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Abstract. Many pest species exhibit huge fluctuations in population abundance.
Understanding their large-scale and long-term dynamics is necessary to develop effective
control and management strategies. Occupancy models represent a promising approach to
unravel interactions between environmental factors and spatiotemporal dynamics of
outbreaking populations. Here, we investigated population dynamics of the Australian plague
locust, Chortoicetes terminifera, using density data collected between 1988 and 2010 by the
Australian Plague Locust Commission over more than 3 million km2 in eastern Australia. We
applied multistate and autologistic multi-season occupancy models to test competing
hypotheses about environmental and demographic processes affecting the large-scale
dynamics of the Australian plague locust. We found that rainfall and land cover predictors
best explained the spatial variability in outbreak probability across eastern Australia.
Outbreaks are more likely to occur in temperate than tropical regions, with a faster and more
continuous response to rainfall in desert than in agricultural areas. Our results also support
the hypothesis that migration tends to propagate outbreaks only locally (over distances lower
than 400 km) rather than across climatic regions. Our study suggests that locust outbreak
forecasting and management systems could be improved by implementing key environmental
factors and migration in hierarchical spatial models. Finally, our modeling framework can be
seen as a step towards bridging the gap between mechanistic and more phenomenological
models in the spatial analysis of fluctuating populations.

Key words: Chortoicetes terminifera; climate; cluster; dispersal; landscape; locust; multistate;
occupancy; outbreak; pest species; spatial autocorrelation.

INTRODUCTION

A feature of numerous pest species is extreme

fluctuations in population density, leading to dramatic

outbreaks with consequent agricultural and economic

impacts over large areas (e.g., rodents [Singleton et al.

2010], locusts [Pener and Simpson 2009], and moths

[Baltensweiler and Fischlin 1988]). Understanding their

large-scale and long-term dynamics, and more specifi-

cally how outbreak patterns are shaped by the interplay

between the spatiotemporal variability of environmental

factors (e.g., climate) and demographic processes (e.g.,

dispersal), is necessary to develop more effective control

and management strategies and to predict outbreak risks

due to global warming and land use change (Knape and

de Valpine 2011).

The analysis of time series count data is an important

tool for studying fluctuating populations (see for

examples Bjørnstad et al. 1999, Liebhold et al. 2004,

Goswami et al. 2011, Knape and de Valpine 2011).

However, demographic time series remain scarce for

most species and many data sets that have proven to be

critical for studying long-term population dynamics

were not collected for research purposes, but rather

derived from historical reports of occurrence, hunting

statistics, or pest management monitoring (e.g., lynx

[Stenseth et al. 1998], locust [Stige et al. 2007, Tian et al.

2011], moth [Johnson et al. 2004, 2006]). One of the

main challenges when using these data is that abundance

information is often not systematically recorded from

the same locations and at regular time intervals,

resulting in time series plagued with missing data.

Studies based on such data may need to either pool

spatial information to address the long-term temporal
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component of population dynamics (e.g., Stige et al.

2007, Tian et al. 2011), or exclude temporal or spatial

samples with insufficient information (e.g., Kvasnes et

al. 2010). Moreover, methods such as auto-regressive

models fitted to time series data are phenomenological

(or correlative) statistical models. Population dynamics

result from a complex interaction between linear and

nonlinear (such as density-dependent) processes acting

at different spatial and temporal scales. Phenomenolog-

ical models are, therefore, limited in their ability to

explain current population patterns causally and predict

the future state of biological systems. Achieving these

goals requires the development of more mechanistic

models (Bjørnstad and Grenfell 2001, Benton et al.

2006).

In this context, multistate, multi-season, occupancy

models provide a promising approach to unraveling

interactions between environmental factors and spatio-

temporal dynamics of fluctuating populations (Nichols

et al. 2007). Site occupancy models were first developed

to estimate species occurrence while accounting for

errors in species detection (MacKenzie et al. 2002). The

recent extension of these models to deal with multiple

states considerably increases their applicability. They

can now be used to consider multiple biologically

relevant states such as multiple classes of abundance

or breeding/nonbreeding states (MacKenzie et al. 2009,

Martin et al. 2009). Moreover, occupancy models can

also incorporate spatial autocorrelation, which occurs

when the values of response variables sampled at nearby

locations are not independent from each other (Bled et

al. 2010, Yackulic et al. 2012). Spatial autocorrelation

can be quantified using geostatistics such as Moran’s

correlograms, spline correlograms, or variograms, and

can be explicitly included in models of spatial distribu-

tion using an autologistic component (Rossi et al. 1992,

Liebhold et al. 1993, Augustin et al. 1996, Bjørnstad et

al. 1999, Dormann et al. 2007). Adding an autologistic

component to occupancy models allows for the testing

of a contagious-type process hypothesis, such as the

expansion of invasive species (Bled et al. 2010, Yackulic

et al. 2012). Lastly, occupancy models account for

imperfect detection, specifically the inability of investi-

gators to determine species’ absence (false negative;

MacKenzie et al. 2003) and more recently species’

presence (false positive) at a sample site (Royle and Link

2006, Miller et al. 2011). Failing to account for imperfect

detection can lead to a discrepancy between observation

data and the true state of the system, and can therefore

produce biased estimates of transition probabilities

(MacKenzie 2006, Veran et al. 2012).

An interesting biological model for applying occu-

pancy models is provided by locust populations, which

are one of the most striking and notorious examples of

populations exhibiting huge fluctuations in density.

Locust outbreaks and their subsequent mass migra-

tions are preceded by the expression of a density-

dependent phenotypic phase change, from the relative-

ly harmless solitarious phase at low densities to the

gregarious phase at high densities. The resulting

formation of dense bands of marching juveniles and

flying adult swarms are responsible for severe agricul-

tural and economic losses across very large areas on

multiple continents (Simpson et al. 1999, Gray et al.

2009, Pener and Simpson 2009). In this study, we focus

on the Australian plague locust (APL), Chortoicetes

terminifera, for which 23 years of survey data have been

recorded across more than 3 million km2 in eastern

Australia as part of a rapid index-monitoring program

developed by the Australian Plague Locust Commis-

sion (APLC) for locust outbreak forecasting and

management.

Emergence of locust outbreaks is known to be

primarily dependent on rainfall events and high

temperatures (optimum for egg development around

30–358C), which locally provide suitable habitat condi-

tions for rapid population growth, namely abundant

herbaceous vegetation for food and soil moisture for egg

laying and embryological development (Popov et al.

1991, Hunter et al. 2001, Sword et al. 2010, Deveson

2013). Local patterns of resource abundance, quality,

and distribution determine whether solitarious popula-

tions will become aggregated and undergo the transition

to a migratory gregarious phase (Babah and Sword

2004, Despland et al. 2004). Considering the diversity of

climate and habitats across eastern Australia, both the

quality and amount of resources for locust population

growth are likely to vary strongly in space and time.

Indeed, the southern part of eastern Australia is

climatically temperate with a uniform winter rainfall

distribution, whereas the northern part is subject to

strong tropical influences with heavier rains in summer

(Bryant 1985, Hendon et al. 2007). Eastern Australia is

also highly variable in terms of land cover. The western

part is mainly an arid desert with very ephemeral and

scattered vegetation patches, while the central portion

corresponds to the agricultural belt from north to south.

This spatial variation in food resources may locally limit

several factors affecting the spatiotemporal dynamics of

locust populations including the intrinsic rate of

population increase, the maintenance of high-density

populations over several successive generations, and the

ability of migrating individuals to find favorable

habitats. APL adults have the ability to fly distances

ranging between 200 and 500 km overnight (Drake and

Farrow 1983, Farrow 1990, Bryceson 1991). Wright

(1986) even suggested that gregarious movements could

occur over distances up to 1500 km in three or four

nights. The record of southward long distance move-

ments, and of dramatic late summer and autumn

outbreaks in agricultural areas of southeastern Australia

have long supported the idea that the northern central

arid area of Australia was the main source of outbreaks,

from which locusts migrated en masse over two to three

successive generations in a year (Symmons and Wright
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1981, Bryceson and Wright 1986, Wright 1987, Wright

and Symmons 1987).

Although both environmental features (rainfall, tem-

perature, and vegetation cover) and migration are

clearly identified as key factors in locust outbreaks,

little attempt has actually been made to assess their

relative contribution in the spatiotemporal dynamics of

locust populations (Deveson et al. 2005). Here, we

applied multistate and autologistic multi-season occu-

pancy models to investigate how the interplay between

environmental heterogeneity and migration drive the

large-scale outbreak dynamics of APL populations.

METHODS

Locust density data

Densities of locust nymphs were recorded each month

from 1988 to 2010 by the APLC at numerous sites across

eastern Australia, mostly in Queensland and New South

Wales (Fig. 1A; details available online).9 At each site,

located at least 10 km apart, a measure of nymph

density was recorded along a 250-m transect. Nymph

density was then transformed into a density scale with

the following indices: 0, absence of nymphs; 1, scattered

FIG. 1. The study area. (A) The 100 3 100 km grid cells showing the localization of locust records (black dots). (B) The
landscape typology: grassland (light gray) and desert (dark gray). (C) The result of the clustering analysis on the 23-year rainfall
time series that divides Eastern Australia into a northern tropical region (dark gray) and a southern temperate region (light gray).
(D) The localization of the cells for which temperature data were available. The seasonal time series of (E) rainfall and (F)
temperature from the northern (black dotted lines) and southern (gray solid lines) clusters. Annual data from the seasons spring
(September, October, and November), summer (December, January, and February), autumn (March, April, and May) and winter
(June, July, and August) were averaged over all cells from each rainfall-based cluster. Horizontal lines in (E) and (F) show the mean
values for rainfall and temperature calculated over the 23 years of data within the northern (dotted lines) and southern (solid lines)
clusters.

9 http://www.daff.gov.au/animal-plant-health/locusts
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populations of nymphs (density � 30/m2); and 2, high

density of gregarious nymphs (density . 30/m2). The

threshold of 30 nymphs/m2 was chosen because APLC

field experience indicated a high probability of detection

and gregarious behavior above that density. The density

index of 2 is hereafter referred to as ‘‘outbreaking’’

populations, as it generally refers to densities of

hundreds to thousands of nymphs per square meter

forming large bands exhibiting coordinated movements.

To study the spatiotemporal dynamics of locust

outbreaks, we divided the survey area into a regular

grid with a cell size of 100 3 100 km (Fig. 1A). This

resolution allowed discrimination of the spatial varia-

tion in key environmental factors (i.e., southern

temperate vs. northern tropical regime and western

desert vs. eastern agricultural areas) and migration (i.e.,

occurring over hundreds of kilometers) without exces-

sively decreasing within-cell data availability. All

monthly density indices collected between 1988 and

2010 were attributed to a specific grid cell and season.

Seasons consistent with the multivoltine life cycle of the

APL were defined as follows: data collected in Septem-

ber, October, and November were attributed to the first

season (Spring); data collected in December, January,

and February were attributed to the second season

(Summer); and data collected in March, April, and May

were attributed to the third season (Autumn). In June,

July, and August (Winter), nymphs are generally not

present, but a high proportion of eggs laid in autumn

enter diapause and only resume development in late

winter (Wardhaugh 1986). Thus, we did not include the

winter season in the analysis and considered the system

to resume from its last state at the following season. The

final data set consisted of 323 cells at 70 occasions (i.e.,

23 years 3 3 seasons per year, and a first season to

initiate the model). When several measures of density

existed in the same cell at a given season, they were

considered as survey replicates in our analysis. The

number of survey replicates per cell and per season

varied between 1 and 15, with an average between 1.29

and 2.98 replicates per cell per occasion.

Environmental covariates

Rainfall and temperature.—We retrieved monthly

rainfall, and temperature maxima and minima measures,

recorded between 1988 and 2010, from many stations of

the Australian Bureau of Meteorology scattered across

eastern Australia (data available online).10 As the

temperature values were highly correlated (.90%), we

only used maximum temperature in the analyses. When

several meteorological stations belonged to the same

grid cell we averaged the monthly rainfall and temper-

ature values retrieved from each station and then over

each season in order to obtain a single climatic times

series for each cell of the grid. We performed hierarchi-

cal clustering analyses on seasonal rainfall and temper-

ature time series using Ward’s minimum variance

method (Ward 1963). The clustering analysis that was

based on rainfall data clearly segregated two regions of

eastern Australia along a North-South axis, with a

northern region exposed to heavier rains and warmer

temperatures (i.e., tropical climate) and a southern

temperate climate (Fig. 1C, E, F). Analysis of the

maximum temperature data produced a similar pattern

supporting the binary regionalization based on rainfall

data. However, due to the lack of temperature data for

many cells (Fig. 1D), we only used the result of the

cluster analysis conducted on rainfall as a spatial

categorical covariate, assigning each cell to a category

of either northern cluster or southern cluster as a proxy

of tropical vs. temperate climate.

Vegetation cover.—To investigate the impact of

spatial variation in vegetation cover on the dynamics

of outbreaks, we defined a landscape typology based on

the proportion of herbaceous vegetation that was taken

as a proxy of food resources for locusts. Our land cover

typology was based on a vegetation continuous field

(VCF), a raster image of 250-m resolution derived from

all seven bands of the Moderate-resolution Imaging

Spectroradiometer (MODIS) sensor onboard NASA’s

Terra satellite (data available online).11 We used the

proportional estimates for woody vegetation, herba-

ceous vegetation, and bare ground provided by the VCF

image to classify each 100 3 100 km cell to one of these

categories based on the highest proportion of vegetation

cover type within each cell. This classification clearly

segregated the study area into two land covers:

herbaceous vegetation and bare ground, which we will

hereafter consider as representative of grassland and

desert areas (Fig. 1B).

Multistate occupancy modeling

A key aspect of accounting for the spatial and

temporal dynamics of locust outbreaks is distinguishing

between the impacts of environmental factors vs.

migration. Indeed, transitions from solitarious to

gregarious populations could arise from either local

intrinsic growth due to favorable environmental condi-

tions or through migration from other gregarious

populations. In the former case, we would expect such

a transition from low density to gregarious populations

to be correlated with environmental covariates such as

rainfall or vegetation cover, whereas under the hypoth-

esis of migration, a transition from absence or low

density to high density should strongly depend on the

presence of gregarious populations in the neighborhood

of the site considered. Therefore, testing for the

alternative hypotheses requires modeling and estimating

the different transitions: from low density to gregarious

populations and from the absence of locusts to

10 http://www.bom.gov.au/index.shtml 11 http://www.landcover.org/data/vcf/
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gregarious populations (all covariates used for modeling

the probabilities of transitions are presented in Table 1).

As errors of classification are inherent when collecting

data, there is a risk of a discrepancy between the

observed abundances and the true abundances, and

therefore a risk of biased estimates of the different rates

of transition (MacKenzie 2006, Veran et al. 2012). In

our case, misclassifying gregarious populations is very

unlikely since locust detection is straightforward as

densities reach hundreds to thousands of nymphs per

square meter. Detecting scattered populations is often

more problematic and, in such a situation, failing to

account for a low rate of detection may lead to falsely

classifying a site as having no locusts despite scattered

populations being present. This could create biases in

estimated transitions (especially overestimating the

transition from sites free of locusts to gregarious

populations), and in estimated regression coefficients

(reflecting associations between transitions and the

different factors [MacKenzie 2006]), that could lead to

erroneous conclusions.

In this study, we applied the multistate site occupancy

model described by MacKenzie et al. (2009) to the locust

data set to estimate the probabilities of transition

between different categories of abundance (or states)

while accounting for errors of misclassification. A site (a

cell in this study) could be in any of the following three

different states (R): unoccupied (R¼ 0), occupied with a

low-density population (R ¼ 1), and occupied with a

gregarious population (R ¼ 2). We define wR;S as the

probability that a cell in state R at time t will be in state

S at time t þ 1. For example, w0;2
t and w1;2

t would

describe an outbreak event: the transition from a cell

without locusts (state 0) or with a low-density popula-

tion (state 1) at time t to a site with a gregarious

population (state 2) at time tþ 1 (Fig. 2). It is important

to note that the number of transitions increases with the

square of the number of states. A trade-off is necessary

between a high number of states to accurately describe

the biological system and maintaining a low number of

states to be able to estimate all transitions from the data

set.

To test for the potential impact of environmental

factors on the probability of transition w1,2, the

transition from a cell with low density of locust to an

outbreak, we modeled the probability of w1,2 as a

function of the different predictors Yt to estimate the b
coefficients using a multinomial-logit function where the

transformed w1;2
t is equal to b 3 Yt. Hence the back-

transformed parameter is

w1;2
t ¼

expðYtbÞ
1þ expðYtbÞ þ d1;1

t

TABLE 1. Covariates used for modeling the probabilities of transitions w1,2 and w0,2 and the probability of misclassification p0,1.

Abbreviation Covariate description Level of variation

LatLong latitude and longitude (quadratic) space
LC land cover (desert vs. grassland) space
Clu regions (north vs. south) resulting from the cluster analysis of weather variables space
R amount of rainfall per season in mm (quadratic) space and time
T temperature per season in 8C (quadratic) space and time
S seasonal effect time
y annual effect time
O occasion (variation for each season and each year) time
p̂local local neighborhood effect (distance up to 400 km from the focal cell) space and time
p̂regional regional neighborhood effect (all cells within the study area) space and time
i constant no variation

Notes: All covariates were standardized to have a mean of 0 and a standard deviation of 1 except p̂local, which that ranges
between 0 and 1, and LC and Clu, which are both discrete covariates. The three states of the system are sites with no locust present
(0), sites with a low population density (1), and sites with a gregarious population (2). The variable wR,S is the probability that a site
in state R at time t will be in state S at time t þ 1.

FIG. 2. Diagram illustrating the possible state transitions
and associated parameters. The three states of the system are
sites with no locust present (0), sites with a low population
density (1), and sites with a gregarious population (2). The
variable wR,S is the probability that a site in state R at time t will
be in state S at time tþ 1. Probabilities of outbreaks (denoted
by dashed circles) are the probabilities of having a gregarious
population at time t þ 1 when the site had no locusts or a low
population density at the previous time step (w0,2 and w1,2).
Note that since the sum of all transitions from one state to any
other state equals one, any of these transitions can be estimated
indirectly from the others (for example w0,0 ¼ 1 � w0,2� w0,1).
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where d1;1
t is the transformed parameterw1;1

t . Such a

multinomial-logit function guarantees the sum of

transitions from one state to any other to be less than

or equal to one; as a consequence, back-transformed

parameters are no longer independent. In order to

maintain the relationship between w1;2
t and environmen-

tal factors, all other transitions were assumed to be

constant, except two redundant parameters w1,0equals to

1 � w1,2 � w1,1 and w0,1 equals to 1 � w0,2� w0,0.

Data required for inference about wR;S
t are the state

histories associated with each grid cell in the area of

interest. For example, the history: 11012 represents a

cell, assessed on five different occasions, where a low-

density population of nymphs had been detected during

the first two occasions, no nymphs detected at the third,

a low-density population detected at the fourth occa-

sion, and a gregarious population at the fifth. Assuming

no errors in state classification and constant transition

probabilities over time, we could model this history as

Pr(1 1 0 1 2) ¼ p1 w1,1 w1,0 w0,1 w1,2, where pR is the

probability that a randomly selected grid cell at time t is

in state R.

The above expression represents the probability that a

randomly selected cell at some initial time t shows this

sequence of densities. Using the same reasoning for each

cell over all occasions, we can estimate the initial state

and transition probability parameters with a maximum

likelihood approach.

To account for state misclassification, we used the

different measures of density assigned to the same cell at a

given time as different replicates. Let pj
l,m be the

probability of observing a cell in state l during the survey

j given the true occupancy state is m. In the general

framework of multistate models, potential misclassifica-

tion of units from the observed data extends in one

direction (MacKenzie et al. 2009). That is, if the species is

not detected during a survey, it could be in any of the

three states; if observed in state 1, it can be in either states

1 or 2; and, if observed in state 2, it is truly in state 2. We

added constraints on the potential misclassification of

states by assuming that the species cannot be misclassified

when observed as gregarious (p0;2
j ¼ 0 and p1;2

j ¼ 0)

Observed state

0 1 2

True state

0

1

2
½ 1 0 0

1� p1;1
j p1;1

j 0

0 0 1
�:

To comply with this assumption, when a gregarious

population was detected at one occasion in a cell, we

removed all other existing survey data from that same

occasion. We assumed that if other states had been

observed in the same cell, it was due to spatial or

temporal heterogeneity (surveys conducted earlier or

later than those where the locusts were observed as

gregarious), but the state of the cell during this occasion

was unambiguously that of having a gregarious popu-

lation. Outbreaking populations of gregarious locusts

reach very high densities of hundreds to thousands of

nymphs per square meter, which form huge bands

ranging from hundreds of meters to hundreds of

kilometers, and exhibit coordinated movements that

can in no way be confounded with scattered populations

of solitarious locusts. Moreover, in addition to the

surveys conducted on the ground, the APLC routinely

uses aerial surveys from planes to monitor large areas

for high-density populations because migratory bands

can be spotted from the air. They also receive alerts from

landholders (who are sensitive to the risk of outbreaks

and associated financial impacts) when they spot

conspicuous groups of locusts on their property or

moving across roads and highways. Thus, for a given

season (three consecutive months) and site, the presence

of small outbreaking populations is likely to be detected

with much more accuracy than that of low-density

populations.

Finally, if a cell is not surveyed at a time t, it provides no

information to the estimation of the transition probabil-

ities between time t� 1 and t and time t and tþ 1.

Autologistic modeling

Autologistic models have proven to be useful for

modeling range expansion of invasive species by

incorporating the effect of neighborhood occupancy on

the state of a given location (Bled et al. 2010, Yackulic et

al. 2012). There is a conceptual analogy between range

expansion of invasive species and mass migration in

pests; the likelihood of a site that is free of invasive

species becoming colonized is expected to increase if the

surrounding area is already colonized. In the same way,

a site is more likely to have a gregarious population if

sites surrounding it have gregarious populations.

The average probability of a site having a gregarious

population within a neighborhood of ni sites can be

estimated by

�̂pni
t ¼

1

li

X

j2 nif g
pj;t

where li is the number of sites located in the neighbor-

hood of focal site i, and pj,t is the estimated probability

that a neighboring site j has a gregarious population at

time t (Yackulic et al. 2012). Neighborhoods can be

defined in different ways (Bled et al. 2010, Yackulic et al.

2012). In this study, we compared hypotheses about

migrating distance covered by gregarious populations,

which lead to outbreak diffusion (Deveson et al. 2005,

Chapuis et al. 2011). Under the hypothesis of local

migration, gregarious individuals will move only to areas

that are close to their emergence site. We then defined a

local neighborhood as the cells located between 100 and

400 km from the focal cell (i.e., a square of 7 3 7 cells

centered on the focal cell). Such a distance falls in the

range of the maximum empirical estimates of locust

overnight flight capacities, i.e., 200–500 km (Drake and

Farrow 1983, Bryceson and Wright 1986, Farrow 1990).
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Wright (1986) also suggested that gregarious populations

could cover distance up to 1500 km in a few nights. To

test this regional migration hypothesis, the regional

neighborhood was defined by including all cells of the

study area. Autologistic modeling of the probability of

state transition (from R ¼ 0 or 1) to a gregarious

population (R¼ 2) is then modeled as

wR;2
i;t ¼

expðb0;t þ b1;t �̂p
ni
t Þ

1þ expðb0;t þ b1;t �̂p
ni
t Þ
:

Multistate and autologistic models can be implement-

ed in a Bayesian framework or in a maximum likelihood

framework using the program PRESENCE (available

online).12 We compared more than 25 models, some with

up to 40 parameters. Due to the autologistic component

of the model, we used maximum likelihood for

computational performance and time. In a Bayesian

framework, one is required to calculate the number of

adjacent cells in the gregarious population state for each

cell at each occasion and for each simulation. However,

PRESENCE can only estimate the b parameters of

autologistic models restricted to two states. Therefore,

we used a two steps procedure in which we first ran

different multistate models in order to (1) estimate the

site transition between the absence of locust and

gregarious populations (ŵ0,2), (2) estimate the rate of

detection of scattered populations ( p̂0,1), and (3)

perform model selection among the different environ-

mental predictors. Then, since p̂0,1 was low (see Results),

meaning that most sites with no locust observed were

likely to be sites with locusts not detected, we pooled the

initial states of absence and low abundance into a single

state, retained gregarious populations as the second

state, and estimated autologistic parameters via maxi-

mum likelihood using PRESENCE. We reestimated

parameters from the best model with environmental

covariates in order to test for the sensitivity of the

estimates to the pooling of the two first states and to

perform model selection between autologistic parame-

ters and environmental factors.

Model selection was based on Akaike’s information

criterion (AIC; Akaike 1974). We also used AIC weight

(w) as a measure of relative support for each model (w

ranges from 0 to 1, with 1 indicating maximum support;

Burnham and Anderson 2002).

RESULTS

Modeling

The probability of detecting a population at low

density varied over a year, with an apparent declining

trend (see Appendix), but was low on average ( p̂0;1
max ¼

0.284 6 0.018 [mean 6 SE], p̂0;1
min ¼ 0.041 6 0.012, p̄0,1¼

0.162 6 0.035). Therefore, even if a cell had a few

individuals present, they were unlikely to be detected.

The resultant probability of transition from absence to

outbreak populations was very low (w0,2 , 0.0001), and

there was no effect of any spatial or temporal covariate

on this probability of transition (Tables 1 and 2).

On the other hand, the transition probability from

low-density to outbreaking populations varied in time

and space (Table 2). We found a seasonal effect, with

TABLE 2. Multistate model selection results for the Australian locust data set.

w0;2 w1;2 p0,1 DAIC w k Deviance

i Clu 3 LC 3 R þ T y 0 0.817 42 14 666
i Clu 3 LC 3 R y 3 0.182 40 14 673
i Clu 3 LC þ R y 17 ,0.001 34 14 699
i LatLong 3 S y 19 ,0.001 43 14 683
i LatLong y 32 ,0.001 33 14 716
i Clu 3 LC 3 S y 64 ,0.001 40 14 734
i LC 3 R y 88 ,0.001 34 14 770
i Clu 3 LC y 100 ,0.001 32 14 786
i R y 107 ,0.001 31 14 800
i Clu y 128 ,0.001 30 14 824
i LC y 154 ,0.001 30 14 844
i i y 318 ,0.001 28 15 012
i i S 677 ,0.001 9 15 409
i i Clu 689 ,0.001 9 15 421
i i LC 728 ,0.001 9 15 460
i i i 731 ,0.001 6 15 469
LC i i 733 ,0.001 8 15 467
Clu i i 733 ,0.001 8 15 467
R i i 733 ,0.001 9 15 467
S i i 734 ,0.001 9 15 468
Clu 3 LC i i 734 ,0.001 10 15 468
i i O 76 NC

Notes: Multistate models where w1,2 and w0,2 are the probabilities of transition from, respectively, state 0 (absence) and state 1
(low-density) to state 2 (gregarious); p0,1 is the probability of misclassifying a cell as having an absence of locusts (0) when the true
state is having a low-density population (1). Models are compared with DAIC (the change in the Akaike information criterion due
to the model) and Akaike weight (w); k indicates the number of parameters of the model, þ refers to additive effects, 3 to
interactions, and NC to models that did not converge. Covariates used in different models are detailed in Table 1.

12 http://www.mbr-pwrc.usgs.gov/software/presence.html
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higher probability of outbreak in summer (ŵ
1;2

summer ¼
0.092; CI, 0.071–0.118 vs. ŵ

1;2

spring ¼ 0.068; CI, 0.053–

0.888 and ŵ
1;2

autumn ¼ 0.067; CI, 0.051–0.086). Gregarious

populations were overall more likely to occur in the

southern cluster than in the northern cluster, and more

likely in the desert than in grassland areas of the

northern cluster (ŵ
1;2

Sveg ¼ 0.097; CI, 0.075–0.124; ŵ
1;2

Sd ¼
0.095; CI, 0.073–0.123; ŵ

1;2

Nveg ¼ 0.037; CI, 0.026–0.051;

ŵ
1;2

Nd ¼ 0.062; CI, 0.041–0.093; where S is southern, N is

northern, veg is vegetation and d is desert).

The amount of rainfall per season explained a

significant amount of variation in outbreaks. The model

with an interaction between rainfall and the four areas

defined above outperformed all models, including

models describing spatial variation by latitude and

longitude coordinates of cells and temporal variation

by a seasonal effect (Table 2). In the most supported

model, each area responded differently to rainfall; the

northern regions show little variation in likelihood of

outbreaks with variation in rainfall, whereas outbreaks

in the southern regions are sensitive to amounts of

rainfall (Fig. 3A). With increasing rainfall in the

southern areas, gregarious populations have a greater

probability of emerging in the desert than in grassland

areas (Fig. 3A). Since temperature data were lacking in

the desert, we only modeled the effect of temperature in

cells belonging to the southern and northern clusters and

in cells with vegetation. We found no significant effect of

temperature in the northern cluster and a negative effect

in the southern cluster (Fig. 3B), with outbreaks being

less likely to occur with increasing maximum tempera-

ture.

Between the two competing models with an autolo-

gistic structure, the model considering only a local

neighborhood effect had the lowest AIC; however, it did

not outperform the model with environmental covari-

ates. Overall, the best model included all covariates,

indicating that both environmental factors and local

FIG. 3. Parameter estimates of (A) the probability of outbreak (w0,1) for a given rainfall (mean rainfall per season per grid cell)
in the four different areas defined by the cluster analysis (southern vs. northern cells) and the presence or absence of vegetation; (B)
the probability of outbreak (w0,1) for a given temperature (mean maximum temperature per season per grid cell) in the southern
vegetation cluster; (C) the probability of outbreak (w0,1) with the effect of local neighbor sites. Parameters estimates come from the
model with the highest AIC weight among a set of models including an autologistic component and/or environmental covariates.
The x-axis shows the mean probability of a site with a gregarious population within a neighborhood of ni sites (p̂local) at the
previous time step.
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dispersal explained outbreaks (Table 3). As hypothe-

sized, the b̂ associated with the autologistic part of the

model was positive (b̂ ¼ 6.357; CI, 5.641–7.073),

indicating that a site will have a higher probability of

an outbreak if the local probability of having a

gregarious population is high (Fig. 3C).

DISCUSSION

We show that the application of multistate occupancy

models to locust data is a useful tool for explicitly

quantifying temporal and spatial patterns of outbreak

events, allowing testing of competing hypotheses about

environmental and demographic processes. By account-

ing for the low rates of locust detection, we found that

an outbreak transition is unlikely to occur in the absence

of an existing scattered population of locusts. In cells

with a scattered population, variation in outbreak

probability was better explained by the climatic clusters

than by vegetation type, suggesting a stronger impact of

the climatic regime on outbreak probabilities. Indeed,

the response curve of outbreak events to rainfall shows

different patterns between the northern cluster, which is

under a tropical regime, and the southern cluster, which

is under a temperate regime. On average, outbreak

events were less likely to happen in the north than in the

south, and less likely in grassland areas than in desert

areas. In the north, amounts of rainfall did not explain

much variation in outbreaks events. In contrast, rainfall

was positively correlated to probabilities of outbreaks in

the southern cluster, with a faster response in the desert

than in grassland areas. Given the sensitivity of locust

population growth to large rainfall events and the

assumed positive effects of rainfall on both the

availability of food and conditions for egg laying and

development (Popov et al. 1991, Hunter et al. 2001,

Sword et al. 2010, Deveson 2013), a higher probability

of outbreak under tropical conditions and in grassland

areas rather than under temperate conditions or in

desert areas could have been expected. The weak

sensitivity to rainfall in the northeast part of eastern

Australia indicates that rain is not a limiting factor in

this area, probably due to a fairly constant level of

humidity year-round, especially in the herbaceous area,

which is more represented in our tropical cluster than

the desert area (see Fig. 1B and C). Rain might even

have a negative effect on egg laying and development in

the North by inducing levels of moisture in the soil that

are too high, and especially by promoting pathogen

persistence and spread (Launois 1978, Chapman et al.

1986, Farrow 1991). Moreover, the higher probability of

outbreak in desert than in grassland areas could be due

to the patchy distribution of ephemeral vegetation

growing rapidly after rainfall events in the desert (Letnic

and Dickman 2005). Spatially limited vegetation patches

will concentrate locusts on the same spots. The

subsequent increase in local densities is likely to rapidly

induce a phase change from solitarious to gregarious

populations, leading to outbreaks and mass migration

(Sword et al. 2010).

Concerning the influence of temperature on out-

breaks, we found a negative impact of average
maximum temperature on outbreaks in areas of the

Southern cluster with vegetation, but the scarcity of a

spatial series of temperature data does not allow

inferences to be drawn in other regions. However, the

similarity between the clusters of rain and the clusters of
temperature indicates that, on average, higher temper-

atures are associated with stronger precipitation in the

northern part of Australia and are less likely to induce

outbreak events. Above all, the different responses of

locusts to climatic factors emphasize the key role of
spatial environmental heterogeneity and the need to

account for it when analyzing population fluctuations

(Bjørnstad and Grenfell 2001).

Another specificity of our modeling approach is the

addition of an autologistic component as a proxy for the
migration process. It allowed us to discriminate between

the two competing hypotheses of local vs. regional

migration of gregarious populations. Overall, we show

that even if environmental predictors explain more of

the large-scale variation in outbreak events than
migration, both factors seem to play a role in the

occurrence of outbreaks. Under favorable climatic

conditions, locust density increases until reaching a

threshold density that causes the gregarization of

individuals. Our results support the hypothesis of a
local propagation of these gregarious populations as

opposed to the hypothesis of a local outbreak event that

would diffuse over a long distance (Farrow 1991). This

finding is also consistent with a recent study based on
microsatellite data and computer simulations, which

revealed that despite the apparent genetic homogeneity

of the APL at the continental scale, the rate of dispersal

could be several orders of magnitude lower than the 10%
typically considered as required for the demographic
connectivity of populations (Chapuis et al. 2011).

From a management point of view, our results

emphasize the need to account for spatiotemporal

variation in weather factors, especially rainfall, and

green vegetation in order to develop a forecasting model

for locust outbreaks and inform locust control strate-

TABLE 3. Single-state model selection results for the Austra-
lian locust data set.

w0;1 DAIC w k Deviance

Clu 3 LC 3 R þ T þ p̂local 0 ,0.999 18 3481
Clu 3 LC 3 R þ T þ p̂regional 42 ,0.001 18 3523
Clu 3 LC 3 R þ T 170 ,0.001 17 3655
p̂local 193 ,0.001 5 3726
p̂regional 289 ,0.001 5 3822
i 361 ,0.001 4 3898

Notes: Single-state models where w0,1 is the probability of
transition from state 0 (absence or low-density) to state 1
(gregarious). The probability of misclassification is assumed to
be 0. Covariates used in different models are detailed in Table 1.
See Table 2 for explanations of model selection parameters.
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gies. Such integration has been attempted by the APLC,

using satellite vegetation greenness, weather and atmo-

spheric circulation data, as well as locust surveillance

data, to assist locust forecasting and population control

decisions (Bryceson et al. 1993, Hamilton and Bryceson

1993, Deveson and Hunter 2002). Locust migration still

remains as a key biological process to incorporate into

the forecasting and management framework for the

APL. Conclusions from recent studies on locust

migration in Australia are that demographic flow is

driven by weather systems that produce winds in a

variety of directions and lead to locust migration across

much of the geographical range of the species (Deveson

et al. 2005, Deveson and Walker 2005). In the present

study, the autologistic model indicates that locust

migration acts as a local rather than a regional

contagious process. Gregarious populations are more

likely to propagate through migration over distances

,400 km. At wider regional scales, weather conditions

and land cover remain the main factors influencing

outbreak probabilities. Our results suggest that locust

population forecasting could be improved by imple-

menting both heterogeneity in environmental features

and autocorrelation in the dispersal process in hierar-

chical spatial models as is being increasingly applied to

predict disease spread in epidemiology (e.g., Wimberly

et al. 2008, Wang et al. 2010, Adegboye and Koze 2012).

Achieving better predictions of locust outbreak occur-

rence will enable early population control measures and

contribute to more effective preventive management.

In this study, we restricted our analyses of APL

dynamics to the emergence of outbreaks. We therefore

focused on specifically modeling the probability of

transitions from scattered to gregarious populations.

However, other transitions are also of ecological and/or

management interest and could be modeled upon

availability of field data and potential covariates. For

example, it would be useful to model population

transition to a low density after an outbreak event.

However, multistate models consist of several multino-

mial distributions in which the sum of probabilities

equals 1. Therefore, each probability of the multinomial

cannot be modeled independently as a function of a

covariate. Modeling several probabilities from the same

multinomial as a function of covariates requires

reparameterizing the model using different methods

such as cumulative probabilities, continuation-ratios, or

adjacent categories (see McCullagh and Nelder 1989).

Importantly, our framework can be seen as a step

towards bridging the gap between mechanistic modeling

and more phenomenological models in the spatial

analysis of fluctuating populations. Multistate, multi-

season, occupancy models belong to the class of

hierarchical models or state-space models, where the

variability of the state of the population (here classes of

density) is separated between the process variability that

is of ecological interest and the observation error (in our

case, the probability of misclassifying classes of abun-

dance due to imperfect detection [Clark and Bjørnstad

2004, Royle and Dorazio 2008]). Not only do hierar-

chical models allow estimation of the biological vari-

ability of the system, they enable the development of

more mechanistic models by fitting population dynamics

models to time-series data (de Valpine 2002, Schurr et al.

2012). In our model, the transition from low-density to

gregarious populations corresponds to the underlying

behavioral process of gregarization. A next step could

consist of including individual demographic traits such

as survival and fecundity of solitarious and gregarious

individuals, which are traits that can vary in locusts in a

density-dependent manner (Pener and Simpson 2009).

Building a more complex population model such as this,

for example, would allow one to test which parameters

in the population model respond to environmental

variation, and determine the shape of its response curve

or the importance of group/individual heterogeneity

influences. Given the combination of global warming,

habitat change, and increasing risks of biological

invasions, more mechanistic models are necessary to

more effectively predict population dynamics in our

changing world (Benton et al. 2006, Schurr et al. 2012).

ACKNOWLEDGMENTS

We are grateful to M-P. Chapuis and X. Lambin for useful
comments on this work. This research was funded by an
Australian Research Council Linkage grant (LP0669080) on
Australian plague locust population genetics and migratory
behavior.

LITERATURE CITED

Adegboye, O. A., and D. Koze. 2012. Disease mapping of
Leishmaniasis outbreak in Afghanistan: spatial hierarchical
Bayesian analysis. Asian Pacific Journal of Tropical Disease
2(4):253–259.

Akaike, H. 1974. A new look at the statistical model
identification. IEEE Transactions on Automatic Control
19:716–723.

Augustin, N. H., M. A. Mugglestone, and S. T. Buckland. 1996.
An autologistic model for the spatial distribution of wildlife.
Journal of Applied Ecology 33:339–347.

Babah, M. A. O., and G. A. Sword. 2004. Linking locust
gregarization to local resource distribution patterns across a
large spatial scale. Environmental Entomology 33:1577–
1583.

Baltensweiler, W., and A. Fischlin. 1988. The larch budmoth in
the Alps. Pages 331–351 in A. Berryman, editor. Dynamics of
forest insect populations: patterns, causes, implications.
Plenum Press, New York, New York, USA.

Benton, T. G., S. J. Plaistow, and T. N. Coulson. 2006.
Complex population dynamics and complex causation:
devils, details and demography. Proceedings of the Royal
Society B 273:1173–1181.

Bjørnstad, O. N., and B. T. Grenfell. 2001. Noisy clockwork:
time series analysis of population fluctuations in animals.
Science 293:638–643.

Bjørnstad, O. N., R. A. Ims, and X. Lambin. 1999. Spatial
population dynamics: analyzing patterns and processes of
population synchrony. Trends in Ecology and Evolution 14:
427–432.

Bled, F., J. A. Royle, and E. Cam. 2010. Hierarchical modeling
of an invasive spread: the Eurasian Collared-Dove Strepto-
pelia decaocto in the United States. Ecological Applications
21:290–302.

SOPHIE VERAN ET AL.746 Ecology, Vol. 96, No. 3



Bryant, E. 1985. The southern oscillation and climatic effects in
Australia. Wollongong Studies in Geography 16. University
of Wollongong, Wollongong, New South Wales, Australia.

Bryceson, K. P. 1991. Likely locust infestation areas in Western
New South Wales, Australia, located by satellite. Geocarto
International 6.4:21–37.

Bryceson, K. P., D. M. Hunter, and J. G. Hamilton. 1993. Use
of remotely sensed data in the Australian Plague Locust
Commission. Pages 435–439 in S. A. Corey, D. J. Dall, and
W. M. Milne, editors. Pest control and sustainable agricul-
ture. CSIRO, Melbourne, Australia.

Bryceson, K. P., and D. E. Wright. 1986. An analysis of the
1984 locust plague in Australia using multitemporal landsat
multispectral data and a simulation model of locust
development. Agriculture, Ecosystems and Environment 16:
87–102.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and multi-model inference: a practical information-theoretic
approach. Springer, New York, New York, USA.

Chapman, R. F., W. W. Page, and A. R. McCaffery. 1986.
Bionomics of the variegated grasshopper (Zonocerus Varie-
gatus) in West and Central Africa. Annual Review of
Entomology 31:479–505.

Chapuis, M.-P., J.-A. M. Popple, K. Berthier, S. J. Simpson, E.
Deveson, P. Spurgin, M. J. Steinbauer, and G. A. Sword.
2011. Challenges to assessing connectivity between massive
populations of the Australian plague locust. Proceedings of
the Royal Society B 278:3152–3160.

Clark, J. S., and O. N. Bjørnstad. 2004. Population time series:
process variability, observation errors, missing values, lags,
and hidden states. Ecology 85:3140–3150.

de Valpine, P. 2002. Review of methods for fitting time-series
models with process and observation error and likelihood
calculations for nonlinear, non-Gaussian state-space models.
Bulletin of Marine Science 70:455–471.

Despland, E., J. Rosenberg, and S. J. Simpson. 2004.
Landscape structure and locust swarming: a satellite’s eye
view. Ecography 27:381–391.

Deveson, E. D. 2013. Satellite normalized difference vegetation
index data used in managing Australian plague locusts.
Journal of Applied Remote Sensing 7(1):075096.

Deveson, E. D., V. A. Drake, D. M. Hunter, P. W. Walker, and
H. K. Wang. 2005. Evidence from traditional and new
technologies for northward migrations of Australian plague
locusts (Chortoicetes terminifera) (Walker) (Orthoptera:
Acrididae) to western Queensland. Austral Ecology 30:920–
935.

Deveson, E. D., and P. Walker. 2005. Not a one-way trip:
historical distribution data for Australian plague locusts
support frequent seasonal exchange migrations. Journal of
Orthoptera Research 14(1):91–105.

Deveson, T., and D. M. Hunter. 2002. The operation of a GIS-
based decision support system for Australian locust man-
agement. Insect Science 9(4):1–12.

Dormann, F. C., et al. 2007. Methods to account for spatial
autocorrelation in the analysis of species distributional data:
a review. Ecography 30:609–628.

Drake, V. A., and R. A. Farrow. 1983. The nocturnal migration
of the Australian plague locust, Chortoicetes terminifera
(Walker) (Orthoptera: Acrididae): quantitative radar obser-
vations of a series of northward flights. Bulletin of
Entomological Research 73:567–585.

Farrow, R. A. 1990. Flight and migration in acridoids. Pages
227–314 in R. F. Chapman and A. Joern, editors. Biology of
grasshoppers. Wiley, New York, New York, USA.

Farrow, R. A. 1991. Implications of potential global warming
on agricultural pests in Australia. EPPO Bulletin 21:683–696.

Goswami, V. R., L. L. Getz, J. A. Hostetler, A. Ozgul, and
M. K. Oli. 2011. Synergistic influences of phase, density, and
climatic variation on the dynamics of fluctuating popula-
tions. Ecology 92:1680–1690.

Gray, L. J., G. A. Sword, M. L. Anstey, F. J. Clissold, and S. J.
Simpson. 2009. Behavioural phase polyphenism in the
Australian plague locust (Chortoicetes terminifera). Biology
Letters 5:306–309.

Hamilton, J. G., and K. P. Bryceson. 1993. Use of enhanced
GMS weather satellite data in locust forecasting. Pages 444–
448 in S. A. Corey, D. J. Dall, and W. M. Milne, editors. Pest
control and sustainable agriculture. CSIRO, Melbourne,
Australia.

Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler. 2007.
Australian rainfall and surface temperature variations
associated with the southern hemisphere annular mode.
Journal of Climate 20:2452–2467.

Hunter, D. M., P. W. Walker, and R. J. Elder. 2001.
Adaptations of locusts and grasshoppers to the low and
variable rainfall of Australia. Journal of Orthoptera Re-
search 10:347–351.

Johnson, D. M., O. N. Bjørnstad, and M. Liebhold. 2004.
Landscape geometry and travelling waves in the larch
budmoth. Ecology Letters 7:967–974.

Johnson, D. M., O. N. Bjørnstad, and M. Liebhold. 2006.
Landscape mosaic induces travelling waves of insect out-
breaks. Oecologia 148:51–60.

Knape, J., and P. de Valpine. 2011. Effects of weather and
climate on the dynamics of animal population time series.
Proceedings of the Royal Society B 278:985–992.

Kvasnes, M. A. J., T. Storaas, H. C. Pedersen, S. Bjørk, and
E. B. Nilsen. 2010. Spatial dynamics of Norwegian tetraonid
populations. Ecological Research 25:367–374.

Launois, M. 1978. Modélisation écologique et simulation
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