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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE OF
MIXED FINITE ELEMENT METHODS FOR NON-FICKIAN FLOWS

IN POROUS MEDIA∗

RICHARD E. EWING† , YANPING LIN‡ , TONG SUN§ , JUNPING WANG¶, AND

SHUHUA ZHANG‖

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
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Dedicated to Professor Zhichun Piao on the occasion of his 68th birthday

Abstract. A sharper L2-error estimate is obtained for the non-Fickian flow of fluid in porous
media by means of a mixed Ritz–Volterra projection instead of the mixed Ritz projection used in
[R. E. Ewing, Y. Lin, and J. Wang, Acta Math. Univ. Comenian. (N.S.), 70 (2001), pp. 75–84].
Moreover, local L2 superconvergence for the velocity along the Gauss lines and for the pressure at
the Gauss points is derived for the mixed finite element method via the Ritz–Volterra projection,
and global L2 superconvergence for the velocity and the pressure is also investigated by virtue of an
interpolation postprocessing technique. On the basis of the superconvergence estimates, some useful
a posteriori error estimators are presented for this mixed finite element method.

Key words. non-Fickian flow, mixed finite element methods, mixed Ritz–Volterra projection,
error estimates, superconvergence

AMS subject classifications. 76S05, 45K05, 65M12, 65M60, 65R20
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1. Introduction. As mentioned in [18, 19], the non-Fickian flow of fluid in
porous media is complicated by the history effect which characterizes various mixing
length growth of the flow and can be modeled by an integro-differential equation:
Find u = u(x, t) such that

ut = ∇ · σ + cu + f in Ω× J,

σ = A(t) · ∇u−
∫ t

0

B(t, s) · ∇u(s)ds in Ω× J,

u = g on ∂Ω× J,
u = u0(x) x ∈ Ω, t = 0,

(1.1)
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1539

where Ω ⊂ Rd (d = 2, 3) is an open bounded domain with smooth boundary ∂Ω,
J = (0, T ) with T > 0, A(t) = A(x, t) and B(t, s) = B(x, t, s) are two 2 × 2 or
3 × 3 matrices, and A is positive definite, and c, f , g, and u0 are known smooth
functions. This kind of model can arise, e.g., from the transport of contaminants in
the subsurface, which is of great interest for engineers, physicists, and mathematicians
involved in porous media flows modeling. The evolution of a reactive chemical within
a velocity field exhibits excitement on many scales, typically represented by using
the classical Fickian dispersion theory. For instance, the evolution in such a velocity
field, when modeled with Fickian-type constitutive laws, leads to a dispersion tensor
dependent upon the timescales of observation. Hence, to avoid this difficulty, nonlocal
Fickian models have been recently proposed, in which the dispersion term arising from
integration with respect to time makes the flow non-Fickian, since it is not a pure
diffusion term. For example, Chen, Ewing, and Lazarov [4, 5], Cushman [6], Cushman,
Hu, and Deng [7], Cushman, Hu, and Ginn [8], and Hu, Deng, and Cushman [23]
have developed a nonlocal theory and some applications for the flow of fluid in porous
media. Furtado et al. [21], Glimm et al. [22], Neuman and Zhang [29], and Ewing
[12, 13, 14] also studied the history effect of various mixing length growth for flow
in heterogeneous porous media. In a recent laboratory experimental investigation of
contaminant transport in heterogeneous porous media [32], some nonlocal behavior
of dispersion tensors have been observed.

There is now sizeable literature on the numerical approximations of the problem
(1.1). In [31], the method of backward Euler and Crank–Nicolson combined with
a certain numerical quadrature rule is employed to deal with the time direction,
which aims at reducing the computational cost and storage spaces due to the memory
effect. Finite element methods have been also developed for the problem (1.1) during
the past ten years [2, 3, 25, 26, 27, 28, 34], in which optimal and superconvergence
can be found for the corresponding finite element approximations in various norms,
such as Lp with 2 ≤ p ≤ ∞. In particular, the method of using the Ritz–Volterra
projection, discovered by Cannon and Lin [2], proved to be a powerful technique
behind the analysis. In fact, in [28] the concept of Ritz–Volterra projection is proposed
to unify much of the analysis of standard finite element methods for different types of
problems, such as parabolic and hyperbolic integro-differential equations and Sobolev-
and viscoelasticity-type equations. See [16, 17] for recent developments on finite
volume element approximations, where the Ritz–Volterra projection is also employed.

However, to the best of our knowledge, there are few results except [18, 19, 24]
available concerning the mathematical formulation and analysis of the mixed finite
element method for (1.1). Unlike the standard finite element method, the mixed
finite element method can give the numerical approximations of the velocity field and
the pressure field at the same time, and also maintains the physical conservation, so
that it is more favorable. Certainly, its theoretical analysis is more complicated than
that of the standard finite element method. In [18, 19] the authors dealt with the
general setting of the problem. However, the formulation and analysis given in [24]
are valid for only a special case; i.e., the operator B is proportional to the operator
A. The reader is referred to [24] for this special case. The mathematical difficulty
associated with the analysis of numerical approximations to the solution of (1.1)
lies on the integral term added to standard parabolic equations [33, 34]. In order to
overcome this difficulty, the so-called mixed Ritz–Volterra projection will be proposed
in section 2.

In the present paper we are concerned with the approximate solutions of (1.1)
by mixed finite element methods. Sharper L2-error estimates than those in [18, 19]
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1540 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

are obtained by employing a mixed Ritz–Volterra projection rather than the Ritz
projection used in [18, 19]. In addition, local L2 superconvergence for the velocity
along the Gauss lines and for the pressure at the Gauss points is derived, and with
the aid of an interpolation postprocessing method global L2 superconvergence is also
considered for the velocity and the pressure.

The paper is organized in the following way. In section 2, we give some necessary
preparations, introduce the mixed Ritz–Volterra projection, and analyze its approxi-
mation properties. In section 3, we derive a sharper error estimate for the mixed finite
element approximations in the L2-norm. Sections 4 and 5 are devoted to the local and
global superconvergence analysis of the mixed finite element method, respectively.

2. The mixed Ritz–Volterra-type projection. In this section, we give the
mixed finite element approximate formula for the parabolic integro-differential equa-
tion (1.1) and the mixed Ritz–Volterra projection. For simplicity, the method will be
presented on plane domains.

Let W := L2(Ω) be the standard L2 space on Ω with norm ‖ · ‖0. Denote by

V := H(div,Ω) =
{
σ ∈ (L2(Ω))2 : ∇ · σ ∈ L2(Ω)

}
the Hilbert space equipped with the following norm:

‖σ‖V :=
(‖σ‖2

0 + ‖∇ · σ‖2
0

) 1
2 .

There are several ways to discretize the problem (1.1) based on the variables σ and
u; each method corresponds to a particular variational form of (1.1) [18, 19].

Let Th be a finite element partition of Ω into triangles or quadrilaterals which
is quasi-uniform. Let Vh × Wh denote a pair of finite element spaces satisfying the
Brezzi–Babus̆ka condition. For example, the elements of Raviart and Thomas [30]
would be a good choice for Vh and Wh. Although our results are based on the use
of Raviart–Thomas elements of any order k, their extension to other stable elements
can be discussed without any difficulty.

Let us recall from [18] that the weak mixed formulation of (1.1) is given by finding
(u, σ) ∈ W × V such that

(ut, w)− (∇ · σ,w)− (cu, w) = (f, w) ∀w ∈ W,

(ασ,v) +

∫ t

0

(M(t, s)σ(s),v)ds + (∇ · v, u) = 〈g,v · n〉 ∀v ∈ V,

u(0, x) = u0(x) in L2(Ω),

(2.1)

where α = A−1(t), M(t, s) = R(t, s)A−1(s), and R(t, s) is the resolvent of the matrix
A−1(t)B(t, s) and is given by

R(t, s) = A−1(t)B(t, s) +

∫ t

s

A−1(t)B(t, τ) R(τ, s)dτ, t > s ≥ 0.

Here 〈·, ·〉 indicates the L2-inner product on ∂Ω.
The corresponding semidiscrete version seeks a pair (uh, σh) ∈ Wh×Vh such that

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh) ∀wh ∈ Wh,

(ασh,vh) +

∫ t

0

(M(t, s)σh(s),vh)ds + (∇ · vh, uh) = 〈g,n · vh〉 ∀vh ∈ Vh.
(2.2)
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1541

The discrete initial condition uh(0, x) = u0,h, where u0,h ∈ Wh is some appropriately
chosen approximation of the initial data u0(x), should be added to (2.2) for starting.
The pair (uh, σh) is a semidiscrete approximation of the true solution of (1.1) in the
finite element space Wh × Vh [1, 18, 19, 31], where σh(0, x) is chosen to satisfy (2.2)
with t = 0; namely, it is related to u0,h as follows:

(ασh(0),vh) + (u0,h,∇ · vh) = 〈g0,n · vh〉,(2.3)

where g0 = g(0, x) is the initial value of the boundary data.
In [18], utilizing the mixed Ritz projection we have obtained for the Raviart–

Thomas element of the lowest order that

||u− uh||20 + ||σ − σh||20 ≤ Ch2

[
||u0||21 + ||σ0||21 +

∫ t

0

(||u(s)||22 + ||ut(s)||22)ds
]
.

Also, we can extend easily the result to the case of any order k (≥ 1) to get

||u−uh||20 + ||σ−σh||20 ≤ Ch2r

[
||u0||2r + ||σ0||2r +

∫ t

0

(||u(s)||2r+1 + ||ut(s)||2r+1)ds

]
,

(2.4)
for 2 ≤ r ≤ k + 1. In fact, we can improve the error estimate by extending the idea
from [2, 3] to introduce a new nonlocal projection incorporated with the memory
effects, which allows us to obtain a sharper error estimate in regularity than that
indicated in (2.4). This new projection is a natural extension of the standard Ritz–
Volterra projection in the standard finite element method to the case of the mixed
finite element approximations with memory. We refer the readers to [2, 3] and [28]
for the analysis and applications of the Ritz–Volterra projection for standard finite
element approximations to parabolic and hyperbolic integro-differential equations.

Before the mixed Ritz–Volterra projection is given, we need the following Raviart–
Thomas projection [30]:

Πh × Ph : V ×W → Vh ×Wh,

which has the following properties:
(i) Ph is the local L2(Ω) projection.
(ii) Πh and Ph satisfy

(∇ · (σ − Πhσ), wh) = 0, wh ∈ Wh and (∇ · vh, u− Phu) = 0, vh ∈ Vh.(2.5)

(iii) The following approximation properties hold:

||σ − Πhσ||0 ≤ Chr||σ||r, 1 ≤ r ≤ k + 1,
||∇ · (σ −Πhσ)||−s ≤ Chr+s||∇ · σ||r, 0 ≤ r, s ≤ k + 1,
||u− Phu||−s ≤ Chr+s||u||r, 0 ≤ r, s ≤ k + 1.

(2.6)

Definition 2.1. For (u, σ) ∈ W×V we define a pair (ūh, σ̄h) : [0, T ] → Wh×Vh

such that(
α(σ − σ̄h) +

∫ t

0

M(t, s)(σ − σ̄h)(s)ds,vh

)
+ (∇ · vh, u− ūh) = 0, vh ∈ Vh,

(∇ · (σ − σ̄h), wh) + (c(u− ūh), wh) = 0, wh ∈ Wh,
(2.7)

where α = A−1. The pair (ūh, σ̄h) is called the mixed Ritz–Volterra projection
of (u, σ).
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1542 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Let

ξ := σ − σ̄h, η := u− ūh, ν := Πhσ − σ̄h, τ := Phu− ūh, ρ := u− Phu.

Then (2.7) becomes(
αξ +

∫ t

0

M(t, s)ξ(s)ds,vh

)
+ (∇ · vh, η) = 0, vh ∈ Vh,

(∇ · ξ, wh) + (cη, wh) = 0, wh ∈ Wh,

(2.8)

or, according to (2.5),

(αξ,vh) + (∇ · vh, τ) = f(vh), vh ∈ Vh,
(∇ · ξ, wh) + (cτ, wh) = g(wh), wh ∈ Wh,

(2.9)

where

f(vh) := −
(∫ t

0

M(t, s)ξ(s)ds,vh

)
and g(wh) := −(cρ, wh).

In order to analyze (ξ, η), let us recall from [10] the following results.
Lemma 2.2. Let the index k of Vh × Wh be at least one and let 0 ≤ s ≤ k − 1.

Assume that Ω is (s+2)-regular [10]. Let ξ ∈ V, g ∈ W ′ = L2(Ω) and f = {f0, f1} ∈
V′ with f0 ∈ (L2(Ω))2, f1 ∈ L2(Ω) and

f(v) = (f0,v) + (f1,∇ · v), v ∈ V.

If z ∈ Wh satisfies the relations

(αξ,vh) + (∇ · vh, z) = f(vh), vh ∈ Vh,
(∇ · ξ, wh) + (cz, wh) = g(wh), wh ∈ Wh,

(2.10)

then there exists h0 > 0 sufficiently small such that, for all 0 < h ≤ h0,

||z||−s ≤ C
{
hs+1||ξ||0 + hs+2||∇ · ξ||0 + ||f0||−s−1 + hs+1||f0||0

+ ||f1||−s + hs||f1||0 + ||g||−s−2 + hs+2||g||0
}
.

Lemma 2.3. Let the index k of Vh × Wh be nonnegative, and let Ω be (k + 2)-
regular [10]. Let ξ ∈ V, g ∈ W ′ = L2(Ω) and f = {f0, 0} ∈ V′. If z ∈ Wh satisfies
(2.10), then there exists h0 > 0 sufficiently small such that, for all 0 < h ≤ h0,

||z||−k ≤ C
{
hk+1 (||ξ||0 + ||∇ · ξ||0 + ||f0||0 + ||g||0) + ||f0||−k−1 + ||g||−k−2

}
.

Moreover, we also need the following lemma.
Lemma 2.4. Assume that the matrix A(t) is positive definite. Then the norms

||σ||20 := (σ, σ) and ||σ||2A−1 := (A−1σ, σ) are equivalent.
We are now ready to state and prove our main result in this section.
Theorem 2.5. For (u, σ) ∈ W × V its mixed Ritz–Volterra projection (ūh, σ̄h)

defined by (2.7) exists and is unique. Moreover, there is a positive constant C > 0,
independent of h > 0 small, such that the error (u− ūh, σ − σ̄h) can be estimated by

||u− ūh||0 ≤ C

{
h|||u(t)|||2 if k = 0,
hr|||u(t)|||r if k ≥ 1 and 2 ≤ r ≤ k + 1,

||σ − σ̄h||0 ≤ Chr|||u(t)|||r+1 if 1 ≤ r ≤ k + 1,

||∇ · (σ − σ̄h)||0 ≤ Chr|||u(t)|||r+2 if 0 ≤ r ≤ k + 1,
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1543

where

|||u(t)|||r = ||u(t)||r +

∫ t

0

||u(s)||rds, r ∈ R, t ≥ 0.

Proof. We first prove the existence and uniqueness of the mixed Ritz–Volterra
projection. If M = 0, then it follows from [1] that (ūh, σ̄h) exists uniquely. If M is
nonzero, we see that (2.7) in fact can be written as a Volterra system for (ūh, σ̄h), i.e.,

Ah

(
ūh

σ̄h

)
= Fh +

∫ t

0

Bh(t, s)

(
ūh

σ̄h

)
ds,

where Ah and Bh are matrices with Ah nonsingular and Fh is a vector associated
with the solution (u, σ). Hence, the theory of Volterra equations implies that (ūh, σ̄h)
exists uniquely.

Next we turn our attention to error estimates. It follows from (2.6) and (2.9) that

||f ||0 ≤ C

∫ t

0

||ξ||0ds, ||f ||−1 ≤ C

∫ t

0

||ξ||−1ds,

||g||0 ≤ C||ρ||0, ||g||−1 ≤ C||ρ||−1,

||g||−2 ≤ ||g||−1 ≤ C||ρ||−1, ||ρ||−1 + h||ρ||0 ≤ Chr+1||u||r.
Now we apply either Lemma 2.2 with s = 0 or Lemma 2.3 with k = 0 to (2.9).

Then, for h small and for Ω 2-regular we have for 0 ≤ r ≤ k + 1 that

||τ ||0 ≤ C
{
h||ξ||0 + h2−δk0 ||∇ · ξ||0 + ||f ||−1 + h||f ||0 + ||g||−2 + h||g||0

}
≤ C

{
h||ξ||0 + h2−δk0 ||∇ · ξ||0 +

∫ t

0

(||ξ||−1 + h||ξ||0)ds + (||ρ||−1 + h||ρ||0)
}

≤ C

{
h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 +

∫ t

0

||ξ||−1ds + hr+1||u||r
}

,

(2.11)
where

δk0 =

{
1, k = 0,
0, k �= 0.

Letting ϕ ∈ (
H1(Ω)

)2
, then we derive from (2.5) and (2.8) that(

αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ

)
+ (∇ · ϕ, η)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), η)

+

(
αξ +

∫ t

0

M(t, s)ξ(s)ds,Πhϕ

)
+ (∇ ·Πhϕ, η)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), u)

or

(αξ, ϕ) = −
∫ t

0

(M(t, s)ξ(s), ϕ)ds− (∇ · ϕ, η)

+

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), u)
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1544 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

which, together with (2.6), indicates that

|(αξ, ϕ)| ≤ C

∫ t

0

||ξ(s)||−1ds||ϕ||1 + ||η||0||ϕ||1

+ Ch|||ξ|||0||ϕ||1 + Ch||u||1||∇ · (ϕ−Πhϕ)||−1

≤ C

(∫ t

0

||ϕ||−1ds + ||η||0 + Ch|||ξ|||0 + Ch||u||1
)
||ϕ||1;

that is,

||ξ||−1 ≤ C

{∫ t

0

||ξ(s)||−1ds + ||η||0 + Ch(|||ξ|||0 + ||u||1)
}

.

This, together with Gronwall’s lemma, implies that

||ξ||−1 ≤ C {||η||0 + Ch(|||ξ|||0 + ||u||1)} .(2.12)

Substitute (2.12) into (2.11) to obtain

||τ ||0 ≤ C

{∫ t

0

||η(s)||0ds + h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 + hr+1||u||r
}

.(2.13)

Therefore, for 0 ≤ r ≤ k + 1 we have

||η||0 ≤ ||ρ||0 + ||τ ||0
≤ C

{∫ t

0

||η(s)||0ds + h|||ξ|||0 + h2−δk0 |||∇ · ξ|||0 + hr||u||r
}

,

and applying Gronwall’s lemma leads to

||η||0 ≤ C
{
h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 + hr||u||r

}
.(2.14)

Since, by (2.5), (∇ · ν, wh) = (∇ · ξ, wh) for wh ∈ Wh, it follows from (2.8) and the
choice wh = ∇ · ν ∈ Wh that

(∇ · ν,∇ · ν) = (∇ · ξ,∇ · ν) = −(cη,∇ · ν)
or

||∇ · ν||0 ≤ C||η||0(2.15)

so that

(2.16)

||∇ · ξ||0 ≤ ||∇ · ν||0 + ||∇ · (σ −Πhσ)||0 ≤ C(||η||0 + hq||∇ · σ||q), 0 ≤ q ≤ k + 1.

Also, according to (2.8) ν satisfies(
αν +

∫ t

0

M(t, s)ν(s)ds, ν

)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ν

)
+

(
α(Πhσ − σ) +

∫ t

0

M(t, s)(Πhσ − σ)(s)ds, ν

)

= −(∇ · ν, η) +
(
α(Πhσ − σ) +

∫ t

0

M(t, s)(Πhσ − σ)(s)ds, ν

)
≤ ||∇ · ν||20 + ||η||20 + C|||Πhσ − σ|||0||ν||0.
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1545

Then we find from Lemma 2.4, (2.15), and the ε-type inequality that

||ν||20 − C

∫ t

0

||ν(s)||20ds ≤ C(||η||0 + |||Πhσ − σ|||0)

which, together with Gronwall’s lemma and (2.6), implies

||ν||0 ≤ C(||η||0 + |||Πhσ − σ|||0) ≤ C(||η||0 + hm|||σ|||m), 1 ≤ m ≤ k + 1,(2.17)

and

||ξ||0 ≤ ||ν||0 + ||Πhσ − σ||0 ≤ C(||η||0 + hm|||σ|||m), 1 ≤ m ≤ k + 1.(2.18)

If (2.16) and (2.18) are substituted into (2.14), then for 0 ≤ r ≤ k + 1, 0 ≤ q ≤
k + 1, and 1 ≤ m ≤ k + 1 it follows that

||η||0 ≤ C
{
h|||η|||0 + hr||u||r + hm+1|||σ|||m + h2−δk0+q||∇ · σ||q

}
.

Thus, for small h we obtain via Gronwall’s inequality that

||η||0 ≤ C
{
hr||u||r + hm+1|||σ|||m + h2−δk0+q||∇ · σ||q

}
,

0 ≤ r, q ≤ k + 1, 1 ≤ m ≤ k + 1.

Choose r = m + 1 = 2 + q − δk0 to gain that

||η||0 =

{
Ch|||u|||2 if k = 0,

Chr|||u|||r if k ≥ 1 and 2 ≤ r ≤ k + 1,

since ||σ||r−1 + ||∇ · σ||r−2 ≤ C||u||r.
It then follows immediately that

||ξ||0 ≤ Chr|||u|||r+1, 1 ≤ r ≤ k + 1,

||∇ · ξ||0 ≤ Chr|||u|||r+2, 0 ≤ r ≤ k + 1.

Therefore, the proof of Theorem 2.5 is completed.
Theorem 2.6. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) ∈

W × V defined by (2.7). Then there is a positive constant C > 0, independent of
h > 0 small, such that the error (u − ūh, σ − σ̄h) can be estimated for any positive
integer m by

||Dm
t (u− ūh)||0 ≤ C

{
h|||u(t)|||2,m if k = 0,
hr|||u(t)|||r,m if k ≥ 1 and 2 ≤ r ≤ k + 1,

||Dm
t (σ − σ̄h)||0 ≤ Chr|||u(t)|||r+1,m if 1 ≤ r ≤ k + 1,

||Dm
t (∇ · (σ − σ̄h))||0 ≤ Chr|||u(t)|||r+2,m if 0 ≤ r ≤ k + 1,

where

|||u(t)|||r,m =

m∑
j=0

||Dj
tu(t)||r +

∫ t

0

m∑
j=0

||Dj
tu(s)||rds, r ∈ R, t ≥ 0.

Proof. Differentiate (2.7), and then the result for m = 1 follows from the same
arguments as those for Theorem 2.5.
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1546 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

The proof is completed by treating m ≥ 2 inductively, using the further differen-
tiation of (2.7).

Corollary 2.7. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) ∈
W × V defined by (2.7). Then

||u− ūh||∞ ≤ Chr (||u||r,∞ + |||u|||r+1) , k ≥ 1, and 1 ≤ r ≤ k.

Proof . We easily see from (2.13) and Theorem 2.5 that

||τ ||0 ≤ Chr+1|||u|||r+1 for k ≥ 1 and 1 ≤ r ≤ k

and by the inverse inequality that

||τ ||∞ ≤ Ch−1||τ ||0 ≤ Chr|||u|||r+1.

Thus, we have for k ≥ 1 and 1 ≤ r ≤ k that

||u− ūh||∞ ≤ ||u− Phu||∞ + ||τ ||∞
≤ Chr(||u||r,∞ + |||u|||r+1).

Remark 2.1. For k = 0 we do not have any estimate for the quantity ||u− ūh||∞.
However, using the superconvergence analysis to be presented in Corollary 5.4, we
have for the rectangular Raviart–Thomas elements of the lowest order,

||u− uh||∞ ≤ Ch,

where (u, σ) and (uh, σh) are the solutions of (2.1) and (2.2), respectively.
Theorem 2.8. Assume that (ūh, σ̄h) is the mixed Ritz–Volterra projection of

(u, σ) ∈ W×V defined by (2.7). Then there is a positive constant Cm > 0, independent
of h > 0 small, such that for m ≥ 0

||Dm
t ūh||W + ||Dm

t σ̄h||V ≤ Cm




m∑
j=0

(||Dj
tσ||V + ||Dj

tu||W ) +

∫ t

0

(||σ||V + ||u||W )ds


.

(2.19)
Proof. Rewrite (2.7) as

(ασ̄h,vh) + (∇ · vh, ūh) = F (vh), vh ∈ Vh,
(∇ · σ̄h, wh) + (cūh, wh) = G(wh), wh ∈ Wh,

where

F (vh) =

(
ασ +

∫ t

0

M(t, s)(σ − σ̄h)(s)ds,vh

)
+ (∇ · vh, u),

G(wh) = (∇ · σ,wh) + (cu, wh).

F (vh) and G(wh) can be considered as linear functionals of vh and wh defined on Vh

and Wh, respectively. Thus, we have from the stability result of [1] that

||σ̄h||V + ||ūh||W ≤ C

{
supvh∈Vh

|F (vh)|
||vh||V + sup

wh∈Wh

|G(wh)|
||wh||W

}

≤ C

{
||σ||V +

∫ t

0

||σ||V ds + ||u||W +

∫ t

0

||σ̄h||Vds

}
,
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1547

or, by Gronwall’s inequality,

||σ̄h||V + ||ūh||W ≤ C

{
||σ||V +

∫ t

0

||σ||Vds + ||u||W
}

,

which demonstrates that (2.19) is true for m = 0.

We can also prove (2.19) for m ≥ 1 by differentiating (2.7) with respect to time
t and repeating the same arguments above with mathematical induction.

Remark 2.2. This stability result (2.19) is needed in the analysis of the backward
Euler time-discretization scheme. See [19] for details.

3. Sharp L2-error estimates. In this section, we shall show a sharper L2-error
estimate than the one indicated in (2.4) for the time-continuous approximation scheme
(2.2), where the regularity requirement is one order lower than in (2.4), by means of
the mixed Ritz–Volterra-type projection instead of the mixed Ritz projection used
in [18] to obtain (2.4). Here, let us consider the Raviart–Thomas elements of higher
order k ≥ 1 (see [18] for the lowest-order case).

Theorem 3.1. Assume that (u, σ) and (uh, σh) are the solutions of (2.1) and
(2.2), respectively, ||Phu0−uh(0)|| ≤ Chr||u0||r and ||Πhσ(0)−σh(0)|| ≤ Chr||u0||r+1.
Then we have for k ≥ 1 that

||u(t)− uh(t)||20
≤ Ch2r

{
||u0||2r +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

, 2 ≤ r ≤ k + 1,

||σ(t)− σh(t)||20
≤ Ch2r

{
||u0||2r+1 +

∫ t

0

[||u(s)||2r+1 + ||ut(s)||2r+1]ds

}
, 1 ≤ r ≤ k + 1.

Proof. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) defined by
(2.7), and we rewrite the errors as

u− uh = (u− ūh) + (ūh − uh) := ρ + ρh,

σ − σh = (σ − σ̄h) + (σ̄h − σh) := θ + θh.

Then we know from Theorems 2.5 and 2.6 that

||ρ||0 ≤ Chr|||u(t)|||r, k ≥ 1, and 2 ≤ r ≤ k + 1,

||ρt||0 ≤ Chr (|||u(t)|||r + |||ut(t)|||r) , k ≥ 1, and 2 ≤ r ≤ k + 1
(3.1)

and

||θ(t)||0 ≤ Chr|||u|||r+1, 1 ≤ r ≤ k + 1.(3.2)

Thus, only ||ρh||0 and ||θh||0 need to be estimated.

It follows from (2.1)–(2.2) and (2.7) that (ρh, θh) satisfies

(
αθh +

∫ t

0

M(t, s)θh(s)ds,vh

)
+ (∇ · vh, ρh) = 0, vh ∈ Vh,

(ρh,t, wh)− (∇ · θh, wh)− (cρh, wh) = −(ρt, wh), wh ∈ Wh.

(3.3)
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1548 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Therefore, setting wh = ρh and vh = θh in (3.3) we obtain from their sum that

1

2

d

dt
||ρh||20 − (cρh, ρh) + ||θh||2A−1 = −

(∫ t

0

M(t, s)θh(s)ds, θh

)
− (ρt, ρh)

≤ C

∫ t

0

||θh(s)||0ds||θh||0 + ||ρt||0||ρh||0

and by means of Lemma 2.4 that

1

2

d

dt
||ρh||20 + ||θh||2A−1 ≤ C

(
||ρh||20 +

∫ t

0

||θh||2A−1ds

)
+

1

2

(||θh||2A−1 + ||ρt||20
)
.

Integrating from 0 to t leads to

||ρh||20 +

∫ t

0

||θh||2A−1ds ≤ ||ρh(0)||20 +

∫ t

0

[
||ρh||20 +

∫ s

0

||θh(s)||2A−1ds

]
+

∫ t

0

||ρt||20ds

which, together with Gronwall’s lemma, implies

||ρh||20 +

∫ t

0

||θh(s)||2A−1ds ≤ C

{
||ρh(0)||20 +

∫ t

0

||ρt||20ds
}

.(3.4)

It follows from (2.6), Theorem 2.5, and our initial approximation assumption that

||ρh(0)||20 = ||ūh(0)− uh(0)||20 ≤ ||ūh(0)− u0||20
+ ||u0 − Phu0||20 + ||Phu0 − uh(0)||20

≤ Ch2r||u0||2r.
(3.5)

Combining (3.1) and (3.5) with (3.4) we gain

||ρh||20 ≤ Ch2r

{
||u0||2r +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

.(3.6)

In order to get the estimate for θh(t), we first differentiate (3.3) to obtain

(
αtθh + αθh,t + M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds,vh

)
+ (∇ · vh, ρh,t) = 0, vh ∈ Vh,

and then by setting vh = θh in the above equation and wh = ρh,t in (3.3) we have
that

(3.7)

||ρh,t||20 + (αθh,t, θh) + (αtθh, θh) = −
(
M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds, θh

)
+ (cρh, ρh,t)− (ρt, ρh,t).

Since

α(θ2
h)t = (αθ2

h)t − αtθ
2
h,
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1549

then

(αθh,t, θh) =

∫
Ω

αθh,tθh =
1

2

∫
Ω

α
d

dt
(θ2

h)

=
1

2

∫
Ω

d

dt
(αθ2

h)−
1

2

∫
Ω

αtθ
2
h

=
1

2

d

dt
||θh||2A−1 − 1

2
(αtθh, θh).

Hence, (3.7) can be rewritten as

||ρh,t||20 +
1

2

d

dt
||θh||2A−1 +

1

2
(αtθh, θh) = −

(
M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds, θh

)
+ (cρh, ρh,t)− (ρt, ρh,t).

Thus, from the ε-inequality we derive that

||ρh,t||20 +
d

dt
||θh||2A−1 ≤ C

{
||θh||20 +

∫ t

0

||θh(s)||20ds + ||ρh||20 + ||ρt||20
}

and then via integrating from 0 to t, Lemma 2.4, and Gronwall’s lemma that

||θh||20 ≤ C

{
||θh(0)||20 +

∫ t

0

[||ρh(s)||20 + ||ρt(s)||20]
}

.(3.8)

It follows from (2.6), Theorem 2.5, and our initial approximation assumption that

||θh(0)||20 = ||σ̄h(0)− σh(0)||20 ≤ ||σ̄h(0)− σ(0)||20
+ ||σ(0)−Πhσ(0)||20 + ||Πhσ(0)− σh(0)||20

≤ Ch2r||u0||2r+1.

(3.9)

If (3.1), (3.6), and (3.9) are substituted into (3.8), then we can obtain

||θh||20 ≤ Ch2r

{
||u0||2r+1 +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

.

Then the proofs of Theorem 3.1 are complete via the triangle inequality.
Remark 3.1. The assumption in the above theorem ‖Phu0−uh(0)‖0 ≤ Chr||u0||r

and ||Πhσ(0) − σh(0)||0 ≤ Chr||u0||r+1 is available. In fact, from (2.1) and (2.3) we
know that

(α(0)(σ − σh)(0),vh) + ((u− uh)(0),∇ · vh) = 0, vh ∈ Vh.(3.10)

When we choose uh(0) = Phu0, (3.10) becomes

(α(0)(σ − σh)(0),vh) = 0, vh ∈ Vh,

since (u0 −Phu0,∇·vh) = 0 according to (2.5). Thus, we have by virtue of (2.6) that

(σ(0)(σh(0)−Πhσ(0)),vh) = (α(0)(σ(0)−Πhσ(0)),vh) ≤ Chr||u0||r+1||vh||0
which, together with Lemma 2.4, indicates that

||σh(0)−Πhσ(0)||0 ≤ Chr||u0||r+1.

Remark 3.2. Compared with (2.4) the result presented in Theorem 3.1 is sharper,
since the regularity requirement in Theorem 3.1 is one order lower for the pressure
field than that in (2.4), which demonstrates that the mixed Ritz–Volterra projection
is more favorable for the mixed finite element method of (2.1) than the mixed Ritz
projection used to obtain (2.4).

D
ow

nl
oa

de
d 

08
/0

5/
14

 to
 1

29
.1

.6
2.

22
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1550 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

4. Local L2 superconvergence on rectangular elements. In the last decade
considerable attention has been given to the analysis of superconvergence of mixed
finite element approximations to elliptic [11, 15, 35, 36] and parabolic [4, 5] problems
under various norms associated with the Gauss lines for the gradient and the Gauss
points for the solution itself. In this section, we will extend these superconvergence
results in mixed finite element approximations to our problem of parabolic integro-
differential equations.

Following [15] we assume that Ω ⊂ R2 is a rectangle and define seminorms on V
and W as follows. Letting e = [a, b]× [c, d] ∈ Th, we denote by (g1, g2, . . . , gk+1) the
Gauss points in [a, b] and (ĝ1, ĝ2, . . . , ĝk+1) the Gauss points in [c, d], and define

|||v1|||21,e :=

k+1∑
j=1

Aj
d− c

2

∫ b

a

|v1(s, ĝi)|2ds,

|||v2|||22,e :=

k+1∑
j=1

Aj
b− a

2

∫ d

c

|v2(s, gi)|2ds,

where Aj > 0, j = 1, 2, . . . , k + 1, are the coefficients of the Gauss quadrature rule in
[−1, 1]. Thus, for v = (v1, v2) ∈ V and w ∈ W , we define

|||v|||2∗ := |||v1|||21 + |||v2|||22, |||vi|||2i :=
∑
e∈Th

|||vi|||2i,e, i = 1, 2,

|||w|||2∗ :=
1

4

∑
e∈Th

k+1∑
i,j=1

AiAj area(e)|w(gi, ĝj)|2.

Clearly, these two seminorms are equal to the L2-norm of functions from Vh and Wh,
respectively [11, 15], where Vh × Wh is the Raviart–Thomas finite element space of
index k (≥ 0). Moreover, let uI represent the interpolation function of u of degree k
with respect to x and y, respectively, on each element associated with the (k + 1)2

Gauss points. First of all, we need the following lemmas.

Lemma 4.1. Assume that σ ∈ (
Hk+2(Ω)

)2 ∩ V, u ∈ Hk+2(Ω), and uI is the
interpolation function of u defined by (k + 1)2 Gauss points. Then we have for some
constant C > 0 that

|||σ −Πhσ|||∗ ≤ Chk+2||σ||k+2,

||Phu− uI ||0 ≤ Chk+2||u||k+2.

Proof. The proof can be found in [11, 15].

Lemma 4.2. Assume that σ ∈ (
Hk+2(Ω)

)2 ∩ V, u ∈ Hk+1(Ω), c and β are two
W 1,∞(Ω) functions. Then we have for some constant C > 0 that

|(c(Phu− u), wh)| ≤ Chk+2||u||k+1||wh||0, wh ∈ Wh,

|(β(Πhσ − σ),vh)| ≤ Chk+2||σ||k+2||vh||0, vh ∈ Vh.

Proof. Let ĉ :=

∫
Ω

c/|Ω|dx, where |Ω| is the measure of Ω. Then

|c(x, t)− ĉ(x, t)| ≤ Ch||c||1,∞
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1551

which, together with the definition of the L2-projection operator Ph, yields

|(c(Phu− u), wh)| = |((c− ĉ)(Phu− u), wh)|
≤ Ch||Phu− u||0||wh||0
≤ Chk+2||u||k+1||wh||0.

Thus, we obtain the first estimate in Lemma 4.2.
The proof for the second estimate is referred to in [11].
Theorem 4.3. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) defined

by (2.7). Then there exists a positive constant C > 0, independent of h, such that, for
any 0 ≤ t ≤ T ,

|||u− ūh|||∗ + |||σ − σ̄h|||∗ ≤ Chk+2

(
||u||k+2 + ||σ||k+2 +

∫ t

0

||σ||k+2ds

)
.

Proof . We first observe by the equality of the norms ||| · |||∗ and || · ||0 for the
functions in the finite element spaces Wh and Vh that

|||u− ūh|||∗ ≤ ||||u− Phu|||∗ + ||Phu− ūh||0,
|||σ − σ̄h|||∗ ≤ |||σ −Πhσ|||∗ + ||Πhσ − σ̄h||0.

Since u−uI = 0 at the (k+1)2 Gauss points in each element e, we have according
to Lemma 4.1 that

|||Phu− u|||∗ = |||Phu− uI |||∗ = ||Phu− uI ||0 ≤ Chk+2||u||k+2.

In addition, from Lemma 4.1 we also know

|||σ −Πhσ|||∗ ≤ Chk+2||σ||k+2.

Hence, it is sufficient to bound ||Phu− ūh||0 and ||Πhσ − σ̄h||0 to complete the proof
of Theorem 4.3.

Let ξ := Πhσ − σ̄h and τ := Phu− ūh. Then we see from (2.5) and (2.7) that

(αξ,vh) + (∇ · vh, τ) = F0(vh) + F1(vh), vh ∈ Vh,

(∇ · ξ, wh) + (cτ, wh) = G0(wh), wh ∈ Wh,
(4.1)

where

F0(vh) = −
(
α(σ −Πhσ) +

∫ t

0

M(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

F1(vh) = −
(∫ t

0

M(t, s)ξ(s)ds,vh

)
, vh ∈ Vh,

G0(wh) = −(c(u− Phu), wh), wh ∈ Wh.

Since the terms F0, F1, and G0 can be regarded as linear functionals of vh and wh

defined on Vh and Wh, respectively, we then know from the stability result of [1] that
for any fixed time 0 ≤ t ≤ T

||ξ||V + ||τ ||W ≤ C

{
sup

vh∈Vh

|F0(vh) + F1(vh)|
||vh||V + sup

wh∈Wh

|G0(wh)|
||wh||W

}
.(4.2)
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1552 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Let

F0(t) = sup
vh∈Vh

|F0(vh)|
||vh||V and G0(t) = sup

wh∈Wh

|G0(wh)|
||wh||W

and notice that

sup
vh∈Vh

|F1(vh)|
||vh||V = sup

vh∈Vh

∣∣∣∣
(∫ t

0

M(t, s)ξ(s)ds,vh

)∣∣∣∣
||vh||V ≤ C

∫ t

0

||ξ(s)||Vds.

Therefore, we find from (4.2) that

||ξ||V + ||τ ||W ≤ C

(
F0(t) + G0(t) + C

∫ t

0

||ξ(s)||Vds

)

and by Gronwall’s inequality that

||ξ||V + ||τ ||W ≤ C(F0(t) + G0(t)).(4.3)

Now we apply Lemma 4.2 to F0(t) and G0(t) to obtain

F0(t) ≤ Chk+2

(
||σ||k+2 +

∫ t

0

||σ(s)||k+2ds

)
and G0(t) ≤ Chk+2||u||k+1

which, together with (4.3), indicates

||ξ||V + ||τ ||W ≤ Chk+2(||u||k+1 + |||σ|||k+2).

Corollary 4.4. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ).
Then

|||Dt(u− ūh)|||∗ + |||Dt(σ − σ̄h)|||∗
≤ Chk+2

{
||u||k+1 + ||ut||k+2 + ||σ||k+2 + ||σt||k+2 +

∫ t

0

[||u(s)||k+1 + ||σ(s)||k+2]ds

}
.

Proof. Differentiating (4.1) with respect to time t, then we see that ξt and τt
satisfy the same equations with the right-hand sides replaced by

F ′
0(vh) = −(α(σt −Πhσt) + (αt + M(t, t))(σ −Πhσ),vh)

+

(∫ t

0

Mt(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

F ′
1(vh) = −

(
M(t, t)ξ +

∫ t

0

Mt(t, s)ξ(s)ds,vh

)
, vh ∈ Vh,

G′
0(wh) = −(ct(u− Phu + τ), wh)− (c(u− Phu)t, wh), wh ∈ Wh.

Thus, Corollary 4.4 follows from the same argument above.
In order to obtain superconvergence results for mixed finite element approxi-

mations for our parabolic integro-differential equations we choose our initial data
approximation (uh(0), σh(0)) ≈ (u0(x), A(0)∇u0(x)) as the mixed elliptic projection:

(α(0)(σh(0)− σ(0)),vh) + (∇ · vh, uh(0)− u0) = 0, vh ∈ Vh,

(∇ · (σh(0)− σ(0)), wh) + (c(0)(uh(0)− u0), wh) = 0, wh ∈ Wh.
(4.4)
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1553

Theorem 4.5. Let (u, σ) and (uh, σh) be the solutions of (2.1) and (2.2), respec-
tively, and (uh(0), σh(0)) is chosen according to (4.4). Then there exists a positive
constant C > 0 such that, for any 0 ≤ t ≤ T ,

|||u− uh|||∗ + |||σ − σh|||∗

≤ Chk+2

{
||u||k+2 + ||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||ut||2k+1 + ||σt||2k+2)ds

]1/2
}

.

Proof. First, the errors are decomposed as

u− uh = (u− ūh) + (ūh − uh) := ρ + ρh,

σ − σh = (σ − σ̄h) + (σ̄h − σh) := θ + θh,

and then by Theorem 4.3 we have that

|||ρ|||∗ + |||θ|||∗ ≤ Chk+2(||u||k+2 + |||σ|||k+2).

Moreover, from (2.7) and (4.4) we derive that

(α(0)θh(0),vh) + (∇ · vh, ρh(0)) = 0, vh ∈ Vh,

(∇ · θh(0), wh) + (c(0)ρh(0), wh) = 0, wh ∈ Wh,

which, together with the uniqueness of the solution to (2.7), implies

θh(0) = ρh(0) = 0.(4.5)

Furthermore, from the proof for Corollary 4.4 we know that

||τt||0 ≤ Chk+2 {|||u|||k+1 + |||σ|||k+2 + ||ut||k+1 + ||σt||k+2}

which, together with the definition of the local L2-projection operator Ph, demon-
strates that

|(ρt, ρh)| = |(τt, ρh)|
≤ Chk+2 {|||u|||k+1 + |||σ|||k+2 + ||ut||k+1 + ||σt||k+2} ||ρh||0.

Noticing that |||ρh|||∗ = ||ρh||0 and |||θh|||∗ = ||θh||0 as well as (4.5), we can obtain
the desired estimates for ρh and θh in L2-norm through the same procedure as that
in Theorem 3.1 for ρh and θh.

5. Global L2 superconvergence on quadrilaterals. In [20, 25] superconver-
gence has been obtained in mixed finite element methods on quadrilaterals for elliptic
equations. Here we shall extend these results to our parabolic integro-differential
equations. The strategy employed here is that we first examine the superclose ac-
curacy between the interpolation function of the exact solution and the mixed finite
element solution of (1.1) by means of integral identities, and then we use a suitable
interpolation postprocessing method to obtain global superconvergence approxima-
tions [25, 26]. As by-products, these superconvergence results can be utilized to form
a class of useful a posteriori error estimators to assess the accuracy of the mixed finite
element solutions in applications.
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1554 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Let V̂h(ê) × Ŵh(ê) be the standard local Raviart–Thomas rectangular space on
the reference element ê := [−1, 1]× [−1, 1] of order k (≥ 0); i.e.,

V̂h(ê) := Qk+1,k(ê)×Qk,k+1(ê),

Ŵh(ê) := Qk,k(ê),

where Qm,n(ê) indicates the space of polynomials of degree no more than m and n
in x and y on ê, respectively. On arbitrary convex quadrilateral element e ∈ Th, the
local Raviart–Thomas space is defined by

Vh(e) := {q = Gq̃ ◦ F̂−1
e : q̃ ∈ V̂h(ê)},

Wh(e) := {w = ŵ ◦ F̂−1
e : ŵ ∈ Ŵh(ê)},

where F̂e is the affine map which takes ê onto e and G := |det(M0)|−1M0 with M0

being the Jacobian matrix (derivative) of F̂e. Of course, Vh(e) ⊂ (C∞(e))2 and
Wh(e) ⊂ C∞(e) are no longer of polynomials on e unless e is a parallelogram.

The global Raviart–Thomas finite element space over the partition Th is defined
in the standard way as follows:

Vh := {v ∈ H(div; Ω) : v|e ∈ Vh(e) ∀e ∈ Th},
Wh := {w ∈ L2(Ω) : w|e ∈ Wh(e) ∀e ∈ Th}.

Let σ̃ and ũ be two vector-valued and scalar-valued functions, respectively, on the
reference element ê. Recall that the interpolation functions (or the Raviart–Thomas
projection) Π̂hσ̃ and P̂hũ over ê are defined by the following linear systems:∫

l̂i

(σ̃ − Π̂hσ̃) · nqds = 0 ∀q ∈ Pk(l̂i), i = 1, 2, 3, 4,∫
ê

(σ̃ − Π̂hσ̃) · φ = 0 ∀φ ∈ Qk−1,k(ê)×Qk,k−1(ê), and∫
ê

(ũ− P̂hũ)q = 0 ∀q ∈ Qk,k(ê), respectively,

(5.1)

where l̂i (i = 1, 2, 3, 4) is one of the four sides of ê, n is the outward normal vector to
ê, and Pr denotes the set of polynomials of total degree no more than r. If e ∈ Th

is an arbitrary quadrilateral element, and σ and u are two vector-valued and scalar-
valued functions defined on e, then their interpolation functions Πhσ and Phu on e
are defined by

Πhσ := G(Π̂h(G
−1σ̂)) and Phu := P̂hû, respectively,(5.2)

where σ̂ := σ ◦ F̂e and û := u ◦ F̂e. Then we have [20]

(∇ · (σ −Πhσ), wh) = 0 ∀wh ∈ Wh,
(∇ · vh, u− Phu) = 0 ∀vh ∈ Vh.

(5.3)

The semidiscrete mixed finite element method for (1.1) is now defined as follows:
Find (uh, σh) ∈ Wh × Vh satisfying

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh), wh ∈ Wh,

(ασh,vh) +

∫ t

0

(M(t, s)σh(s),vh)ds + (uh,∇ · vh) = 〈g,n · vh〉, vh ∈ Vh,

uh(0) = Phu0, σh(0) = Πhσ(0).

(5.4)
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1555

From (2.1) and (5.4) we derive the following error equation:

(ut − uh,t, wh)− (∇ · (σ − σh), wh)− (c(u− uh), wh) = 0, wh ∈ Wh,

(α(σ − σh),vh) +

∫ t

0

(M(t, s)(σ − σh)(s),vh)ds + (u− uh,∇ · vh) = 0, vh ∈ Vh.

(5.5)
From [20, 25] we recall the following lemmas.
Lemma 5.1. If Phu is the interpolation function of u defined as in (5.2), and

c ∈ W 1,∞(Ω), then there exists a constant C such that

|(c(u− Phu), wh)| ≤ Chk+2||u||k+1||wh||0, wh ∈ Wh.

Lemma 5.2. If the finite element partition Th is h2-uniform [20] or a generalized
rectangular mesh [25], and Πhσ is the interpolation function of σ defined as in (5.2),
then there exists a constant C such that for sufficiently smooth β

|(β(σ −Πhσ),vh)| ≤ Chk+2||σ||k+2||vh||0, vh ∈ Vh.

We are now ready to get our main theorem in this section.
Theorem 5.3. Assume that the finite element partition Th is h2-uniform or gen-

eralized rectangular and (uh, σh) is the approximate solution of (1.1) defined in (5.4)
by using quadrilateral elements of Raviart–Thomas of order k. If the exact solution u
and σ satisfies u ∈ Hk+1(Ω), and σ, σt ∈ (Hk+2(Ω))2, then we have

||uh − Phu||0 + ||σh −Πhσ||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2
.(5.6)

Proof. Let ρ∗h := uh − Phu and θ∗h := σh − Πhσ. Then it follows from (5.3) and
(5.5) that

(αθ∗h,vh) +

∫ t

0

(M(t, s)θ∗h(s),vh)ds + (ρ∗h,∇ · vh)

=

(
α(σ −Πhσ) +

∫ t

0

M(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

(ρ∗h,t, wh)− (∇ · θ∗h, wh)− (cρ∗h, wh) = −(c(u− Phu), wh), wh ∈ Wh.

(5.7)

Thus, letting wh = ρ∗h and vh = θ∗h in (5.7) we obtain from Lemmas 2.4, 5.1, and 5.2
as well as the ε-type inequality that

1

2

d

dt
||ρ∗h||20 + ||θ∗h||20 ≤ C

{∫ t

0

||θ∗h||20ds + ||ρ∗h||20 + Ch2k+4(||u||2k+1 + |||σ|||2k+2)

}
.

Integrating from 0 to t and noticing ρ∗h(0) = 0 yield according to Gronwall’s lemma
that

||ρ∗h||20 +

∫ t

0

||θ∗h||20ds ≤ Ch2k+4

∫ t

0

(||u||2k+1 + |||σ|||2k+2)ds

or

||ρ∗h||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2

.(5.8)
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1556 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Following the same steps to get the estimate for θh := σ̄h−σh in Theorem 3.1 we
can also obtain

||θ∗h||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2

.(5.9)

Combining (5.8) with (5.9) implies (5.6).

As a by-product of (5.6), we immediately gain the following corollary from the
inverse property of the finite element space and the approximation property of the
local L2-projection operator Ph.

Corollary 5.4. Assume that Th is h2-uniform or a generalized rectangular
mesh and the exact solution u and σ satisfies u ∈ W k+1,∞(Ω) and σ ∈ (Hk+2(Ω))2.
Then we have for the mixed finite element solution uh defined by (5.4) that

||u− uh||∞ ≤ Chk+1

{
||u||k+1,∞ +

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2
}

.

In order to improve the accuracy of the finite element approximation to the exact
solution on a global scale, a reasonable postprocessing method is proposed according
to (5.1) and Theorem 5.3 [25, 26]. For this end, we need to define two postprocessing
interpolation operators Π2h and P2h to satisfy

Π2hΠh = Π2h,

||Π2hvh||0 ≤ C||vh||0 ∀vh ∈ Vh,

||Π2hσ − σ||0 ≤ Chk+2||σ||k+2 ∀σ ∈ (Hk+2(Ω))2,

P2hPh = P2h,

||P2hwh||0 ≤ C||wh||0 ∀wh ∈ Wh,

||P2hu− u||0 ≤ Chk+2||u||k+2 ∀u ∈ Hk+2(Ω).

(5.10)

For easy exposition, we demonstrate our idea mainly for the case of k = 2.
Thus, we assume that the standard rectangular partition T̂h has been obtained from
T̂2h = {τ̂} with mesh size 2h by subdividing each element of T̂2h into four small

congruent rectangles. Let τ̂ :=
⋃4

i=1 êi with êi ∈ T̂h. Thus, we can define two

interpolation operators Π̂2h and P̂2h associated with T̂2h of degree at most 3 in x and
y on τ̂ , respectively, according to the following conditions:

Π̂2hσ̃|τ̂ ∈ (Q3,3(τ̂))
2
, P̂2hũ|τ̂ ∈ Q3,3(τ̂),∫

l̂i

(σ̃ − Π̂2hσ̃) · nqds = 0 ∀q ∈ P1(l̂i), i = 1, 2, . . . , 12,∫
êi

(σ̃ −Π2hσ̃) = 0, i = 1, 2, 3, 4, and∫
êi

(ũ− P̂2hũ)q = 0 ∀q ∈ Q1,1(êi), i = 1, 2, 3, 4, respectively,

(5.11)

where l̂i (i = 1, 2, . . . , 12) is one of the 12 sides of the four small elements êi (i =
1, 2, 3, 4).
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SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE 1557

Obviously, the following properties can be easily checked by (5.1) for k = 2
and (5.11):

Π̂2hΠ̂h = Π̂2h,

||Π̂2hv̂h||0 ≤ C||v̂h||0 ∀v̂h ∈ V̂h,

||Π̂2hσ̃ − σ̃||0 ≤ Ch4||σ̃||4 ∀σ̃ ∈ (H4(Ω))2,

P̂2hP̂h = P̂2h,

||P̂2hŵh||0 ≤ C||ŵh||0 ∀ŵh ∈ Ŵh,

||P̂2hũ− ũ||0 ≤ Ch4||ũ||4 ∀ũ ∈ H4(Ω).

(5.12)

Then we can define two interpolation operators Π2h and P2h associated with T2h by

Π2hσ := G(Π̂2h(G
−1σ ◦ F̂e)) and P2hu := P̂2h(u ◦ F̂e), respectively,(5.13)

which satisfy (5.10) by (5.2) and (5.12). Similarly, we can also define Π2h and P2h for
the case of k �= 2.

By virtue of the two interpolation operators Π2h and P2h we immediately gain
the following global superconvergence theorem.

Theorem 5.5. If there is, besides the conditions of Theorem 5.3, u ∈ Hk+2(Ω),
then we have

||P2huh − u||0 + ||Π2hσh − σ||0

≤ Chk+2

{
||u||k+2 + ||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2
}

.

Proof . From one of the properties of the operator P2h in (5.10) we find that

P2huh − u = P2h(uh − Phu) + (P2hu− u).

Therefore, it follows from Theorem 5.3 and (5.10) that

||P2huh − u||0 ≤ C||uh − Phu||0 + ||P2hu− u||0

≤ Chk+2

{
||u||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2
}

.

Analogously, we can obtain

||Π2hσh−σ||0 ≤ Chk+2

{
||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2
}

.

It is of great importance for a mixed finite element method to have a computable
a posteriori error estimator by which we can assess the accuracy of the mixed finite
element solution in applications. One way to construct error estimators is to employ
certain superconvergence properties of the finite element solutions. In fact, we have
the following theorem.

Theorem 5.6. We have under the conditions of Theorem 5.5 that

||u− uh||0 = ||P2huh − uh||0 + O(hk+2),(5.14)
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1558 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

||σ − σh||0 = ||Π2hσh − σh||0 + O(hk+2).(5.15)

In addition, if there exist positive constants C1, C2 and small ε1, ε2 ∈ (0, 1) such that

||u− uh||0 ≥ C1h
k+2−ε1 ,(5.16)

||σ − σh||0 ≥ C2h
k+2−ε2 ,(5.17)

then there hold

lim
h→0

||u− uh||0
||P2huh − uh||0 = 1,(5.18)

lim
h→0

||σ − σh||0
||Π2hσh − σh||0 = 1.(5.19)

Proof. It follows from Theorem 5.5 and

u− uh = (P2huh − uh) + (u− P2huh)

that

||u− uh||0 = ||P2huh − uh||0 + O(hk+2).

Thus, from (5.16) we know

||P2huh − uh||0
||u− uh||0 + Chε1 ≥ 1

or

lim
h → 0

||P2huh − uh||0
||u− uh||0 ≥ 1.(5.20)

Similarly, it follows from (5.16) and

||P2huh − uh||0 = ||u− uh||0 + O(hk+2)

that

lim
h→0

||P2huh − uh||0
||u− uh||0 ≤ 1

which, together with (5.20), leads to (5.18).
Analogously, we can obtain (5.15) and (5.19).
We know from (5.14) that the computable error quantity ||P2huh − uh||0 is the

principal part of the mixed finite element error ||u − uh||0 and can be used as a
reliable a posteriori error indicator to assess the accuracy of the mixed finite element
solution under the condition (5.16). Also, (5.16) seems to be a reasonable assumption,
since O(hk+1) is the optimal convergence rate of the mixed finite element solution in
L2-norm. The same comments are also valid for (5.15) and (5.17).
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