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Abstract: Volatile organic compounds (VOCs) play an important role in different 
photochemical processes in the troposphere. In order to predict their impact on ozone 
formation processes a detailed knowledge about their abundance in the atmosphere as well 
as their reaction rate constants is required. The QSPR models were developed for the 
prediction of reaction rate constants of volatile unsaturated hydrocarbons. The chemical 
structure was encoded by constitutional and topological indices. Multiple linear regression 
models using CODESSA software was developed with the RMSCV error of 0.119 log units. 
The chemical structure was encoded by six topological indices. Additionally, a regression 
model using a variable connectivity index was developed. It provided worse cross-
validation results with an RMSCV error of 0.16 log units, but enabled a structural 
interpretation of the obtained model. We differentiated between three classes of carbon 
atoms: sp2-hybridized, non-allylic sp3-hybridized and allylic sp3-hybridized. The structural 
interpretation of the developed model shows that most probably the most important 
mechanisms are the addition to multiple bonds and the hydrogen atom abstraction at allylic 
sites. 

Keywords: prediction, topological indices, reaction rate constants, OH radical, variable 
connectivity index, QSPR. 
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Introduction 

The reactions of volatile organic compounds (VOCs) of biogenic and anthropogenic origin play an 
important role in different atmospheric photochemical processes. The major degradation pathway of 
VOCs in the atmosphere is reaction with hydroxyl radicals. Although extensive experimental work has 
been carried out during the last several years on measurement of kinetic parameters, experimental 
reaction rate constants are only available for approximately 500 VOCs [1-3]. In order to reduce 
analysis time and costs of such measurements it would be useful to develop a prediction model to 
estimate these values. Recently, several quantitative structure property relationship (QSPR) prediction 
models were developed to predict reaction rate constants for the reaction of OH radicals with different 
organic species. These models estimated reaction rate constants based on empirical fragment 
contribution technique [4-6], bond dissociation energy [7-9], NMR chemical shift data [10], ionization 
potentials [11-13], molecular orbital calculations [14-21] and various structural descriptors [22-27]. A 
comprehensive overview [28] of these method and their partial evaluations were recently published 
[29]. These methods offered models with, at least, moderate prediction capabilities. However, their use 
was mostly restricted because of a limited knowledge about the reaction pathways, limited databases 
with experimental molecular properties, or due to the extensive computations necessary for ab initio 
molecular orbital calculations. All these drawbacks are bypassed in QSPR models using molecular 
structural descriptors. 

Constitutional, topological, geometric, electronic, and quantum chemical indices have been already 
used for the prediction of different chemical or physical properties [30, 31].  Among them topological 
indices represent a very promising group of structural descriptors, not only because they are easy to 
calculate, but because in most cases they offer good correlations with the modeled property. Wiener 
[32] and Platt [33] did the pioneering work in the field of topological indices in late 1940s, however it 
was not until the early 1970’s that the idea of representing chemical structures by graph invariants was 
resurrected and further developed by several authors [34-38]. Because of their ability to yield good 
prediction models [39,40], in more recent years we have seen a rapid expansion of novel molecular 
descriptors derived from molecular graphs. The question can be raised whether there is a true need for 
hundreds of topological descriptors even though they may represent different structural features of the 
molecule in view that many of them are highly interrelated. Typically half a dozen descriptors are used 
to obtain satisfactory regressions. An alternative to this was suggested a decade ago [41,42] but only 
recently has been re-employed. Instead of using a large pool of descriptors to extract half a dozen of 
topological indices for the prediction models, a single index or very few indices involving variable 
parameters were constructed and optimized during the modeling procedure [43,44]. We should also 
mention here the work of Pogliani [45], who used limited combinations of dozen generalized 
connectivity indices also involving variable parameters. 

In this work we have tested the coding abilities of topological indices in prediction of gas-phase 
reaction rate constants for the reaction of different organic compounds with OH radical. A multiple 
linear regression (MLR) model was used as a modeling technique. In addition, the prediction ability of 
the variable connectivity index (χ1

f) was tested. The final prediction results were compared with 
previously published data. 
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Experimental 

Data set (Unsaturated Hydrocarbons) 

In this study we considered a data set taken from the literature [26], which contains 58 unsaturated 
acyclic and cyclic organic compounds with three to ten carbon atoms (Table 1). The reaction rate 
constants were obtained at a temperature of 298 K. The listed numerical values are the negative 
logarithm of the reaction rate constant (kOH) reported in cm3 molecule-1 s-1. The test set compounds are 
marked by asterisk. We have selected the same test set as in the literature [26] in order to compare 
prediction capabilities of the models. 

 
Table 1. Experimental, cross-validated and predicted -log kOH values (n=58) 

ID Name Experimental
Calculated

MLR 
Calculated χ1

f 

(model 1) 
Calculated χ1

f 

(model 2) 
1 α-terpinene    9.44 9.51 9.49 9.59 
2 α-phellandrene 9.50 9.73 9.57 9.72 
3 trans-β-ocimene 9.60 9.54 9.58 9.50 
4 terpinolene* 9.65 9.49 9.64 9.65 
5 myrcene 9.67 9.70 9.61 9.53 
6 2,5-dimethyl-2,4-hexadiene 9.68 9.71 9.85 9.78 
7 γ-terpinene 9.75 9.55 9.57 9.60 
8 ∆-limonene 9.77 9.72 9.82 9.69 
9 β-phellandrene 9.78 9.94 9.69 9.86 
10 1,3-cyclohexadiene 9.79 9.88 9.86 9.93 
11 trans,trans-2,4-hexadiene 9.87 9.94 10.06 10.03 
12 trans –4-methyl-1,3-pentadiene 9.88 10.04 10.06 10.03 
13 2,3-dimethyl-1,3-butadiene* 9.91 9.81 10.05 10.13 
14 2,5-dimethyl-1,5-hexadiene 9.92 9.83 9.95 9.84 
15 bicyclo[2.2.1]-2,5-heptadiene 9.92 9.99 9.90 9.85 
16 trans –1,3-hexadiene 9.95 10.09 10.09 10.11 
17 trans –1,3,5-hexatriene 9.96 9.92 9.92 9.97 
18 cis-1,3,5-hexatriene 9.96 9.93 9.92 9.97 
19 2,3-dimethyl-2-butene 9.96 9.96 10.18 10.09 
20 1,3-pentadiene 10.00 10.04 10.05 10.17 
21 2-methyl-1,3-butadiene 10.00 10.10 10.16 10.16 
22 1,4-cyclohexadiene 10.00 9.93 9.96 9.94 
23 1,3,5-cycloheptatriene 10.01 9.56 9.70 9.72 
24 2-methyl-1,5-hexadiene 10.02 10.08 10.05 9.96 
25 trans -1,4-hexadiene 10.04 10.11 10.12 10.06 
26 2-methyl-2-pentene* 10.05 10.00 10.22 10.13 
27 ∆3-carene 10.06 10.09 10.09 10.09 
28 2-methyl-2-butene 10.06 10.09 10.29 10.22 
29 β-pinene 10.10 10.23 10.15 10.11 
30 cycloheptene 10.13 10.18 10.25 10.22 
31 trans -4-octene 10.16 10.10 10.13 10.22 
32 trans -2-heptene 10.17 10.12 10.20 10.26 
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Table 1. Cont. 

ID Name Experimental
Calculated

MLR 
Calculated χ1

f 

(model 1) 
Calculated χ1

f 

(model 2) 
33 cyclohexene 10.17 10.18 10.28 10.24 
34 cyclopentene 10.17 10.26 10.31 10.26 
35 trans -2-pentene 10.18 10.14 10.33 10.30 
36 1,3-butadiene 10.18 10.34 10.26 10.28 
37 cis -2-pentene 10.18 10.15 10.33 10.30 
38 trans -2-butene 10.19 10.28 10.39 10.34 
39 2-methyl-1-pentene 10.20 10.13 10.26 10.28 
40 1,5-hexadiene 10.21 10.36 10.15 10.09 
41 2-methyl-1-butene 10.22 10.13 10.32 10.30 
42 trans -4-methyl-2-pentene 10.22 10.13 10.26 10.26 
43 3-methyl-1,2-butadiene 10.25 10.33 10.22 10.19 
44 cis -2-butene 10.25 10.29 10.39 10.34 
45 α-pinene 10.27 10.02 10.01 10.01 
46 1,4-pentadiene* 10.27 10.35 10.22 10.13 
47 camphene 10.27 10.16 10.14 10.06 
48 2-methylpropene* 10.29 10.25 10.38 10.13 
49 1-heptene 10.39 10.38 10.23 10.37 
50 1-hexene 10.43 10.37 10.29 10.39 
51 1,2-pentadiene 10.45 10.42 10.25 10.27 
52 3-methyl-1-butene 10.50 10.40 10.35 10.38 
53 1-pentene 10.50 10.40 10.35 10.41 
54 1-butene 10.50 10.44 10.42 10.42 
55 3,3-dimethyl-1-butene 10.55 10.48 10.29 10.34 
56 1,2-butadiene 10.58 10.57 10.31 10.31 
57 propadiene 11.01 10.76 10.39 10.44 
58 sabinene 9.93 10.06 10.09 10.11 

* test set 
 
 
Calculation and selection of topological indices using CODESSA software  

All molecular structures were created using HyperChemTM. By using the CODESSA software [46, 
47] 76 invariants were calculated for the structures, which were either informational or topological 
molecular descriptors. These descriptors contain information about the connectivity between atoms, 
molecular branching and molecular symmetry, and are sensitive to variation in shape between 
molecules of similar size. 

The CODESSA software was also used for the selection of best subset of structural descriptors by 
minimizing the error in cross-validation using MLR model. Descriptors with no variation between 
structures, descriptors that did not cover the whole modeling space, and descriptors with very low 
coefficient of determination when used as single variable were omitted from the further consideration. 
We excluded descriptors giving the coefficient of determination (r2), where r is the coefficient of the 
regression, smaller than 0.01. Subsequently we also eliminated highly inter-correlated descriptors on 
the basis that they represent duplication. Thus, if the squared pair-wise correlation coefficient for two 
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descriptors exceeded 0.99, one of the descriptors was omitted. Both conditions for omitting descriptors 
(the low coefficient of determination and the high inter-correlation) are somewhat arbitrary, and as it is 
known may filter out otherwise useful descriptors [48]. As a result the selected combinations that 
under such conditions CODESSA generate may not be unique, but will produce acceptable regression 
equations. 

The descriptors that passed the selection process were sorted in the decreasing order of r2 when 
used in a simple linear regression model. In this way the best ten descriptors were selected. To these 
pre-selected descriptors a new descriptor was added from the set of the remaining descriptors if it did 
not show pair-wise correlation higher than 0.8. Finally the ten best two parameter models showing the 
highest Fisher ration in the two-parameter models were selected and used as the working set. New 
descriptors were added until an MLR model with the prescribed number of variables was obtained. 
During each step of the formation of the MLR model a new descriptor is added to the working set if it 
does not correlate with the descriptors already included and produces higher normalized Fisher ratio F. 
Again we accepted a descriptor if r2 is below 0.8 and if Fnew > n/(n+1)•Fold, where n is the number of 
descriptors in the new working set. In this way through stepwise addition procedure we arrived to the 
final ten correlations with the highest r2. The derived correlations were tested for their cross-validation 
capabilities by leave-one-out cross validation procedure. The model with the highest q2 (squared 
correlation coefficient in cross-validation) was selected as the best n-parameter MLR model. In order 
to test significance of descriptors selected to the prediction model a t-test and partial-F statistics were 
calculated for each parameter of the model. A more detailed description of stepwise selection 
procedure can be found in CODESSA manual [47]. Prediction capability of final models was 
evaluated by using test set. 

We feel that very low limits for elimination that were chosen, that is, one parameter and pair-wise 
correlation coefficient were less than 0.01 and greater than 0.8, respectively, offer considerable 
assurance that important descriptors would not been omitted in the selection process.  As mentioned it 
was already reported in the literature that linear correlation of highly correlated parameters, which 
individually do not correlate well with the studied property, can yield a very good correlation [48]. But 
at the same time the limits of elimination are strict enough that the chances of obtaining insignificant 
coefficients in MLR model are low.  
 
The variable connectivity index (χ1

f) 

Only rarely is a single descriptor capable of describing sufficiently well the molecular structure to 
allow a simple regression to be used for the modeling of chosen property. As a rule, additional 
descriptors are needed to get regression equations if one hopes to obtain satisfactory prediction of 
molecular properties. In constructing MLR basically two alternative approaches are possible. One can 
apply statistical methods to select information-rich significant descriptors from a large pool of 
descriptors or one can use a smaller set of well-selected structurally related descriptors that form a 
basis that sufficiently well covers the structure-property space for molecules and properties 
considered. The first approach, which does not require a critical examination of descriptors, is often 
used, but it offers a limited interpretation of the derived regression model. The second approach, based 
on combinations of structurally related descriptors received a limited attention [49,50], except perhaps 
when confined to the connectivity index [35] (1χ) and the higher order connectivity indices mχ [51], 
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including also the valence connectivity indices of Kier and Hall [38,52]. Such an approach enables less 
cumbersome structural interpretation of the regression analysis. Both these approaches, the use of a 
pool of descriptors and the use of basis descriptors, could dramatically improve the quality of the 
regression analysis if the selected descriptors were designed specifically for the particular application. 
One of the possibilities is to modify or adjust an already available descriptor for the particular 
property.  

One of apparent disadvantages of the original connectivity index 1χ is its inability to differentiate 
between different types of atoms and bonds. Kier and Hall recognized a need for the modification of 
the connectivity indices to describe molecules with heteroatoms. Similar modifications have been 
introduced since then for other graph theoretical descriptors that were initially designed for 
hydrocarbons [53]. In these modifications one assigns different weights to heteroatoms and multiple 
bonds. However, when prescribing relative contribution of heteroatoms or multiple bonds such 
approaches involve some degree of arbitrary decisions. Although in a number of applications the 
valence connectivity indices gave better results than would be otherwise the case, in some cases 
discrimination of heteroatoms by the use of valence connectivity indices produce even worse results 
than the results based on the ordinary connectivity index. An example, already illustrated in the book 
of Kier and Hall [38] was the case of water solubility of aliphatic ethers, which is represented better 
with the simple connectivity index 1χ (that does not differentiate between carbon and oxygen atoms) 
than the valence connectivity index 1χv. Dozens of similar correlations involving selected properties of 
ethers and alcohols have been listed in brief review on the developments involving the connectivity 
index after its 25 years of use [54]. At that time apparently not much attention was given to this 
anomaly, which implied that different properties might require different optimal weights to be used 
when discriminating among heteroatoms. It was only with the development of the variable 
connectivity index that this has been recognized, even though such results could have been expected 
because individual heteroatoms influence different properties of the molecule in different ways.  

The idea behind the variable connectivity index, where contributions of different atoms or different 
kind of bonds are varied during the optimization process, is to allow relative contributions of different 
atoms and bonds to be adjusted so to produce the smallest standard error for the regression. Hence, 
instead of screening a large pool of descriptors in order to select few for describing regression, 
variable molecular descriptors allow one to construct relatively small number of relevant descriptors, 
from which the best are selected. Calculation of the variable connectivity index, for which we use 
symbol with superscript f to suggest that it is a function rather than a constant, hence (χ1

f), for a 
hypothetical linear molecule YX3Z (Figure 1) is illustrated in Table 2.  
 

Figure 1. Hypothetical linear molecule YX3Z 

4  1  2  3  5 
Y  X  X  X  Z
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Table 2. Augmented adjacency matrix for the hypothetical compound YX3Z 

 1 2 3 4 5 Row sum 
1 y 1 0 1 0 1+y 
2 1 x 1 0 0 2+x 
3 0 1 x 0 1 2+x 
4 1 0 0 x 0 2+x 
5 0 0 1 0 z 1+z 

     ( ) ( ) ( ) ( ) ( ) ( )
z)x,(y, f

z1x2
1

x2x2
2

x21
1

1

=

+⋅+
+

+⋅+
+

+⋅+
=

y
fχ

 

 
 

First we augment the adjacency matrix of a graph by introduction of non-zero diagonal entries. The 
variables x, y, and z on the diagonal of the matrix will alter the atomic contributions to the 
connectivity index. In general one can assign individual weights to every atom present in the molecule, 
but this would lead to a large number of variables that need to be determined. Such an optimization 
would require large data sets, and besides being computationally intensive, it may produce non-general 
models in which there may be less significant differences among structurally similar molecular 
fragments.  To avoid these problems one should try to construct models in which structurally similar 
fragments (atoms and bonds in similar immediate environment, in particular) should be described by 
the same variable parameters, which will consequently maintain the number of variables rather low. 

As has been illustrated in the literature [41-44, 55-64], by using variable descriptors the quality of 
correlations can be significantly improved. Equally important is that use of variable descriptors may 
allow a novel structural interpretation of the results when the optimized weights could be related to 
other physico-chemical properties of compounds. For instance, the connectivity index is a bond 
additive quantity in which the bond contributions are given by (m•n)-1/2. As a consequence primary, 
secondary, tertiary, and quaternary carbon atoms make different contributions to bond-additive 
properties. Here m and n represents row sums in adjacency matrix of the atoms, which are forming 
bonds. By a close evaluation of the influence of optimized weights on the connectivity index we can 
get information on which structural features of the molecule may play more important role for the 
particular structure-property study. 

 
Search for optimal weights in χ1

f and evaluation of quality of the models 

Optimal values of weights used in calculation of χ1
f were obtained using a Simplex [65] 

optimization procedure. At the start of optimization one assigns to various weights in the augmented 
adjacency matrices random values, which however are subject to certain limits to avoid occurrence of 
complex numbers. The Simplex algorithm was used to find the weights that would minimize the 
standard error in a linear correlation log kOH = a f(χ1

f) + b. As is known the Simplex optimization may 
rest in any of present local minima, rather than total minimum. In order to reduce chance of selecting 
local minima, the simplex optimization was performed several times starting with different set of 
random numbers. 
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 The generality of the obtained model was evaluated by leave-one-out cross validation procedure. 
The root-mean-squared (RMS) error of test set served as an estimate of prediction capabilities of the 
linear regression model created from optimized connectivity index. 
 
Results and Discussion 
 

Hydroxyl radical reactions are grouped into four reaction classes: (1) hydrogen atom abstraction, 
(2) addition to multiple bonds, (3) addition to aromatic rings, and (4) reaction to aromatic rings [1, 6]. 
Since all 58 compounds contained one or more C=C double bonds, all reactions belong to second class 
of reactions with OH radicals, that is, the radical addition to multiple bonds. Training set compounds 
were used during model creation.  
 

Figure 2. The influence of the number of selected parameters of the MLR 
model on r2, q2 and RMSCV values 
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At the beginning 76 informational and topological descriptors for each compound were calculated 

using CODESSA software. After elimination of descriptors that did not satisfy our criteria on being of 
sufficient interest we were left with a pool of 34 descriptors to be tested in the step-wise selection for 
selection of optimal combination of descriptors. The MLR models with up to 10 parameters were 
selected based on the best cross-validation capabilities obtained by leave-one-out cross-validation 
procedure. The influence of the number of selected descriptors of the MLR model on r2, q2, and 
RMSCV values is shown in Figure 2.  

We can see that r2 and q2 increase from about 0.4 and 0.35 respectively, the values for single 
descriptor, to the asymptotic values close to 0.90 and 0.85, respectively as the number of descriptors 
has increased from one to ten. In the same figure we also illustrated the decrease of the RMSCV values. 
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The error bars in Figure 2 for RMSCV represent calculated standard deviation of estimates. Though the 
increase of both r2 and q2 and the decrease of RMSCV continues until we use nine descriptors, we can 
see that probably only the first half a dozen descriptors make the dominant contributions.  It would be 
difficult to argue that the small improvements in q2 and RMSCV values beyond the contributions of the 
first six descriptors are significant in view of possible fluctuations in the calculations if experimental 
values are slightly altered (with experimental errors limits). We can see a significant improvement in 
RMSCV until six descriptors are included in the model. Fluctuations beyond this point are within one 
standard deviation limit suggesting that RMSCV becomes approximately constant from that point on.  
Additional descriptors would lead to overfitting of the model and will decrease the signal to noise ratio 
for the model.  Taken into account these conditions we have decided to use 6-parameter MLR model 
for the prediction of log kOH values. The selected structural descriptors together with coefficients of the 
a 6-parameter MLR model are shown in Table 3. The regression parameters presented in Table 4 were 
obtained from the MLR model constructed with 53 unsaturated hydrocarbons, which are present in the 
training set. 

  
Table 3. Structural descriptors for the best MLR model r2 = 0.878,  F = 55.02,  RMS = 0.115 

No. Coefficients Standard 
Error t-test Partial F Name of the descriptor 

 0 12.23 0.179 68.37 4674 Intercept 

 1 -1.018 0.104   -9.74 94.9 Randic index (order 2) 

 2 1.398    0.0988   14.14 200.1 Kier & Hall index (order 2) 

 3 -0.555    0.0993   -5.59 31.2 
Average Complementary 
Information content (order 0) 

 4 0.405    0.0489    8.29 68.8 Kier shape index (order 1) 

 5 -0.753   0.109   -6.90 47.6 Kier & Hall index (order 0) 

 6 0.000742   0.000233    3.19 10.2 Gravitation index (all pairs) 

  
We arrived at the result that a 6-dimensional vector, the components of which were six topological 

indices, characterizes a chemical structure. Most of the selected topological indices encode 
information on molecular size and the branching pattern. This is in particular the case with the Randić 
index, the Kier & Hall indices and Kier’s kappa shape index. Indirectly these indices store information 
on steric properties of molecules, which are one of the determining factors of the reaction rate. In order 
to test the significance of individual descriptor a t-test and partial F factor were calculated. Both tests 
show significance of all descriptors included in model. 

The cross-validation capability of the developed six-descriptor MLR model was tested by leave-
one-out cross-validation procedure. The RMSCV error was found to be 0.119 log units. On the other 
hand test set was used to determine prediction ability of developed model. The obtained RMS value 
was 0.097 log units. The graph of the calculated versus the experimental log kOH values is shown in 
Figure 3.  

 
Figure 3. Calculated vs. experimental -log(kOH) values obtained by six parameter MLR model 
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Visual inspection of the plot shows 1,3,5-cycloheptatriene (compound 23 in Table 1) as a potential 

outlier. The difference between the experimental log (kOH) and the calculated value for this compound 
exceeds 0.45 log units. Its removal visibly reduced the RMS error (about 17 %). Because the studied 
data set was already quite small the likely outlier was not removed from the study.  The large resulting 
error need not to be due to an experimental nature but due to limitations of coding capabilities of 
descriptors used. Another reason to keep the outlier was that we wanted to compare our model with 
other QSPR studies on the same data set [6, 16, 24, 26], where 1,3,5-cycloheptatriene was included in 
the modeling procedure. Finally without a further close scrutiny it cannot be decided whether the large 
error accompanying outliers of experimental nature or is due to limitations of coding capabilities of 
descriptors used. 

A direct comparison of calculated results with the literature data is difficult. The models discussed 
in the literature used residual sum of squares (RSS) for the model validation. Some of the predicted 
values represent true predicted values, but on the other hand the remaining data are actually retrieved 
values, that is, they were used for the model creation as well as prediction. Therefore the calculated 
RSS value slightly overestimates the prediction abilities of the model.  In order to compare our results 
to three types of models reported by Bakken and Jurs [26] where also classical training/test set 
procedure was used, the RSS value as well as the RMS values for training and test set as well were 
calculated for the first 57 compounds. Corresponding values are 0.101, 0.0965 and 0.569 log units, 
respectively. Our six-descriptor MLR had similar training capabilities to the five descriptors MLR 
model of Jurs and Bakken. On the other hand the RSS value and RMS prediction value compare 
favorably with the literature MLR model, where corresponding values were 0.676 and 0.139 log units, 
respectively.  

Introduction of non-linear modeling technique, like artificial neural networks (ANN), improved the 
reported calculation capabilities of log kOH.  Both reported ANN models with RMSCV errors of 0.074 
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and 0.065 log units outperformed our MLR model.  In both ANN cases five descriptors were used for 
encoding the chemical structure. 

We want finally to compare calculation ability of our MLR model with the simple regression 
model based on a single variable molecular descriptor (χ1

f). We assigned four weights to diagonal 
elements of the connectivity matrix for the contribution of cyclic or acyclic sp2-hybridized or sp3-
hybridized carbon atoms. In this way we have differentiated the influence of cyclic structures as well 
as between contributions of CC single and CC double bonds. Using the training set, weights were 
optimized by the Simplex method to get the lowest RMS value for the retrieved data. The changes of 
RMS value during optimization procedure are shown in Figure 4. 

 
Figure. 4. Optimization of variable connectivity index 1χv 
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The optimization of χ1

f changes the calculation performance of regression model substantially. The 
r2, q2 and cross-validated RMS improved from 0.399, 0.340, and 0.23 log units, respectively, when 
ordinary connectivity index (χ1) was used, to 0.716, 0.692, and 0.16 log units, respectively when the 
variable index was used. At the same time RMS error for the prediction set also decreased from 0.16 to 
0.11 log units. The calculated –log kOH values are shown in Figure 5. The calculation performance of 
the single variable connectivity index is better than MLR model with two descriptors and slightly 
worse than when three descriptors were used for model creation. Although the calculation ability of 
variable connectivity index is worse than the best MLR model, its biggest advantage is the possibility 
of a structural interpretation of the model. 

During the creation of the first model carbon atoms were differentiated into four classes, that is, 
acyclic sp3-hybridized, acyclic sp2-hybridized, cyclic sp3-hybridized and cyclic sp2-hybridized. Their 
corresponding optimal weights were 9.5039.104, 3.6066.104, 21.788.104 and 2.5304.104, respectively 
(Model 1 in Table 1). We can see that the smallest influence on compounds reactivity have both cyclic 
and acyclic sp3-hybridized carbon atoms. On the other hand cyclic sp2-hybridized carbon atoms show a 
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slightly higher reactivity that the corresponding atoms in acyclic structure, which is again in agreement 
with the experimental observations. 
 

Figure 5. Calculated vs. experimental -log(kOH) values using variable connectivity index (Model 1) 
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Alkenes can undergo halogenation with Cl2 or Br2 either by a heterolytic mechanism (resulting in 

addition which yields vicinal dihaloalkanes) or by a homolytic mechanism (resulting in substitution in 
allylic position). As an example for the latter type of reaction, when isobutene and one of the two 
above halogens react at 400ºC, the substitution product is methallyl halide. A milder reagent for allylic 
bromination is N-bromosuccnimide. 

Similarly, oxidation of alkenes with oxygen (“autoxidation”) proceeds homolytically by 
substitution affording allylic hydroperoxides. The reaction with OH radicals also follows the same 
course starting with hydrogen abstraction from an allylic position. 

The reason for this regioselectivity favoring substitution in an allylic position is the different bond 
dissociation energy (BDE) for various types of C–H bonds. The approximate BDE values (in kJ/mol) 
are: (i) 445 for sp2 C–H bonds; (ii) 400 for non-allylic sp3 C–H bonds; and (iii) 360 for allylic sp3 
C–H bonds. These energy values are due to the remaining lone electron after hydrogen atom 
abstraction, which would be: (i) a σ-electron in an sp2-hybridized orbital; (ii) a π-electron in the non-
hybridized p-orbital; and, respectively, (iii) a π-electron in a delocalized molecular orbital extending 
over three atoms with sp2-hybridzation. Of course, the allylic hydrogen atom with the lowest BDE will 
be abstracted by a halogen atom or an OH free radical. 

Therefore we considered that allylic versus non-allylic positions are more important than 
cyclic/acyclic constitution, and we differentiated in model 2 between three classes of carbon atoms: 
sp2-hybridized, non-allylic sp3-hybridized, and allylic sp3-hybridized. The optimized weights for 
corresponding C atoms were 6.2731.104, 5.0000.105 and 9.6063.104, respectively. The calculated –log 
k values are shown in Fig 6 and as Model 2 in Table 1. 
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Figure 6. Calculated vs. experimental -log(kOH) values using variable connectivity index (Model 2) 
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The r2, q2 and cross-validated RMS improved slightly to 0.721, 0.694 and 0.1598. Allthough the 

improvements are not significant, we reduced the number of weights from four to three. At the same 
time by choosing different parametrisation of weights we have gained additional information about the 
nature of the reaction. We can see that sp2-hybridized C atoms are still the most important contributors 
to overall reactivity, but the contribution of allylic sp3-hybridized carbon atoms is closer to sp2-
hybridized than to non-allylic sp3-hybridized. This means that most probably the addition to multiple 
bonds is still most important mechanism but hydrogen atom abstraction at the allylic site can not be 
neglected. 

 
Conclusions 

The aim of this work was to investigate the coding capabilities of constitutional and topological 
descriptors for a QSPR study for predicting gas-phase reaction rate constants of organic compounds 
with OH radical. A very simple chemical representation was selected in order to enable even a non-
specialist in theoretical chemistry to use these predictive models. The data set contained unsaturated 
hydrocarbons where OH radical addition is the dominant reaction pathway.  

Initially, MLR model was developed for the prediction of log kOH values from molecular structure. 
Chemical structure was presented by six-dimensional vector that contained classical topological 
indices. The cross-validation capability of MLR model was tested by leave-one-out cross-validation 
procedure. RMSCV error was 0.119 log units. The obtained prediction results were compared with 
previous literature studies. Our model gave better prediction results than reported MLR model, but was 
outperformed by non-linear models where artificial neural networks were used.  

Beside standard structural indices, the coding capability of a single variable connectivity index was 
tested. The single variable connectivity index provided better cross-validation results than the MLR 
models with two descriptors. The biggest advantage of variable connectivity index is possibility of its 
structural interpretation. Carbon atoms were differentiated into four classes. Both cyclic and acyclic 
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sp3-hybridized carbon atoms have the smallest influence on reactivity. The cyclic sp2-hybridized 
carbon atoms show slightly higher reactivity that the corresponding atoms in acyclic structure. 

Additional model using variable connectivity index was developed where carbon atoms were 
differentiated between three classes: sp2-hybridized, non-allylic sp3-hybridized, and allylic sp3-
hybridized. The model with just three weights give the same calculation results than the model with 
four weights. Additionally, the structural interpretation of the model shown that most probably the 
addition to multiple bonds is most important mechanism but hydrogen atom abstraction at the allylic 
site cannot be neglected 
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