curves and the gauge bundle assignments for each curve

in Type I and Type II models with one pair of bulk vector-like particles (XT1 and XT 1). Here,

p45 = p4 − p5, p
′

15 = p′1 − p′5, and p′42 = p′4 − p′2.

Models Particles Curve Class gΣ LΣ L′n
Σ

Type III
(

XF +XF
)

ΣXF (pinched) 3H − E4 − E5 1 OΣXF
(p45)

1/4 OΣXF
(p45)

−1/4

(

Xli +Xli
)

ΣXli (pinched) 3H − E1 −E2 − Ej 1 OΣXf
(pj12)

1/4 OΣXf
(pj12)

−5/4

Type IIIA
(

Xl +Xl
)

ΣXl (pinched) 3H − E1 − E5 1 OΣXl
(p′15)

1/4 OΣXf
(p′15)

−5/4

Type IIIB
(

Xf +Xf
)

ΣXf (pinched) 3H − E1 − E5 1 OΣXf
(p′15)

1/4 OΣXf
(p′15)

3/4

Type IIID
(

Xh+Xh
)

ΣXh (pinched) 3H − E1 − E5 1 OΣXh
(p′15)

1/4 OΣXh
(p′15)

1/2

TABLE XIII: The vector-like particle curves and the gauge bundle assignments for each curve in

Type IIIA models with one pair of bulk vector-like particles (XT1 and XT 1). Here, p45 = p4 − p5,

p′15 = p′1 − p′5, j = i+ 5, and p
j
12 = p

j
1 − p

j
2 for j = 6, 7, 8.
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Appendix C: The Vector-Like Particle Curves and the Gauge Bundle Assignments

in the Models with Two Pairs of the Bulk Vector-Like Particles

In the Type I, Type II, and Type III models, we can also introduce two pairs of the bulk

vector-like particles XTi and XT i. Let us choose the line bundle L = OS(E1−E2+E4−E5+

E6 − E7)
1/4. Note that χ(S, L4) is equal to −2, we have two pairs of the bulk vector-like

particles XTi and XT i. We present the curves with homology classes for the vector-like

particles, and the gauge bundle assignments for each curve in the corresponding Type I and

Type II models in Table XIV, and in the corresponding Type III models in Table XV.

Model Particles Curve Class gΣ LΣ L′n
Σ

Type I & II
(

XF +XF
)

ΣXF (pinched) 3H − E4 −E5 1 OΣXF
(p45)

1/4 OΣXF
(p45)

−1/4

Type IA
(

Xl +Xl
)

ΣXl (pinched) 3H − E6 −E7 1 OΣXl
(p67)

1/4 OΣXl
(p67)

−5/4

Type IB
(

Xf +Xf
)

ΣXf (pinched) 3H − E6 −E7 1 OΣXf
(p67)

1/4 OΣXl
(p67)

3/4

Type IC
(

Xl +Xl
)

ΣXl (pinched) 3H − E6 −E7 1 OΣXl
(p67)

1/4 OΣXl
(p67)

−5/4

(

Xh+Xh
)

ΣXh (pinched) 3H − E4 −E7 1 OΣXh
(p′47)

1/4 OΣXh
(p′47)

1/2

Type IIB
(

Xh+Xh
)

ΣXh (pinched) 3H − E6 −E7 1 OΣXh
(p67)

1/4 OΣXh
(p67)

1/2

TABLE XIV: The vector-like particle curves and the gauge bundle assignments for each curve

in Type I and Type II models with two pairs of bulk vector-like particles (XTi and XT i). Here,

p45 = p4 − p5, p67 = p6 − p7, and p′47 = p′4 − p′7.

Models Particles Curve Class gΣ LΣ L′n
Σ

Type III
(

XF +XF
)

ΣXF (pinched) 3H − E4 −E5 1 OΣXF
(p45)

1/4 OΣXF
(p45)

−1/4

(

Xl1 +Xl1
)

ΣXl1 (pinched) 3H − E1 −E5 1 OΣXf
(p′15)

1/4 OΣXf
(p′15)

−5/4

(

Xl2 +Xl2
)

ΣXl2 (pinched) 3H − E4 −E7 1 OΣXf
(p′47)

1/4 OΣXf
(p′47)

−5/4

(

Xl3 +Xl3
)

ΣXl3 (pinched) 3H − E2 −E6 1 OΣXf
(p′62)

1/4 OΣXf
(p′62)

−5/4

Type IIIA
(

Xl +Xl
)

ΣXl (pinched) 3H − E6 −E7 1 OΣXl
(p67)

1/4 OΣXf
(p67)

−5/4

Type IIIB
(

Xf +Xf
)

ΣXf (pinched) 3H − E6 −E7 1 OΣXf
(p67)

1/4 OΣXf
(p67)

3/4

Type IIID
(

Xh+Xh
)

ΣXh (pinched) 3H − E6 −E7 1 OΣXh
(p67)

1/4 OΣXh
(p67)

1/2

TABLE XV: The vector-like particle curves and the gauge bundle assignments for each curve in

Type IIIA models with two pairs of bulk vector-like particles (XT1 and XT 1). Here, p45 = p4−p5,

p67 = p6 − p7, and p′kl = p′k − p′l for kl = 15, 47, 62.
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Appendix D: Beta Functions for the Bulk Vector-Like Particles XTi and XT i

In the convention of Ref. [62], we first present the one-loop beta functions ∆b ≡

(∆b1,∆b2,∆b3) as complete supermultiplets from the vector-like particles XTi and XT i

in the supersymmetric Standard Model

∆bXT+XT = (
39

5
, 3, 3) . (D1)

Second, we present the two-loop beta functions from the vector-like particles XTi and XT i

∆BXT+XT c

=







323
25

15 176
5

5 21 16
22
5

6 34






. (D2)

In the flipped SU(5)× U(1)X models, we first present the one-loop beta functions ∆b ≡

(∆b1,∆b5) as complete supermultiplets from the vector-like particles XTi and XT i

∆bXT+XT = (8, 3) . (D3)

Second, we present the two-loop beta functions from the vector-like particles XTi and XT i

∆BXT+XT =

(

64
5

576
5

24
5

366
5

)

. (D4)
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[20] M. Cvetič, T. Li and T. Liu, Nucl. Phys. B 698, 163 (2004). M. Cvetič, P. Langacker, T. Li
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