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ABSTRACT

We obtain new consistent Kaluza-Klein embeddings of the gauged supergravities with

half of maximal supersymmetry in dimensions D = 7, 6, 5 and 4. They take the form

of warped embeddings in type IIA, type IIB, M-theory and type IIB respectively, and

are obtained by performing Kaluza-Klein circle reductions or T-duality transformations on

Hopf fibres in S3 submanifolds of the previously-known sphere reductions. The new internal

spaces are in some sense “mirror manifolds” that are dual to the original internal spheres.

The vacuum AdS solutions of the gauged supergravities then give rise to warped products

with these internal spaces. As well as these embeddings, which have singularities, we also

construct new non-singular warped Kaluza-Klein embeddings for the D = 5 and D = 4

gauged supergravities. The geometry of the internal spaces in these cases leads us to study

Fubini-Study metrics on complex projective spaces in some detail.
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1 Introduction

It has long been known that gravity coupled to antisymmetric tensors can allow AdS×Sphere

solutions [1]. Such configurations occur for eleven-dimensional supergravity and type IIB

supergravity, where they give rise to solutions AdS4 × S7, AdS7 × S4 and AdS5 × S5,

which preserve maximal supersymmetry [2]. At the linearised level the fluctuations around

these backgrounds correspond to the fields of the associated maximal gauged supergravities

[3, 4, 5, 6]. It was expected that the reductions on S7, S4 and S5 would in fact be consistent

at the full non-linear level, and indeed for the S7 reduction [7] and the S4 reduction [8] this

has been demonstrated. As well as these maximally-supersymmetric reductions, the explicit

non-linear reductions with half of maximal supersymmetry have been obtained for the S7

and S4 cases [9, 10], and in addition for the S5 example [11]. Although no results for the

complete maximally-supersymmetric reduction of type IIB supergravity on S5 exist, further

supporting evidence has been obtained by constructing the complete S5 reduction of the

SL(2, IR)-singlet sector of the type IIB theory [12].

The higher-dimensional interpretation of six-dimensional gauged supergravity is more

subtle. First of all, gauged supergravity in D = 6 can at most have half of the supersym-

metry that is possible in the ungauged theory [13]. It was suggested that the gauged theory

might be related to the massive type IIA supergravity [14]. Indeed, it was shown in [15] that

the massive type IIA theory admits a warped product of AdS6 and S4, with a warp factor

in front of the AdS6 metric that depends on a coordinate of the S4. This solution can be

derived [15] as a near-horizon limit of a semi-localised D4/D8-brane intersection [16]. The

fully non-linear consistent embedding of the six-dimensional N = 2 SU(2)-gauged super-

gravity in the massive type IIA theory was subsequently constructed in [17]. It was recently

observed [18] that AdS6 could also be embedded in type IIB theory, as the near-horizon

limit of a semi-localised intersecting D3/D5/NS5-brane system. In this paper, we shall

obtain the non-linear embedding of the six-dimensional N = 2 gauged supergravity in type

IIB.

Recently, it was shown that AdS5 can also arise in a warped spacetime solution of M-

theory, as the near-horizon geometry [19, 20] of a semi-localised M5/M5-brane intersection

[16]. A large class of analogous solutions involving warped products of AdS and an internal

space were subsequently constructed [18], arising as semi-localised intersections of two or

more p-branes. In all these cases, the warp factors that multiply the AdS metrics depend

only on certain coordinates of the internal spaces. In this paper, we shall consider those

warped configurations that are associated with intersecting branes that preserve half of
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maximal supersymmetry in their near-horizon regions.

As in the case of the maximally-supersymmetric direct-product AdS×Sphere solutions,

one might expect that the occurrence of the half-maximally supersymmetric warped AdS

solutions would also presage the possibility of obtaining the associated half-maximally super-

symmetric gauged supergravities by consistent Kaluza-Klein reduction on the corresponding

internal spaces.

In this paper we construct a variety of examples of such half-maximally supersymmet-

ric gauged supergravities, arising as consistent Kaluza-Klein reductions. We obtain them

by starting with the previously-known maximally-supersymmetric sphere reductions, and

exploiting the fact that the internal sphere Sn can itself be viewed as a foliation of Sp ×Sq

with n = p+ q + 1. In all the examples n ≥ 4, and so we can arrange that at least one of p

or q is equal to 3. We then perform a standard S1 Kaluza-Klein reduction on the U(1) fibre

of S3 viewed as the Hopf bundle over S2. The gauge groups that are compatible with the

Sp×Sq structures are smaller than the SO(n+1) groups of the maximally-supersymmetric

theories, and in fact in all cases the subgroups that are compatible are precisely those of the

half-maximally supersymmetric supergravities. These are the theories that whose consistent

reductions were obtained in [10, 17, 11, 9].

In section 2 we carry out this procedure for the N = 2 SU(2)-gauged theory in D = 7,

obtained as an S4 reduction from D = 11. The S4 is viewed as a foliation of S3 surfaces,

on which the SU(2) gauge group acts transitively. We perform a reduction on the U(1)

Hopf fibres of S3, thereby arriving at a reduction of type IIA supergravity that yields the

same N = 2 gauged theory in D = 7. In section 3 we consider the warped S4 reduction

of the massive type IIA theory. Since this is already half-maximally supersymmetric, it

is already compatible with the S3 structure of the foliation. We reduce this on the Hopf

fibres to D = 9, and after performing a T-duality transformation we arrive at a type IIB

embedding of the six-dimensional N = 2 SU(2)-gauged supergravity. In section 4 we start

from the half-maximally supersymmetric reduction of type IIB supergravity on S5, whose

SU(2) × U(1) gauge group is precisely compatible with the S3 × S1 foliation of S5. After

a Hopf reduction and T-duality transformation, we obtain a type IIA embedding of the

five-dimensional N = 4 SU(2) × U(1)-gauged supergravity. In section 5 we start from the

half-maximally supersymmetric reduction of eleven-dimensional supergravity on S7, whose

SO(4) ∼ SU(2) × SU(2) gauge group is compatible with an S3 × S3 foliation. Here there

are two bundles, associated with the two S3 factors, and so we are able to reduce first to a

type IIA embedding, and then after a second reduction we can obtain an embedding of the
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four-dimensional N = 4 SO(4)-gauged supergravity in type IIB. In all these examples, the

embeddings that we obtain are of the form of warped Kaluza-Klein reductions. Indeed, the

AdS vacuum solutions of the half-maximally supersymmetric lower-dimensional theories all

lift to give the warped products that were found in [19, 20, 18].

A characteristic feature of these warped Kaluza-Klein reductions is that the warp-factor

that multiplies the lower-dimensional spacetime metric is singular, tending to zero at one

end of the range of a coordinate in the internal space.1 In the cases of those originating

from the S5 and S7 reductions, a slightly more general type of Hopf reduction can be

performed, which again involves a warped product structure, but now with an entirely non-

singular warp factor. This is possible because in these two cases the foliating surfaces are

actually products of two odd-dimensional spheres (S3×S1 and S3×S3 respectively). Thus

we have two natural U(1) Killing directions in each case, associated with the Hopf fibres

over S3 or from the S1 factor. For a single step of reduction it is now possible to take a

linear combination of the two U(1) Killing directions, and use this as the circle for the S1

reduction. Since the radii of the two odd-dimensional spheres in the foliation never vanish

simultaneously, this means that the radius of the circle on which the Kaluza-Klein reduction

is performed never vanishes. As a consequence, the resulting warped Kaluza-Klein reduction

is then entirely non-singular. In fact, for the most natural choice of linear combination of

the Killing directions, it turns out that the internal space after the S1 reduction is a complex

projective space; CP 2 in the S5 case, and CP 3 in the S7 case. In fact, the Kaluza-Klein

reductions that we obtain in these cases correspond, in the vacuum, to the AdS5×CP 2 and

AdS4 × CP 3 backgrounds that were considered in [23, 24, 25]. The non-singular warped

Kaluza-Klein reductions are discussed in section 6.

Motivated by the occurrence of CP 2 and CP 3 in the non-singular warped reductions, in

an appendix we study some of the related geometrical aspects of the Fubini-Study metrics

on complex projective spaces. We obtain general constructions for CPm+n+1 in terms of a

product of CPm and CPn spaces. Applying this to the case m = n = 1 gives a very simple

explicit construction of the Fubini-Study metric on CP 3.

Finally we note that the subjects of sphere compactification and semi-localised intersect-

ing p-brane solutions were extensively discussed in the literature, see additional references,

e.g. [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 46, 48, 49, 50, 51,

52, 53, 54, 55, 56, 58, 59, 60, 61, 62]

1Non-singular embedding of AdS5 in M-theory and AdS3 in type IIB were recently constructed in [21, 22]

and [22] respectively.
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2 D = 7 SU(2)-gauged N = 2 supergravity from type IIA

The embedding of seven-dimensional N = 2 SU(2)-gauged supergravity in D = 11 was

obtained in [10], in a framework where the 4-sphere is described as a foliation of S3 surfaces.

In this section, we take this construction as our starting point, and then perform a Kaluza-

Klein reduction on the U(1) fibres of the S3 foliations, thereby obtaining an embedding of

the seven-dimensional theory in type IIA supergravity.

From [10], we have the Kaluza-Klein reduction Ansatz for the S4 reduction fromD = 11,

where we truncate to the bosonic sector of N = 2 gauged SU(2) supergravity in D = 7.

The metric reduction is given by

dŝ211 = ∆1/3 ds27 + 2g−2X3 ∆1/3 dξ2 + 1

2
g−2 ∆−2/3X−1 c2

∑

i

h2i , (1)

where

∆ = X c2 +X−4 s2 ,

c ≡ cos ξ , s ≡ sin ξ , (2)

hi ≡ σi − g Ai
(1) .

The left-invariant 1-forms of SU(2) are given by

σ1 = cosψ dθ + sinψ sin θ dϕ ,

σ2 = − sinψ dθ + cosψ sin θ dϕ , (3)

σ3 = dψ + cos θ dϕ .

X is the scalar field in the seven-dimensional N = 2 gauged supergravity, and Ai
(1) are the

SU(2) gauge fields.

It is evident that ∂/∂ϕ is a Killing direction, and so we can perform a Kaluza-Klein

circle reduction on the ϕ coordinate. In order to do this, it is convenient to make the

following redefinitions:

z =
1√
2 g

ϕ ,

Aij
(1) = ǫijk A

k
(1) ,

µ1 = sin θ sinψ , µ2 = sin θ cosψ , µ3 = cos θ . (4)

We also define the gauge-covariant exterior derivative

Dµi = dµi + g Aij
(1) µ

j . (5)
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Note that the coordinates µi satisfy

µi µi = 1 . (6)

It now follows that the 1-forms hi can be written as

hi = −ǫijk µjDµk +
√
2 g µi (dz +A(1)) , (7)

where

A(1) =
1√
2 g

cos θ dψ + 1

2
√
2
ǫijkA

ij
(1) µ

k . (8)

Of course the first term could be expressed in terms of an object ω(1) such that dω(1) = Ω(2),

the volume form of the 2-sphere, rather than using cos θ dψ. It also follows that

∑

i

h2i =
∑

i

(Dµi)2 + 2g2 (dz +A(1))
2 , (9)

Substituting this expression into (1), we obtain the eleven-dimensional metric in the

form

dŝ211 = ∆1/3 ds27 + 2g−2X3 ∆1/3 dξ2 + 1

2
g−2 ∆−2/3X−1 c2

∑

i

(Dµi)2

+∆−2/3X−1 c2 (dz +A(1))
2 . (10)

Comparing this with the standard Kaluza-Klein S1 reduction from D = 11 to D = 10,

dŝ211 = e−
1
6
φ ds210 + e

4
3
φ (dz +A(1))

2 , (11)

we find that the metric Ansatz describing the embedding of seven-dimensional N = 2

gauged SU(2) supergravity in D = 11 can be reinterpreted as an embedding in type IIA

supergravity, with the metric and dilaton given by

ds210 = X−1/8 c1/4
[
∆1/4 ds27 + 2g−2X3 ∆1/4 dξ2 + 1

2
g−2X−1 ∆−3/4 c2

∑

i

(Dµi)2
]
,

eφ = X−3/4 ∆−1/2 c3/2 . (12)

The Ansatz for the vector potential of the type IIA theory is given by (8). The metric of the

vacuum solution corresponds to taking X = 1, Aij
(1) = 0 and ds27 to be AdS7. This solution

can be viewed as the near-horizon limit of the semi-localised NS5/D6-brane system [18].

We can now reduce the original S4 Ansatz for the 3-form potential Â(3) of D = 11

supergravity in an analogous way. It is given in [10], and takes the form

Â(3) = sA(3) +
1

2
√
2
g−3 (2s+ s c2X−4 ∆−1) ǫ(3) − 1√

2
g−2 s F i

(2) ∧ hi − 1√
2
g−1 s ω(3) , (13)

5



where

ǫ(3) ≡ h1 ∧ h2 ∧ h3 , (14)

and

ω(3) ≡ Ai
(1) ∧ F i

(2) − 1

6
g ǫijkA

i
(1) ∧A

j
(1) ∧Ak

(1) . (15)

By comparing this with the standard S1 reduction of Â(3) to D = 10, with ten-

dimensional fields Ā(3) and Ā(2) defined by

Â(3) = Ā(3) + Ā2 ∧ (dz +A(1)) , (16)

we can read off the Asätze for Ā(3) and Ā(2). To do this, the following lemmata are useful:

ǫ(3) = 1√
2
g ǫijk µκDµ

i ∧Dµj ∧ (dz +A(1)) ,

F i
(2) ∧ hi = −F ij

(2) ∧ (µiDµj) + 1√
2
g ǫijk µ

k F ij
(2) ∧ (dz +A(1)) . (17)

1

2
ǫijk F

i
(2) ∧ hj ∧ hk = 1

2
F ij

(2) ∧Dµi ∧Dµj − 1√
2
g ǫijk F

ij
(2) ∧Dµk ∧ (dz +A(1)) .

From these results, it then follows that the Ansätze for the ten-dimensional 3-form and

2-form potentials defined by (16) are

Ā(3) = sA(3) +
1√
2
g−2 s F ij

(2) ∧ (µiDµj)− 1√
2
g−1 s ω(3) ,

Ā(2) = 1

4
g−3 s µk ǫijk

(
(2 + c2X−4 ∆−1)Dµi ∧Dµj − 2g F ij

(2)

)
. (18)

Finally, note that the expression (8) for the Kaluza-Klein vector A(1) can be shown, after

some algebra, to imply the following expression for the corresponding field strength F(2) ≡
dA(1):

F(2) =
1

2
√
2
g−1 ǫijk µ

kDµi ∧Dµj − 1

2
√
2
ǫijk µ

k F ij
(2) . (19)

In fact this expression for F(2) allows a rewriting of Ā(2), given in (18), in a slightly more

elegant way:

Ā(2) =
√
2 g−2 sF(2) +

1

4
g−3 s c2X−4 ∆−1 ǫijk µ

kDµi ∧Dµj . (20)

3 D = 6 SU(2)-gauged N = 2 supergravity from type IIB

The embedding of six-dimensional N = 2 SU(2)-gauged supergravity in the massive type

IIA theory was obtained in [17]. Here, we apply a similar U(1) Hopf reduction to this local

S4 reduction, thereby obtaining a reduction of D = 9 supergravity to the D = 6 gauged

theory. Then, by applying the standard T-duality rules, we can lift the nine-dimensional

theory back to D = 10, expressed now as a consistent reduction of type IIB supergravity.
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First, consider the metric and dilaton φIIA1 . From [17] we have

dŝ210(IIA) = s1/12X1/8
[
∆3/8 ds26 + 2g−2X2 ∆3/8 dξ2 + 1

2
g−2X−1 ∆−5/8 c2

∑

i

h2i

]
,

eφ
IIA
1 = s−5/6X−5/4 ∆1/4 , (21)

where in this case

∆ = X c2 +X−3 s2 . (22)

The reduction to D = 9 is as follows:

dŝ210(IIA) = e−2αφIIA
2 ds29 + e14αφIIA

2 (dz +AIIA
(1) )2 , (23)

where α = 1/(4
√
7). From (9) the internal metric can be rewritten using

∑

i

h2i =
∑

i

(Dµi)2 + 2g2 (dz +AIIA
(1) )2 . (24)

Substituting (24) into (21), and comparing with (23), we therefore obtain the following

expressions for the nine-dimensional metric and dilatons:

ds29 = s2/21 c2/7
[
∆2/7 ds26 + 2g−2X2 ∆2/7 dξ2 + 1

2
g−2X−1 ∆−5/7 c2DµiDµi

]
,

eφ
IIA
1 = s−5/6X−5/4 ∆1/4 , (25)

e2αφIIA
2 = s1/84 c2/7X−1/8 ∆−5/56 . (26)

Under the IIA/IIB T-duality transformation in D = 9, the IIB dilatons are related to

the IIA dilatons by the orthogonal transformation

φIIB1 = 3

4
φIIA1 −

√
7

4
φIIA2 , φIIB2 = −

√
7

4
φIIA1 − 3

4
φIIA2 . (27)

The nine-dimensional metric and dilatons can now be lifted back to ten dimensions in the

IIB variables, using the analogue of (23), namely

dŝ210(IIB) = e−2αφIIB
2 ds29 + e14αφIIB

2 (dz +AIIB
(1) )2 , (28)

Doing this, we obtain

dŝ210(IIB) = c1/2X−1/4
[
∆1/4 ds26 + 2g−2X2 ∆1/4 dξ2 + 1

2
g−2X−1 ∆−3/4 c2DµiDµi

]

+s2/3 c−3/2X7/4 ∆1/4 (dz +AIIB
(1) )2 ,

eφ
IIB
1 = s−2/3 c−1X−1/2 ∆1/2 . (29)

(As we shall see below, after making the S1 reduction of the field strengths, the Kaluza-

Klein vector AIIB
(1) in the type IIB picture, which comes from the winding vector of the
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original type IIA description, is actually zero.) The vacuum solution, corresponding to

taking X = 1, Aij
(1) = 0 and ds26 to be AdS6, can be obtained as the near-horizon limit of a

semi-localised D5/D7/NS5-brane system [18].

It is interesting to note that if we express the two ten-dimensional metrics in their

respective string frames, related to the Einstein frames by

ds210(str) = e
1
2
φ1 dŝ210 , (30)

then we get the following:

ds210(IIA, str) = s−1/3X−1/2
[
∆1/2 ds26 + 2g−2X2 ∆1/2 dξ2

+1

2
g−2X−1 ∆−1/2 c2DµiDµi

]
+ s−1/3X−3/2 c2 (dz +AIIA

(1) )2 ,

ds210(IIB, str) = s−1/3X−1/2
[
∆1/2 ds26 + 2g−2X2 ∆1/2 dξ2

+1

2
g−2X−1 ∆−1/2 c2DµiDµi

]
+ s1/3X3/2 c−2 (dz +AIIB

(1) )2 . (31)

Thus we see that the effect of the T-duality is, as one might expect, simply to invert the

prefactor in the U(1) direction.

From [17], the Ansätze for the reduction to D = 6 of the various field strengths of the

massive type IIA theory are

F̂(4) = −
√
2

6
g−3 s1/3 c3 ∆−2 U dξ ∧ ǫ(3) −

√
2g−3 s4/3 c4 ∆−2X−3 dX ∧ ǫ(3)

−
√
2g−1 s1/3 cX4 ∗F(3) ∧ dξ − 1√

2
s4/3X−2 ∗F(2)

+ 1√
2
g−2 s1/3 c F i

(2) ∧ hi ∧ dξ − 1

4
√
2
g−2 s4/3 c2 ∆−1X−3 F i

(2) ∧ hj ∧ hk ǫijk , (32)

F̂(3) = s2/3 F(3) + g−1 s−1/3 c F(2) ∧ dξ ,

F̂(2) = 1√
2
s2/3 F(2) , eφ̂ = s−5/6∆1/4X−5/4 ,

In the Hopf reduction from D = 10 to D = 9, we follow the standard Kaluza-Klein rules,

with the field strengths reduced as follows:

F̂(4) = F̄(4) + F̄(3)1 ∧ (dz +AIIA
(1) ) ,

F̂(3) = F̄(3) + F̄(2)1 ∧ (dz +AIIA
(1) ) , (33)

F̂(2) = F̄(2) + F̄(1)1 ∧ (dz +AIIA
(1) ) ,

Using the lemmata given in (17), it is now straightforward to read off the expressions

for the nine-dimensional fields:

F̄(4) = −
√
2 g−1 s1/3 cX4 ∗F(3) ∧ dξ − 1√

2
s4/3X−2 ∗F(2)
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− 1√
2
g−2 s1/3 c F ij

(2) ∧ (µiDµj) ∧ dξ − 1

4
√
2
g−2 s4/3 c2X−3 ∆−1 F ij

(2) ∧Dµi ∧Dµj ,

F̄(3)1 = −1

6
g−2 s1/3 c3 ∆−2 U ǫijk µ

kDµi ∧Dµj ∧ dξ

−g−2 s4/3 c4X−3 ∆−2 ǫijk µ
k dX ∧Dµi ∧Dµj

−1

2
g−1 s1/3 c µk ǫijk F

ij
(2) ∧ dξ + 1

4
g−1 s4/3 c2X−3∆−1 ǫijk F

ij
(2) ∧Dµk ,

F̄(3) = s2/3 F(3) + g−1 s−1/3 c F(2) ∧ dξ ,

F̄(2)1 = 0 , (34)

F̄(2) = 1√
2
s2/3 F(2) ,

F̄(1)1 = 0 .

From these, we may note the following. Firstly, the fact that the NS-NS field F̄(2)1 is

zero means that after the T-duality transformation, which maps this into the Kaluza-Klein

2-form field strength FIIB
(2) ≡ dAIIB

(1) of the type IIB reduction to D = 9, we shall have

AIIB
(1) = 0. This means that in the expressions in (29) and (31) for the type IIB metric, the

contribution in the z direction involves just a pure untwisted dz2.

After lifting the various nine-dimensional fields given in (34) to D = 10 in the type IIB

variables (see, for example [26, 27]), we therefore find that the Ansätze for the self-dual

5-form, and the R-R and NS-NS three forms, are

F̃(5) = ∗F̄(4) + F̄(4) ∧ dz ,

F̃RR
(3) = −F̄(3)1 + F̄(2) ∧ dz , (35)

F̃NS
(3) = F̄(3) + FIIA

(2) ∧ dz .

Since F̄(1)1 is zero, there is no axionic field excitation. However, since the T-duality that

relates the massive IIA theory to the type IIB theory involves a generalised Scherk-Schwarz

reduction [28], the ten-dimensional axion χ̂ of the type IIB theory is given by

χ̂ = mz (36)

in the reduction to gauged six-dimensional supergravity.

4 D = 5 SU(2) × U(1) gauged N = 4 supergravity from type

IIA and D = 11

Five-dimensional N = 4 SU(2) × U(1)-gauged supergravity was obtained as a consistent

S5 reduction of type IIB supergravity in [11]. The 5-sphere can be viewed as a foliation

of S3 × S1 surfaces. In this section, we perform an S1 reduction on the U(1) Hopf fibres
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over the S3, thereby obtaining a reduction Ansatz for a nine-dimensional embedding of the

five-dimensional theory. After a T-duality transformation, we can then express this as a

consistent embedding of the five-dimensional gauged supergravity in the type IIA theory,

and eleven-dimensional supergravity.

The Kaluza-Klein S5 reduction Ansatz from the type IIB theory is given by [11]:

dŝ210 = ∆1/2 ds25 + 2g−2 ∆1/2X dξ2 +∆−1/2X2 s2 (dτ +B(1))
2

+1

2
g−2 ∆−1/2X−1 c2

∑

i

h2i ,

Ĝ(5) =
√
2 g U ε5 −

3
√
2 sc

g
X−1 ∗dX ∧ dξ + c2

4
√
2 g2

X−2 ∗F i
(2) ∧ hj ∧ hk εijk

− sc√
2 g2

X−2 ∗F i
(2) ∧ hi ∧ dξ +

2sc

g2
X4 ∗G(2) ∧ dξ ∧ (dτ + gB(1)),

Â(2) ≡ ÂRR
(2) + i ÂNS

(2) = −s g−1 ei g τ/
√
2A(2) ,

φ̂ = 0, χ̂ = 0, (37)

where the self-dual 5-form is given by Ĥ(5) = Ĝ(5) + ∗̂Ĝ(5), U ≡ X2 c2 +X−1 s2 +X−1, and

ǫ5 is the volume form in the five-dimensional spacetime metric ds25, and

∆ = X c2 +X−2 s2 . (38)

Note that we have defined the complex 2-form potential Â(2) ≡ Â1
(2) + i Â2

(2) in the type

IIB theory. The ten-dimensional dilaton and the axion are constants, which without loss

of generality we have set to zero. The conventions that we are using here are related to

those in [11] by making the following replacements on the quantities in [11]: g −→ g/
√
2,

τ −→ −g τ/
√
2. Note that the scalar X and the gauge fields Aij

(1) parameterise deformations

of a 5-sphere. It is foliated by S3 × S1, where τ is the coordinate on the S1 factor.

Following an analogous strategy to that of the previous section, we substitute (9) and

(17) into the Ansatz, and perform a T-duality transformation on the z coordinate. We find

that in the string frame, the resulting type IIA metric Ansatz is given by

ds210(IIA, str) = ∆1/2 ds25 + 2g−2 ∆1/2X dξ2 +∆−1/2X2 s2 (dτ +B(1))
2

+1

2
g−2 ∆−1/2X−1 c2

∑

i

(Dµi)2 +∆1/2X c−2 dz22 , (39)

and the dilaton of the type IIA theory is given by

eφ
IIA
1 = ∆1/4X1/2 c−1 . (40)

(We are naming the reduction coordinate z2 here, in anticipation of performing a further

oxidation to D = 11 presently.)
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The field strengths of the type IIA theory turn out to be as follows:

F IIA
(4) = F̃(4) − FRR

(3) ∧ dz2 ,

F IIA
(3) = FNS

(3) +FIIB
(2) ∧ dz2 , (41)

F IIA
(2) = 0 ,

where

F̃(4) =
[
1

2
s c3 g−2 U ∆−2 µk dξ ∧Dµi ∧Dµj ∧ (dτ +B(1))

−3

4
s2 c4 g−2 ∆−2X−2 µk dX ∧Dµi ∧Dµj ∧ (dτ +B(1))

+ 1

4
√
2
g−1 s2 c2 ∆−1X−2 F ij

(2) ∧Dµk ∧ (dτ +B(1))

− 1

2
√
2
g−1 s c µk dξ ∧ F ij

(2) ∧ (dτ +B(1))− 1

4
g−1 c2X−2 ∗F ij

(2) ∧Dµk

+1

2
g−1 s c µkX−2 ∗F ij

(2) ∧ dξ − 1

4
g−2 c4 µk ∆−1XG(2) ∧Dµi ∧Dµj

]
ǫijk ,

FRR
(3) + iFNS

(3) = dÂ(2) , (42)

FIIB
(2) = 1

2
√
2
g−1 ǫijk µ

kDµi ∧Dµj − 1

2
√
2
ǫijk µ

k F ij
(2) .

The embedding of D = 5 SU(2) × U(1) gauged N = 4 supergravity in type IIA super-

gravity that we have just derived can be lifted further, to D = 11 supergravity. For the

eleven-dimensional metric, we find

dŝ211 = X−1/3 c2/3
[
∆1/3 ds25 + 2g−2 ∆1/3X dξ2 +∆−2/3X2 s2 (dτ +B(1))

2

+1

2
g−2 ∆−2/3X−1 c2

∑

i

(Dµi)2
]
+∆1/3X2/3 c−4/3 (dz21 + dz22) , (43)

where z1 is the coordinate on the additional S1. The 4-form field strength in D = 11 is

given by

F̂(4) = F̃(4) + Im[F̃(3) ∧ (dz1 − i dz2)]−FIIB
(2) ∧ dz1 ∧ dz2 . (44)

The vacuum solution, corresponding to setting X = 1, Aij
(1) = 0, B(1) = 0 and taking

ds25 to be AdS5, can be viewed as the near-horizon limit of a semi-localised M5/M5-brane

system [19, 20]. Note that the Hopf T-duality has the effect of untwisting the S3 into

S2 × S1. The effect of this procedure on AdS3 × S3 was extensively studied in [63].

5 SO(4)-gauged N = 4 supergravity in D = 4 from type IIB

The SO(4)-gauged N = 4 supergravity in D = 4 was explicitly obtained as an S7 reduction

from D = 11 supergravity [9]. In this reduction, the S7 has a natural description in terms

of a foliation of S3 × S3 surfaces. The two copies of SU(2) in the SO(4) ∼ SU(2)× SU(2)
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gauge group come from left-invariant actions on the two copies of S3. Since there are two

Hopf circles, one from each S3, we can perform two steps of Kaluza-Klein S1 reduction.

The first gives an embedding of the N = 4 gauged theory in type IIA supergravity, and

the second, combined with a T-duality transformation, gives the embedding of the N = 4

gauged theory in type IIB supergravity.

Since the expression in [9] for the Kaluza-Klein S7 reduction of theD = 11 4-form is very

complicated, we shall not present explicit formulae here for the field strengths in the type

IIA and type IIB pictures. It is completely straightforward to obtain them, by following

the same steps as we did in previous sections. Thus we shall just present the Kaluza-Klein

Ansatz for the metric reductions here.

The Kaluza-Klein Ansatz for the reduction of the eleven-dimensional metric is [9]

dŝ211 = ∆
2
3 ds24 + 2g−2 ∆

2
3 dξ2 + 1

2
g−2 ∆

2
3

[
c2 Ω−1

∑

i

(hi)2 + s2 Ω̃−1
∑

i

(h̃i)2
]
, (45)

where

X̃ ≡ X−1 q , q2 ≡ 1 + χ2X4 ,

Ω ≡ c2X2 + s2 , Ω̃ ≡ s2 X̃2 + c2 ,

∆ ≡
[
(c2X2 + s2)(s2 X̃2 + c2)

] 1
2
, (46)

c ≡ cos ξ , s ≡ sin ξ ,

hi ≡ σi − g Ai
(1) , h̃i ≡ σ̃i − g Ãi

(1) .

Here X = e
1
2
φ, and (φ, χ) are the dilatonic and axionic scalars of the four-dimensional

gauged theory.

As a first step, we make a Hopf reduction on the untilded S3, using the expression (9).

Comparing with the standard S1 reduction in (11), this gives the type IIA ten-dimensional

metric and dilaton:

ds210(IIA) = ∆3/4 c1/4 Ω−1/8
[
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(h̃i)2
]
,

eφ
IIA
1 = ∆1/2 c3/2 Ω−3/4 . (47)

The next step is to perform a Hopf reduction on the second S3 factor. Denoting all

relevant quantities with tildes, we use the same result (9), and reduce the metric according

to the standard S1 reduction (23). This gives the nine-dimensional metric, and second

12



dilaton:

ds29(IIA) = ∆4/7 (s c)2/7
[
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(D̃µ̃i)2
]
,

e2αφIIA
2 = ∆3/28

(c2
Ω

)1/56 (s2

Ω̃

)1/7
. (48)

After transforming to type IIB variables, including the dilaton transformation (27), the

metric can be oxidised back to D = 10, as an embedding now in the type IIB theory. This

metric, and the corresponding type IIA metric before the Hopf T-duality transformation,

are most usefully expressed in the string frame. The expressions are as follows:

ds210(IIA, str) = ∆ cΩ−1/2
[
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(D̃µ̃i)2
]
+ s2 c1 Ω̃−1/2 (dz2 +A(1))

2 ,

ds210(IIB, str) = ∆ cΩ−1/2
[
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(D̃µ̃i)2
]
+ s−2 c−1 Ω̃1/2 dz22 . (49)

Note that there is no “twist” involving the z2 coordinate in the type IIB ten-dimensional

metric. This is a reflection of the fact that there is no winding vector in D = 9 in the type

IIA reduction. Such a vector would have come from the reduction of the 3-form field strength

in the D = 10 type IIA theory. This, in turn comes from the reduction of the 4-form of

D = 11. But the 3-form in D = 10 comes from the Hopf reduction of the first S3 factor in

the S3 × S3 foliation of S7. Consequently, it has no terms involving the directions in the

second S3 factor, and so no winding vector emerges in D = 9.

For a similar reason, the axion χ̄ of the type IIB theory is zero in the reduction Ansatz. It

would correspond, in the type IIA picture, to the axion that would come from the reduction

of the Kaluza-Klein vector in D = 10. But this lives in the directions of the first S3 (see

(8)), and so it does not give rise to any axion when the further reduction to D = 9 on the

Hopf fibres of the second S3 is performed.

The vacuum solution, corresponding to taking X = 1, χ = 0, Aij
(1) = 0, Ãij

(1) = 0 and

ds24 to be AdS4, can be viewed as the near-horizon limit of a semi-localised D2/D6-brane

system in type IIA supergravity or a D3/D5/NS5-system in type IIB supergravity [18].
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6 Hopf reduction on non-singular fibres

All the examples that we have considered so far in this paper involve performing Hopf

reductions on circles whose radius goes to zero for some value of the azimuthal coordinate

ξ on the internal spherical manifold. For example, when we reinterpreted the S4 reduction

of D = 11 supergravity in section 2 as a reduction of type IIA supergravity, the circle

parameterised by z in (10) reduced to zero radius at ξ = 1

2
π. In certain cases a more

general type of Hopf reduction can be performed, in which the radius of the U(1) fibres

remains non-zero for all values of ξ. Specifically, this can be done for the S5 and S7

reductions. The reason for this is that in each of these examples, there are in fact two

U(1) Killing vectors in the higher-dimensional metric, corresponding to the fact that the

foliating surfaces at constant ξ are the product of two odd-dimensional spheres (S3 × S1

and S3 × S3 respectively). In each case when the radius of one of the spheres goes to zero

(at ξ = 0 or ξ = 1

2
π), the other has non-zero radius. Thus by taking a linear combination

of the two Killing directions for the S1 Kaluza-Klein reduction, a non-singular embedding

can be achieved.

To see how this works, consider the relevant two-dimensional factor in the higher-

dimensional metric, namely the part involving the two U(1) directions. We shall write

this as

ds̄2 = α2 (dτ1 +A1
(1))

2 + β2 (dτ2 +A2
(1))

2 . (50)

Now, we make the coordinate redefinitions

τ1 = a x+ b y , τ = −b x+ a y , (51)

where a and b are constants. It is straightforward to establish the following lemma:

ds̄2 = (α2 b2 + β2 a2)
[
dy +

a b (α2 − β2) dx+ α2 bA1
(1) + β2 aA2

(1)

α2 b2 + β2 a2

]2

+
α2 β2

α2 b2 + β2 a2

[
(a2 + b2) dx+ aA1

(1) − bA2
(1)

]2
. (52)

If we now perform an S1 reduction on the y coordinate we see that the U(1) fibres will

always have non-zero length, provided that the functions α and β do not vanish simultane-

ously. Since, in both our examples one of them is proportional to sin ξ, while the other is

proportional to cos ξ, this condition for non-singularity of the y fibres is satisfied.

6.1 Non-singular Hopf reduction for the S5 embedding

Using (9), the metric Ansatz for the S5 reduction given in (37) can be rewritten as

dŝ210 = ∆1/2 ds25 + 2g−2 ∆1/2X dξ2 +∆−1/2X2 s2 (dτ +B(1))
2
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+1

2
g−2 ∆−1/2X−1 c2

∑

i

(Dµi)2 +∆−1/2X−1 c2 (dz +A(1))
2 . (53)

As far as this metric reduction Ansatz is concerned, we see that there are two U(1) Killing

directions, namely z and τ . Accordingly, we can choose a more general reduction scheme,

in which we take a linear combination of these two coordinates for our circle reduction.

Comparing (52) with (53), we see that the functions α and β are given by

α2 = ∆−1/2X−1 c2, , β2 = ∆−1/2X2 s2 . (54)

Reducing on the y coordinate, following the standard procedure, we arrive at the nine-

dimensional metric

ds29 = ∆̃1/7 ∆3/7
[
ds25 + 2g−2X dξ2 + 1

2
g−2 ∆−1X−1 c2

∑

i

(Dµi)2

+∆̃−1∆−1X s2 c2 [(a2 + b2) dx+ aA(1) − bB(1)]
2
]
, (55)

where we have defined

∆̃ = b2X−1 c2 + aaX2 s2 . (56)

Note that the dilaton φIIB2 resulting from the Kaluza-Klein reduction from D = 10 to D = 9

is given by

e2αφIIB
2 = ∆−1/14 ∆̃1/7 , (57)

where as usual α = 1/(4
√
7).

Since the type IIB dilaton φIIB1 in the original S5 reduction is zero, it follows from (27)

that after performing a T-duality transformation in D = 9, and lifting back to the type IIA

theory, the metric becomes

dŝ210(IIA) = ∆̃1/4 ∆3/8
[
ds25 + 2g−2X dξ2 + 1

2
g−2 ∆−1X−1 c2

∑

i

(Dµi)2

+∆̃−1∆−1X s2 c2 [(a2 + b2) dx+ aA(1) − bB(1)]
2 + ∆̃−1 dy2

]
.(58)

(Note that as usual there is no longer any “twist” in the y direction of the S1, after the

T-duality transformation.) This embedding can be further lifted to D = 11, with the metric

given by

dŝ211 = (∆̃∆)1/3
[
ds25 + 2g−2X dξ2 + 1

2
g−2 ∆−1X−1 c2

∑

i

(Dµi)2

+∆̃−1∆−1X s2 c2 [(a2 + b2) dx+ aA(1) − bB(1)]
2 + ∆̃−1 (dz21 + dy2)

]
,(59)

where z1 is the eleventh coordinate.
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It is instructive to examine the metric (59) in the “vacuum” case where the lower-

dimensional scalar and gauge fields are set to zero, in which case we can take ds25 to be

AdS5. Bearing in mind that A(1) is still non-zero, and given by the first term in (8), we see

that the eleven-dimensional metric becomes

dŝ211 = ∆̃1/3 ds25 + 2g−2 ∆̃1/3 ds̄2 + ∆̃−2/3 (dz21 + dy2) , (60)

where

ds̄2 = dξ2 + 1

4
c2 (dθ2 + sin2 θ dψ2) + 1

4
s2 c2 (dσ + cos θ dψ)2 ,

∆̃ = b2 c2 + a2 s2 , (61)

σ =

√
2 g (a2 + b2)

a
x .

In order for the level surfaces at constant ξ to be globally non-singular, the angular coordi-

nate σ should be chosen to have period 4π/p, where p is an integer. The level surfaces are

then cyclic lens spaces S3/Zp. As ξ approaches 0, the metric ds̄2 approaches

ds̄2 = dξ2 +
a2

4b2
s2 (dσ + cos θ dψ)2 + 1

4
(dθ2 + sin2 θ dψ2) . (62)

In general, there will be a conical singularity at ξ = 0, but this is avoided if

a

b
= p . (63)

As ξ approaches the other endpoint, at ξ = 1

2
π, the metric ds̄2 approaches

ds̄2 = dξ2 + 1

4
c2

[
dθ2 + sin2 θ dψ2 + (dσ + cos θ dψ)2

]
. (64)

This is locally IR4, but there will be a conical singularity at ξ = 0 unless the lens space

S3/Zp is just S3 itself; in other words p = 1.

Thus we see that if a = b and p = 1, we have a completely non-singular embedding of

AdS5 in eleven-dimensional supergravity. In this case the warp factor ∆̃ is simply equal to

the constant a2. For other choices of p and the constants a and b, we have an M-theory

embedding of AdS5 that is “almost” non-singular, with relatively mild orbifold-like conical

singularities at ξ = 0 and ξ = 1

2
π. In these more general cases the warp factor ∆̃ given

in (61) is a function of the azimuthal coordinate ξ. It is, however, always non-singular,

provided that a b 6= 0.

It is worth remarking that in the non-singular case a = b, p = 1, the metric ds̄2

is precisely the Fubini-Study metric on CP 2. This and other geometrical aspects of the

complex projective spaces are discussed in the appendix.
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At the level of the AdS5 × S5 vacuum solution, the untwisting of the fibres to give an

AdS5×CP 2×S1 solution in the Hopf-duality related type IIA framework was already seen

in [23]. Here, we have gone further, and obtained the Kaluza-Klein reduction Ansatz for the

SU(2)×U(1) gauged five-dimensional supergravity, viewed now as a CP 2×S1 reduction of

type IIA supergravity. As was discussed in [23], there are some peculiarities associated with

the type IIA description, resulting from the fact that CP 2 does not admit an ordinary spin

structure. This means that at the level of the low-energy supergravities, there will be no

fermions at all in the type IIA description. They will only be restored when the T-duality is

considered at the level of the full string theories, with the fermions that carry charges with

respect to the winding-mode vector in the type IIB picture ending up in the Kaluza-Klein

spectrum in the type IIA picture.

In fact this type of phenomenon is not confined to the fermionic sector. A bosonic

example can be seen by looking at the reduction Ansatz for the NS-NS and R-R 2-form

potentials of the type IIB theory. In the S5 reduction Ansatz in (37), we saw that the

2-forms reduce as [11]

ÂNS
(2) + i ÂRR

(2) = −s g−1 ei g τ/
√
2A(2) . (65)

Thus we see that although the metric reduction Ansatz (53) is invariant under both the

∂/∂z and ∂/∂τ U(1), Killing symmetries, the 2-form Ansatz (65) is not invariant under the

∂/∂τ symmetry. Thus we would have to truncate A2 from the five-dimensional theory in

order to carry out the previously-discussed S1 reduction. In a similar fashion, one would

find that the reduction Ansätze for all the fermion fields would involve τ -dependent complex

exponential factors, and thus would have to be truncated from the theory.

6.2 Non-singular Hopf reduction of the S7 embedding

We can also perform a non-singular Hopf reduction of the S7 embedding of N = 4 gauged

SO(4) four-dimensional supergravity. Here, we may take linear combinations of the two

S1 Hopf fibres in the two S3 factors in the foliation of S7, so that for one of the two

combinations the circle never degenerates to zero radius, for any value of ξ. This allows us

to perform a non-singular reduction of the S7 Ansatz to give an Ansatz for the non-singular

embedding of N = 4 gauged SO(4) supergravity into type IIA supergravity. As we shall

see, in the limit where all the scalar and gauged fields in D = 4 are set to zero, this reduces

to the AdS4 ×CP 3 solution, which was discussed from a string-theoretic viewpoint in [25].

A Kaluza-Klein reduction at the level of linearised fluctuations around this background was

discussed in [24]. Using our procedure here, we can obtain the fully non-linear reduction
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Ansatz for the N = 4 gauged SO(4) theory.

Using the standard formulae

∑

i

h2i =
∑

i

(Dµi)2 + 2g2 (dz +A(1))
2 ,

∑

i

h̃2i =
∑

i

(D̃µ̃i)2 + 2g2 (dz̃ + Ã(1))
2 , (66)

and then defining the linear combinations z = x+ y, z̃ = −x+ y as the new S1 coordinates,

the eleven-dimensional metric Ansatz (45) becomes

dŝ211 = ∆
2
3 ds24 + 2g−2 ∆

2
3 dξ2 + 1

2
g−2 ∆

2
3

[
c2 Ω−1

∑

i

(Dµi)2 + s2 Ω̃−1
∑

i

(D̃µ̃i)2
]

+∆−4/3 ∆̃
[
dy +

(c2 Ω̃− s2 Ω) dx+ c2 Ω̃A(1) + s2Ω Ã(1)

∆̃

]2

+∆2/3 ∆̃−1 s2 c2 [(a2 + b2) dx+ aA(1) − b Ã(1)]
2 , (67)

where

∆̃ ≡ b2 c2 Ω̃ + a2 s2Ω . (68)

We can now perform the Hopf reduction on the y coordinate. This gives

ds210 = ∆1/2 ∆̃1/8
{
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(D̃µ̃i)2 + s2 c2 ∆̃−1 [(a2 + b2) dx+ aA(1) − b Ã1]
2
}
,

eφ = ∆−1 ∆̃3/4 . (69)

If we look at the vacuum solution where X = 1, χ = 0, Aij
(1) = 0, Ãij

(1) = 0 and the metric

ds24 is taken to be AdS4, th type IIA metric in (69) takes the form

ds210 = ∆̃1/8 ds24 + 2g−2 ∆̃1/8 ds̄2 , (70)

where

ds̄2 = dξ2 + 1

4
c2 (dθ2 + sin2 θ dψ2) + 1

4
s2 (dθ̃2 + sin2 θ̃ dψ̃2)

+s2 c2 ∆̃−1 [(a2 + b2) dx+
a√
2g

cos θ dψ − b√
2g

cos θ̃ dψ̃]2 . (71)

To avoid conical singularities on the level surfaces at constant ξ we must require that the

period δx of the angular coordinate x should be such that

√
2 g (a2 + b2)

a
δx =

4π

p
,

√
2 g (a2 + b2)

b
δx =

4π

q
, (72)
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where p and q are integers, and so the ratio a/b must be rational:

a

b
=
p

q
. (73)

Furthermore, if we wish to avoid conical singularities at the points ξ = 0 and ξ = 1

2
π where

the level surfaces degenerate, we must require that p = q = 1. (The discussion is analogous

to that in the previous subsection.) Thus if p = q = 1, implying that a = b, we obtain a

completely non-singular embedding of AdS4 in the type IIA theory. In this case the warp

factor ∆̃ is simply equal to the constant a2. For more general choices of p and q, there are

mild orbifold-like conical singularities at ξ = 0 and ξ = 1

2
π, and the warp factor ∆̃ becomes

dependent on ξ. (It is, however, non-singular, provided that a and b are both non-zero.)

Note that in the case where p = q = 1 and a = b, the metric ds̄2 is in fact the Fubini-

Study metric on CP 3, written in a particularly simple coordinate system. This is discussed

in more detail in the appendix. It should perhaps be emphasised that unlike the CP 2

reduction of the previous subsection, here the CP 3 reduction does not lead to any loss of

the (half-maximal) supersymmetry. This is related to the fact that CP 3, unlike CP 2, does

admit an ordinary spin structure.

Although our principal purpose in this section was to examine non-singular embeddings,

we can also entertain the idea of making a further S1 reduction on the x coordinate in the

type IIA metric (69). This can be used in order to obtain another embedding of the four-

dimensional N = 4 SO(4)-gauged supergravity in type IIB supergravity. Since the radius

of the circle parameterised by x vanishes both at ξ = 0 and ξ = 1

2
π this IIB embedding will

be a singular one. In the string frame, the type IIB metric is

ds210(IIB, str) = ∆̃1/2
{
ds24 + 2g−2 dξ2 + 1

2
g−2 c2 Ω−1

∑

i

(Dµi)2

+1

2
g−2 s2 Ω̃−1

∑

i

(D̃µ̃i)2 +
s−2 c−2

a2 + b2
dx2

}
. (74)

7 Conclusions

In this paper, we obtained warped Kaluza-Klein embeddings of the D = 7, 6, 5 and 4 gauged

supergravities with half-maximal supersymmetry. The characteristic feature of these warped

embeddings is that the vacuum solution where the lower-dimensional spacetime is AdS has

a non-trivial warp-factor multiplying the AdS metric, which depends on one of the coor-

dinates of the internal reduction manifold. We constructed these warped embeddings by

starting from the previously-known spherical reductions that give rise to these supergravi-

ties. After performing circle reductions or T-duality transformations on the Hopf fibres of
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S3 submanifolds of the original internal spheres, we obtained the new embeddings which

can be viewed as reductions on “mirror manifolds” dual to the original spheres. For all cases

except D = 6, the original Kaluza-Klein reductions give non-warped solutions in the case

of a pure AdS vacuum solution. Table 1 summarises the half-maximally supersymmetric

supergravities, their previously-known embeddings, and the new ones that we obtained in

this paper.

D 7 6 5 4

N 2 2 4 4

G SU(2) SU(2) SU(2)× U(1) SO(4)

Previously

Known M-theory Massive IIA Type IIB M-theory

Embedding

New

Warped Type IIA Type IIB M-theory Type IIB

Embedding

Table 1: The half-maximally supersymmetric gauged supergravities in dimension D, with

N supersymmetries and gauge group G. Their previously known Kaluza-Klein embeddings

and the new warped embeddings obtained in this paper are listed.

In the above warped embeddings, the warp factors can become singular at the limits

of the range of the internal azimuthal coordinate ξ, since the Hopf fibres on which we

performed S1 reductions can approach zero radius at these endpoints. However, we also

showed that in the cases D = 5 and D = 4, it is possible to perform an S1 Hopf reduction

on a U(1) fibre whose length remains non-zero everywhere. Thus in such cases the resulting

warped embedding can be non-singular. The non-singular embeddings give rise, in the case

of a pure vacuum solution, to AdS5×CP 2×T 2 in M-theory [23] and AdS4×CP 3 in type IIA

supergravity [24, 25]. These solutions themselves are in fact not warped. We also obtained

warped generalisations, at the price of introducing rather mild orbifold-like singularities in

the internal manifolds.

Recently, non-singular warped embeddings of AdS5 in M-theory [21, 22] and AdS3 in

type IIB supergravity [22] were obtained. The construction in [22] consists of finding an

AdSd × Σg solution in (d + 2)-dimensional gauged supergravity, where Σg is a Riemann

surface, and then lifting this to M-theory or type IIB using the Kaluza-Klein Ansätze
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constructed in [33]. These warped solutions are inequivalent to any of the ones that we

have obtained in this paper. The construction leads to solutions with non-singular warp

factors, but its applicability is restricted to AdSd with d = 3 and 5. Clearly it cannot be

applied to d = 7, since there is no suitable gauged supergravity in D = 9. The singularity of

the warped embedding of AdS7 in type IIA that was discussed in this paper and in [18] may

therefore be unavoidable. In the case of AdS4, the analogous construction starting from

AdS4 × Σg would require a normal (unwarped) embedding of the six-dimensional N = 2

SU(2)-gauged supergravity in a higher dimension. However, as far as is known, no such

unwarped embedding exists [17]. The fact that the only way to embed AdS6 appears to be

through a singular warped configuration possibly suggests that singular warped embeddings

should not be overlooked.
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A CPm+n+1 from CPm × CP n

The metric on the unit (p+ q + 1)-sphere can be written in terms of a foliation of Sp × Sq

for any p and q, as

dΩ2
p+q+1 = dξ2 + c2 dΩ2

p + s2 dΩ2
q , (75)

where as usual c ≡ cos ξ, s = sin ξ, and the angle ξ lies in the interval 0 ≤ ξ ≤ 1

2
π (see, for

example, [18]). Furthermore, we know that if p and q are odd, p = 2m+ 1, q = 2n+ 1, the

metrics dΩ2
p and dΩ2

q on the unit Sp and Sq spheres can each be written in terms of “unit”

CPm and CPn Fubini-Study metrics2 dΣ2
m and dΣ2

n as

dΩ2
p = (dτ1 +A(1))

2 + dΣ2
m ,

dΩ2
q = (dτ2 + Ã(1))

2 + dΣ2
n , (76)

where dA(1) = 2J and dÃ(1) = 2J̃ , with J and J̃ being the Kähler forms on CPm and CPn.

2We define the “unit” Fubini-Study metric on CPn to be the one whose scale size is such that its Hopf

bundle gives the unit-radius (2n+ 1)-sphere.
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We can now follow the same procedure as in earlier sections, where a U(1) fibre coordi-

nate is selected that is a linear combination of those from the two spheres Sp and Sq. (We

had (p, q) = (3, 1) for the S5 reduction of type IIB, and (p, q) = (3, 3) for the S7 reduction

of D = 11 supergravity.) To avoid unnecessary factors of 2, we can just define τ1 =
1

2
ψ+ y,

τ2 = −1

2
ψ + y here, and hence we get

dΩ2
2m+2n+3 = dξ2 + c2 dΣ2

m + s2 dΣ2
n + s2 c2 (dψ +A(1) − Ã(1))

2 + (dy +B(1))
2 , (77)

where

B(1) ≡ 1

2
(c2 − s2) dψ + c2 A(1) + s2 Ã(1) . (78)

Since this metric on S2m+2n+3 is now written as a U(1) Hopf fibration (with unit radius for

the fibres, whose coordinate is y), it follows that the part of the metric orthogonal to ∂/∂y

must be the unit Fubini-Study metric on CPm+n+1. Thus we must have that

dΣ2
m+n+1 = dξ2 + c2 dΣ2

m + s2 dΣ2
n + s2 c2 (dψ +A(1) − Ã(1))

2 . (79)

Since the construction of the unit sphere as the U(1) Hopf fibration over a complex

projective space goes as in (76), it furthermore follows that the Kähler form Ĵ on CPm+n+1

will be given by

Ĵ ≡ 1

2
dB(1) = −s c dξ ∧ (dψ +A(1) − Ã(1)) + c2 J + s2 J̃ . (80)

Thus if we define the natural vielbeins êA for the metric dΣ2
m+n+1 in (79), namely

ê0 = dξ , ê1 = s c (dψ +A(1) − Ã(1)) , êa = c ea , êã = s eã , (81)

where ea and eã are vielbeins for dΣ2
m and dΣ2

n, then we have

Ĵ = −ê0 ∧ ê1 + c2 J + s2 J̃ . (82)

In other words, the non-vanishing vielbein components ĴAB of the Kähler form on CPm+n+1

are given by

Ĵ01 = −1 , Ĵab = Jab , Ĵij = J̃ij . (83)

A simple calculation shows that the curvature 2-form for the metric (79) on CPm+n+1

indeed has the form,

Θ̂AB = êA ∧ êB + ĴAC ĴBD ê
C ∧ êD + ĴAB ĴCD ê

C ∧ êD , (84)

which one expects for the unit Fubini-Study metric. In terms of vielbein components, we see

that the Riemann tensor has the characteristic structure for a space of constant holomorphic

sectional curvature [66],

R̂ABCD = δAC δBD − δAD δBC + ĴAC ĴBD − ĴAD ĴBC + 2ĴAB ĴCD . (85)
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This study of Fubini-Study metrics encompasses various previously-known results, as

well as providing many new ones. For example, if we take m = 0, n = 1, we get the metric

on CP 2 written (after sending ψ −→ ψ/2 for convenience) as3

dΣ2
2 = dξ2 + 1

4
s2 (dθ2 + sin2 θ dϕ2) + 1

4
s2 c2 (dψ + cos θ dϕ)2 , (86)

which was first obtained in this form in [64] (with the coordinate r of that paper related to

ξ by r = tan ξ). The general class of cases m = 0, with n arbitrary, was obtained in [65];

it gives an iterative expression for the Fubini-Study metric on CPn+1 in terms of that on

CPn.

As a new example, we may obtain the following expression for the Fubini-Study metric

on CP 3, by taking m = n = 1 (and sending ψ −→ ψ/2 for convenience):

dΣ2
3 = dξ2 + 1

4
c2 (dθ2 + sin2 θ dϕ2) + 1

4
s2 (dθ̃2 + sin2 θ̃ dϕ̃2)

+1

4
s2 c2 (dψ − cos θ dϕ+ cos θ̃ dϕ̃)2 . (87)

The Kähler form is given by

Ĵ = −1

2
s c dξ ∧ (dψ − cos θ dϕ+ cos θ̃ dϕ̃) + 1

4
c2 sin θ dθ ∧ dϕ+ 1

4
s2 sin θ̃ dθ̃ ∧ dϕ̃ . (88)

The metric (87) reveals some interesting features of the geometry of CP 3. At each

end of the ξ coordinate range, 0 ≤ ξ ≤ 1

2
π, the metric approaches a product of a smooth

IR4 × S2; for example at ξ ≈ 0 we have

ds2 ≈ dξ2 + sin2 ξ dΩ′
3

2
+ 1

4
dΩ2

2 , (89)

with

dΩ′
3

2
= 1

4

[
dθ̃2 + sin2 θ̃ dϕ̃2 + (dψ + cos θ̃ dϕ̃− cos θ dϕ)2

]
. (90)

Thus the terms dξ2+sin2 ξ dΩ′
3

2 approach IR4 as ξ tends to zero, described in hyperspherical

polar coordinates. There is a “twist” in the U(1) fibres of the S3 metric dΩ′
3

2, involving the

topologically non-trivial Dirac monopole bundle over the S2 factor dΩ2
2 = dθ2 + sin2 θ dϕ2.

An analogous phenomenon occurs at the other endpoint, at ξ = 1

2
π. This form of the CP 3

metric is precisely the one that arises in the non-singular embedding of the four-dimensional

N = 4 SO(4)-gauged supergravity in section 6.2.

Another interesting aspect of the geometry of CP 3 that can be seen from (87) is that

each foliating surface at constant ξ has the structure of the manifold Q(1, 1) (sometimes
3CP 1 is the same as S2. Note, however, that the unit CP 1, which we have defined to be such that

its Hopf bundle gives the unit-radius 3-sphere, is consequently a 2-sphere of radius 1
2
, whose metric is

dΣ2
1 = 1

4
(dθ2 + sin2 θ dϕ2).
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known as T 11), which is defined as the U(1) bundle over S2 × S2 where the fibres have

winding number 1 with respect to both of the S2 factors in the base. The metric

ds25 =
1

Λ
(dθ2 + sin2 θ dϕ2) +

1

Λ̃
(dθ̃2 + sin2 θ̃ dϕ̃2) + c2 (dψ − cos θ dϕ+ cos θ̃ dϕ̃)2 (91)

on this manifold is homogeneous for any choice of the constants Λ Λ̃ and c, and it is

Einstein if Λ = Λ̃ = 2/(3c2) (see, for example, [23]). Thus as the coordinate ξ ranges over

the interval 0 < ξ < 1

2
π in (87), the foliating surfaces correspond to Q(1, 1) with varying

non-singular homogeneous “squashings.” None of the foliating surfaces corresponds to the

Einstein metric on Q(1, 1).

Note that in general, the level surfaces at constant ξ in the metric (79) are the higher-

dimensional generalisations of the Q(1, 1) space, namely U(1) bundles over CPm × CPn,

with winding number 1 over each factor.
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[63] M.J. Duff, H. Lü and C.N. Pope, AdS3×S3 (un)twisted and squashed, and an O(2, 2;ZZ)

multiplet of dyonic strings, Nucl. Phys. B544 (1999) 145, hep-th/9807173.

28

http://arxiv.org/abs/hep-th/9510097
http://arxiv.org/abs/hep-th/9512031
http://arxiv.org/abs/hep-th/9601177
http://arxiv.org/abs/hep-th/9610171
http://arxiv.org/abs/hep-th/9610172
http://arxiv.org/abs/hep-th/9702163
http://arxiv.org/abs/hep-th/9710155
http://arxiv.org/abs/hep-th/9803103
http://arxiv.org/abs/hep-th/9902128
http://arxiv.org/abs/hep-th/9902128
http://arxiv.org/abs/hep-th/9902210
http://arxiv.org/abs/hep-th/9903038
http://arxiv.org/abs/hep-th/9905094
http://arxiv.org/abs/hep-th/9905155
http://arxiv.org/abs/hep-th/9905155
http://arxiv.org/abs/hep-th/9906203
http://arxiv.org/abs/hep-th/9807173


[64] G.W. Gibbons and C.N. Pope, CP 2 as a gravitational instanton, Commun. Math.

Phys. 61 (1978) 239.

[65] P. Hoxha, R.R. Martinez-Acosta and C.N. Pope, Kaluza-Klein consistency, Killing

vectors and Kähler spaces, hep-th/0005172.

[66] S. Kobayashi and K. Nomizu, Foundations of differential geometry, (J. Wiley and Sons

1996).

29

http://arxiv.org/abs/hep-th/0005172

