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Abstract: Numerous studies have concluded that connectivity is one of the most important 
factors controlling the success of improved oil recovery processes. Interwell connectivity 
evaluation can help identify flow barriers and conduits and provide tools for reservoir 
management and production optimization. The multiwell productivity index (MPI)-based 
method provides the connectivity indices between well pairs based on injection/production 
data. By decoupling the effects of well locations, skin factors, injection rates, and the 
producers’ bottomhole pressures from the calculated connectivity, the heterogeneity matrix 
obtained by this method solely represents the heterogeneity and possible anisotropy of the 
formation. Previously, the MPI method was developed for bounded reservoirs with limited 
numbers of wells. In this paper, we extend the MPI method to deal with cases of large 
numbers of wells and open reservoirs. To handle open reservoirs, we applied some 
modifications to the MPI method by adding a virtual well to the system. In cases with large 
numbers of wells, we applied a model reduction strategy based on the location of the wells, 
called windowing. Integration of these approaches with the MPI method can quickly and 
efficiently model field data to optimize well patterns and flood parameters. 
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1. Introduction  

Interwell connectivity evaluation determines how effectively two wells are connected to each other. 
This can provide useful information on reservoir heterogeneity and lead to better waterflood 
management. Analysis of injection and production data can be particularly useful for determining 
connectivity between well pairs, since flow rates are among the most common measurements made 
during field life.  

In the last two decades, several methods have been developed to analyze injection and production 
data and define parameters which evaluate the connectivity. Some of these connectivity parameters 
provide us with semi-quantitative insights to better understand the reservoir heterogeneity. For 
example, the correlation coefficient between injector-producer well pair flow rates [1,2] may help 
identify flow barriers or conduits between the well pairs. The correlation coefficient (r), for example, 
could be used to rank well pairs for their connectivity. The use of r, however, is not fully quantitative, 
because if one well pair has coefficient r0 while another pair has 2r0, the latter pair is not necessarily 
twice “as connected” as the former pair. Other, more fully quantitative parameters exist to assist us in 
waterflood management. For instance, the parameter λ in the Albertoni and Lake Model [3] and the 
Capacitance Model (CM) [4–6] not only give a quantitative evaluation of the interwell heterogeneity 
but can be used to predict the waterflood performance. Such a connectivity parameter decouples the 
effect of injection rate from the flow data. Thus the connectivity parameter λ will be independent of 
injection rate fluctuations. In cases where producer BHPs (bottom hole pressures) are available, the 
CM can also decouple the effect of pressure on λ. There are, however, non-reservoir effects which still 
affect λ, such as the well spacing and skin factors. 

The CM is not the only tool recently proposed to analyze flow rates for interwell connectivity. 
Kaviani and Valkó [7] developed the multiwell productivity index (MPI)-based method to evaluate 
interwell connectivity. The connectivity parameter obtained using the MPI method can decouple the 
effects of injection rate, producer BHPs, skin factor, and location of the wells from the apparent 
connectivity. Therefore, this connectivity parameter represents a quantity which is more nearly only a 
function of the heterogeneity between the well pairs. Since this method is independent of the number 
and condition of the wells, frequent shut-ins and stimulation treatments of producers have no effect on 
the performance of the method and can be used successfully for both heterogeneity evaluation and 
reservoir performance prediction. See Kaviani and Jensen [8] for a comparison of the MPI and the CM 
methods for some synthetic cases. 

The MPI method was originally developed for closed (volumetric) reservoirs, however. In  
non-volumetric (open) reservoirs, depending on the amount of fluid loss or gain, applying the MPI 
may lead to substantial errors in prediction of the production rates (with R2 < 0) or unrepresentative 
connectivity parameter values. The modifications described in this work show how we can analyze 
non-volumetric reservoirs to obtain improved predictions of reservoir performance (R2 > 0.99) and 
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acceptable connectivity parameter estimates. Another problem with the MPI method is the relatively 
large number of model parameters for cases with medium to large numbers of wells (e.g., >25 wells). 
This will lead to a large CPU time needed for calculating the model parameters. We introduce 
windowing, a model reduction technique, to effectively reduce the number of parameters and so 
decrease the CPU time (for the studied cases up to 20 times) to evaluate reservoirs with large numbers 
of wells. 

2. MPI Method 

We begin with a brief review of the MPI method. For more details regarding the MPI concept,  
see [9,10]. 

In a reservoir with one well, under pseudosteady state conditions, we can calculate the production 
rate using: 

q = J∆p (1)

where q is the production rate, J is the productivity index, and ∆p is the pressure drawdown at the well 
location. Drawdown is defined as the difference of the well and volumetric average pressures. By 
defining the MPI, Valkó et al. [10] extended the productivity index concept to systems with multiple 
producing wells: 

[ ]q p= ΔJ  (2)

where q  is the vector of total liquid (water and oil) production rates, [J] is the multiwell productivity 
index matrix, and pΔ  is the vector of pressure drawdowns at the wellbore locations. [J] can be 
expressed in terms of the influence matrix, [A]: 

[ ] [ ] 1κ −= ×J A  (3)

where к is the rock-fluid factor, equal to 2πkh/(μB), where k is the reservoir permeability, h is the 
reservoir thickness, μ is the liquid viscosity, and B is the formation volume factor. [A] can be 
calculated analytically for a rectangular homogeneous reservoir. The elements of this matrix are 
constant as long as the pseudosteady state assumptions are valid.  

Kaviani and Valkó [7] extended the MPI concept to systems having both injectors and producers. 
The influence matrix for a set of injectors and producers can be partitioned:  

[ ]
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(4)

where a is the influence function between the well pairs, the subscripts inj indicates the injectors and 
prod indicates the producers, I is the number of injectors, K is the number of producers, [Ainj] is the 
influence matrix of the injectors, [Acon] is the influence matrix between the injectors and producers, 
and [Aprod] is the influence matrix of the producers. Based on this, the liquid production rate, q , will be: 
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[ ] [ ]1 1

1. T
prodKq p p wκ

− −

×
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦prod prod conA 1 A A  (5)

where p  is the volumetric average reservoir pressure, [1]K×1 is a K × 1 matrix with elements of 1, 

prodp  is the vector of producer BHPs and w is the vector of injection rates [7]. p  is a function of time 
and can be calculated as: 

2 2 1
0

1 1

exp
t p

c c cp p t
c c cV

⎛ ⎞⎛ ⎞ −
= + − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (6)

where t is the time elapsed since the most recent change of state, t = t0 (here we define a new state after 
any change of the control parameters, including injection rate, producer BHPs and well skin factor), 

0 0( )p p t=  is the volumetric average reservoir pressure at the previous state, ct is the total 
compressibility, Vp is the reservoir pore volume and c1 and c2 are defined as: 

1

1c κ
−

⎡ ⎤= ⎣ ⎦∑∑ prodA  (7)

and: 

[ ]1 1

2
T

prodc w w pκ
− −

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦∑ ∑ ∑prod con prodA A A  (8)

We can also show that the injector BHPs, injp , will be: 

[ ] 1

1.inj Ix

w
p p

qκ
⎡ ⎤

⎡ ⎤= − ⎢ ⎥⎣ ⎦
⎣ ⎦

inj con1 A A  (9)

The most important assumptions of this approach are that we have a volumetric (closed) reservoir 
and unit end-point mobility ratio of the phases [9]. For a homogeneous and rectangular system, we can 
determine [A] analytically. For such cases, we can easily calculate the reservoir performance at any 
time. For heterogeneous reservoirs, however, no analytical formula exists to determine [A]. For these 
cases, we have to estimate [A] based on the injection and production data: the matrix that minimizes 
the error in prediction of production rates and injector BHPs (if available) is the influence matrix for a 
heterogeneous system ([A(H)]). In other words, we back-calculate the influence matrix based on 
reservoir performance. We can use a nonlinear numerical solver to estimate this matrix. Kaviani [9] 
discusses the possible issues with non-uniqueness of this matrix under different situations. The 
difference between this matrix and the analytical influence matrix (from the homogeneous case with 
the same reservoir extent and well location) is called the heterogeneity matrix ([∆]): 

[∆] = [A(H)] − [A] (10)

The analytical influence matrix contains the well location, reservoir extents and well skin factor 
components of the apparent connectivity between the wells. The heterogeneity matrix solely represents 
the heterogeneity-related components of the interwell connectivities. Similar to the influence function, 
this matrix is symmetric. Each off-diagonal element of this matrix (δ) is called the connectivity index 
between the corresponding wells defined by the row and the column of the heterogeneity matrix. By 
modifying the connectivity indices using: 
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 (11)

a more robust indicator of connectivity will be obtained that is called the modified connectivity index [7]. 
In general, δ´ij > 0 when there is a large connectivity in the interwell (and vicinity) region and δ´ij < 0 
indicates a small connectivity between the wells [7]. Thus, δ´ij = 0 represents an intermediate level of 
connectivity between wells, such as we would have for a completely homogeneous reservoir; it does 
not represent zero connectivity. 

We can use a simple vector map (very similar to the maps of Albertoni and Lake [3]) to show the 
connectivity of the system. In this map, we draw a vector from each injector to the other injectors and 
producers where the vector length shows the absolute magnitude of the modified connectivity indices 
(δ´ij). To show the connectivity between producers, we draw the vectors from both wells. The light 
(red) vectors show the δ´ij < 0 and heavy (blue) ones represent δ´ij > 0. For example, for a 
heterogeneous reservoir (Figure 1 with properties listed in Table 1), the connectivity map (Figure 2) 
shows the main geological features clearly. δ´(I03, P04) > 0 and δ´(I03, I05) > 0, reflecting the channel in 
their interwell regions. δ´(I01, P01) < 0, δ´(P01, P02) < 0, and δ´(I05, P03) < 0, reflecting the barriers near these 
well pairs. (For more discussion of the interpretation of this map, see [7].) 

Figure 1. Permeability map and well locations of Case 1. The permeability of the reservoir 
is 40 md and there are three barriers with permeability of 0.2 md and a channel with 
permeability of 400 md. 

 

The procedure to determine the modified connectivity indices can be summarized as: 

1. Calculate the analytical influence function of the wells based on well locations and  
reservoir extents.  

2. Evaluate the optimum influence matrix that minimizes the reservoir performance (production 
rates and injectors’ BHP) prediction error. 

3. Calculate the heterogeneity matrix and modified connectivity indices. 
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We term this the “simple MPI” method because it assumes a closed system and uses data from all 
wells in the system. 

Table 1. General Fluid and rock properties of the simulated cases. 

Reservoir Thickness h = 60 ft 
Porosity φ = 0.18  
Permeability Absolute = 40 md 
 Oil end point = 36 md 
 Water end point = 9 md 
Viscosity Oil = 0.5 cp 
 Water = 2 cp 
Formation Volume Factor Oil = 1.07  
 Water = 1.01  
Compressibility Oil = 5 × 10−6 psi−1 
 Water = 1 × 10−6 psi−1 
 Rock = 1 × 10−6 psi−1 

Figure 2. In connectivity maps, the length of the vector between each well pair shows the 
connectivity level (δ´ij). For the injector/producer well pairs, we draw a vector only from 
the injectors. For the injector well pairs and the producer well pairs, we draw vectors from 
both wells. In this example, large (heavy blue line) δ´(I03, P04) and δ´(I03, I05) indicate the 
channel in their interwell region. Small (light red line) δ´(I01, P01), δ´(P01, P02), and 
δ´(I05, P03) are indication of barriers between these wells. 

 

3. Non-Volumetric Systems 

One of the main assumptions in the MPI approach is that the reservoir is a closed system. In other 
words, we assume all the fluid injected will be stored or eventually produced and there is no additional 
source of energy (e.g., aquifer) or leaking elements (e.g., leaking fault) that affects production rates. 
We also assume that all the injectors and producers in the system are included in the analysis. In such 
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cases, we expect the total injection rate to be similar to the total production rate. Thus, if we observe a 
large difference between these two or we are aware of a leaking zone or an aquifer in the system, the 
volumetric assumption is not valid. Since these situations are common in fields, we develop some 
modifications to mitigate these effects on the MPI. 

Ideally, if we know the location and properties of the leak zones, we may model them by adding 
wells at the location of the leak zones. However, such information is most likely unavailable. To model 
this effect, we assume all the leaked fluid is produced from a virtual well (with constant BHP) in the 
system. To include this well in the model we need to modify the influence matrix of the system 
(Equation 4). In this approach the influence function can be written as: 

[ ] T

T T
la

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

inj con injl

con prod prodl

injl prodl

A A A
A A A A

A A
 (12)

where [Ainjl] is the I × 1 matrix of the influence functions between the injectors and virtual well, 
[Aprodl] is the K × 1 matrix of the influence functions between the producers and virtual well, and al is 
the influence function of the virtual well. We can show that the average reservoir pressure of the 
system for this case will be in the form of Equation 6, where c1 and c2 are (Appendix A): 
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where pl is the BHP of the virtual well. The vector of liquid production rates will be: 

[ ] [ ]1 1 1

1

T
prod lKq p p w qκ

− − −

×
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦prod prod con prod prodlA 1 A A A A  (15)

where ql is the production rate of the virtual well and can be calculated as: 
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a
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−
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(16)

In this case, the injector BHPs will be: 

[ ]1 1 1
inj lp p w q q

κ κ κ
⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦inj con injlA A A  (17)

If injection and production data are available, we can determine the I + K + 2 new parameters 
([Ainjl], [Aprodl], al, and pl) using the same procedure as used to calculate the heterogeneity matrix. To 
reduce the number of parameters of this model, we can use a reduced form of the influence matrix of  



Energies 2011, 4                            
 

 

1957

Equation 12. By assigning zero to the off-diagonal elements of the virtual well row and column of the 
influence matrix, we obtain:  

[ ]
[ ]
[ ]

[ ] [ ]

1

1

1 1

I
T

K

lI K a

×

×

× ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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inj con

con prod

A A 0
A A A 0

0 0
 (18)

where [0]I×1 is a I × 1 matrix with elements of 0. The “zero” elements of the influence function 
between the virtual well and other wells does not mean the absence of connectivity between these 
wells (Appendix B). For this reduced approach, the average reservoir pressure is calculated using 
Equation 6 with: 

1

1
1

l

c
a

κ
−⎛ ⎞

⎡ ⎤= +⎜ ⎟⎣ ⎦
⎝ ⎠
∑∑ prodA  (19)

and: 

[ ]1 1

2
T

prod l
l

c w w p p
a
κκ

− −
⎡ ⎤ ⎡ ⎤= − + + +⎣ ⎦ ⎣ ⎦∑ ∑ ∑prod con prodA A A  (20)

and Equations 5 and 9 still apply for calculating q and injp . Using the reduced approach, we only need 

to add two new parameters to the model: al, and pl. Instead of the zero-vector, we may have any other 
constant matrix and it does not affect the model performance; however, the advantage of the  
zero-vector is its simple solution where several terms in the equations cancel. In this paper, we call the 
approach with the full influence matrix with a virtual well the “full leak model” (Equation 12) and the 
one with reduced matrix (zero elements for the virtual well) the “reduced leak model” (Equation 18). 

We now apply the developed approaches for three synthetic systems, where we used a commercial 
simulator (Eclipse 100™) to calculate the reservoir performance. For all cases, we first determined the 
δ´ for a similar ideal case, where all model assumptions are met, e.g., closed boundary system and unit 
end-point mobility ratio, and with the same well locations and geological properties. Then we 
compared the estimated δ´ for the open reservoirs with these “true” values. 

Case 1. This case is a 5 × 4 heterogeneous system (five injectors and four producers, Figure 1). The 
rock and reservoir properties are listed in Table 1. At first we simulated a reference case with a closed 
system and, based on the simulated injection and production data, we evaluated the modified 
connectivity indices of the system (Figure 2 and Table 2). Then we added an “isolated” zone to the 
system that is not connected to the reservoir (Figure 3). In this case, more than 3% of the injected fluid 
was lost to the isolated zone. Applying the full leak and reduced leak models, we observed the leak 
models could predict the reservoir performance much more accurately than the simple model (Table 2). 
On the other hand, comparing the estimated δ´ with the true δ´, the difference is only 0.26 in average 
(Figure 4a). We also tested a case with a larger isolated zone where almost 6% of the injected fluid 
escaped to the isolated zone. Applying all three models, the performance of the simple model 
decreased markedly, especially for the predicted vs. production rates (R2 = 0.67). The full and reduced 
leak models provide accurate estimation of reservoir performance; however, the estimated δ´ were less 
accurate (on average 0.46 difference in estimated δ´) than for the 3% leakage case (Figure 4b).  
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Table 2. Comparison of reference and non-ideal model results using R2. 

 Model Production Rate Injectors’ BHP 
Case 1, closed system Simple model 1.000 1.000 

Case 1,  
small isolated zone 

Simple Model 0.906 0.999 
Full leak model 0.999 1.000 

Reduced leak model 0.999 1.000 

Case 1,  
large isolated zone 

Simple Model 0.669 0.997 
Full leak model 0.999 0.999 

Reduced leak model 0.998 0.999 

Case 2 
Simple Model −11.849 * 0.991 

Full leak model 1.000 1.000 
Reduced leak model 1.000 1.000 

Case 3 
Simple Model −26.642 * 0.967 

Full leak model 1.000 1.000 
Reduced leak model 1.000 1.000 

Case 3,  
with 20% noise 

Simple Model −21.230 * 0.796 
Full leak model 0.754 0.807 

Reduced leak model 0.756 0.806 

Case 3,  
with 40% noise 

Simple Model −11.154 * 0.487 
Full leak model 0.427 0.491 

Reduced leak model 0.427 0.490 
* When the fit is less accurate than the mean value of the true data a negative R2 may occur. For 
these two cases, the predicted production rates are very different from the true ones because of the 
material balance assumption. See [11,12] for further discussion and examples of negative R2 values. 

Figure 3. Case 1 configuration where every injection well has fluid loss to the 
isolated zone. 

Injector Producer

Isolated zone

Impermeable layer
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Figure 4. For the (a) small (3%) and (b) large (6%) isolated zone cases, the approaches 
generate modified connectivity indices that are slightly higher than the true ones. The 
results of the full and reduced leak models are almost identical. 
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Case 2. The well locations, geometry and the heterogeneity of the reservoir are similar to Case 1. 
However, for this case we have a localized leaky zone (Figure 5) where almost 27% of the injected 
fluid is escaping. Applying both full and reduced models, we can accurately model the data (Table 2). 
The simple MPI gives very poor results. On the other hand, the full model predicted the δ´ more 
accurately than the other models (Figure 6). Since we only have a localized leak in this case, the full 
model also determined the parameters of that leak zone as an additional well and reproduced the exact δ´s. 

Figure 5. In Case 2, a leak zone exists in the system, where 27% of the injected fluid leaks 
out from the system. 
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Figure 6. For Case 2, the full leak model estimates the δ´ more accurately than the other 
methods. The prediction of the reduced model is also excellent. 
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Case 3. This case is similar to Case 2, but the leaks are more widely distributed in the system 
(Figure 7), where almost 35% of the injected fluid is leaking out from the system. A major fraction of 
the escaping fluid (more than two-thirds) is from one of the leaks. Similar to Case 2, both the full and 
reduced approaches fit the data very well (Table 2). The estimated δ´s from both reduced and leak 
model are almost identical and fairly close to the true ones (Figure 8a). We also tested this case with 
the leak evenly distributed between the leak zones and a total of 47% escaping. For this situation, both 
the reduced and leak model predicted the reservoir performance perfectly. The estimated modified 
connectivity indices are, however, different from the true ones (Figure 8b). Mapping these indices still 
shows useful connectivity information (Figure 9). For instance, the channel around I03, and the barriers 
between (P01, P02) and (P03, I03), and (I01, P01) are recognizable. However, a few connectivity 
indices are misleading, e.g., (I02, I05) where no high permeability zone exists in the interwell region. 

Figure 7. For Case 3, four leak zones are in the reservoir, where 47% of the injected fluid 
is leaking from the system. 
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Figure 8. For Case 3, where the major leak is from one location both reduced and full leak 
models provide good estimates of the modified connectivity indices (a). For the case with 
uniform leakage from the four locations none of the models predicts the modified 
connectivity indices accurately (b). The leak models, however, estimate the δ´ more 
accurately than the simple MPI. 
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Figure 9. Connectivity map of Case 3 (with multiple uniform leaks) has useful information 
on the main barriers and channel in the system.  

 

To investigate the effect of noise on the results, we reran Case 3 (with 35% overall escape and one 
leak consuming 20%) while the response data were corrupted with different levels of uniformly 
distributed white noise. We observed that for 20% noise in the data, compared to the noise-free cases, 
the standard deviation of the δ´ values is around 0.23, which shows a moderately accurate estimation 
(Figure 10), and the predicted reservoir performance is acceptable (Table 2). However, at 40% noise 
we cannot get any useful information from the data; the R2 of predicted production rates and injectors’ 
BHP is smaller than 0.5 and the standard deviation of δ´ values is larger than 1. 
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Figure 10. For small amounts of noise (20%) the δ´ values are fairly accurate (a). Larger 
noise (40%) levels may lead to unrepresentative δ´ (b). 
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For all three cases, the production prediction accuracies of both the full and reduced approaches 
were very similar to each other and both methods are as accurate as or better than the simple model. 
The δ´ predictions suffered when leakage was present and the estimated δ´ values tended to 
overestimate the non-leak values by approximately 0.5 (Figure 8b). For all the cases, the accuracy of 
the estimated δ´ values and predicted reservoir performance for both full and reduced leak models 
were very close to each other; using the full model did not improve the results. Since in general, we 
may have more than one leak zone in the system, using the reduced model instead of the full model 
could be better because having fewer free parameters decreases the chance of overfitting the model to 
the data. On the other hand, considering the reduced accuracy of the estimated parameters for the case 
of multiple leaks (with similar sized leaks from different leaking points), one may consider using more 
than one virtual well. For example, if we use four vertical wells in Case 3 with 47% distributed 
leakage, the error becomes quite small. If the number of leaks is limited and we know the exact 
number of leaks this can increase the accuracy of the method. However, in general we do not know the 
number of leaks and adding more than one virtual well could lead to overfitting the model. 

We have described MPI models which have been modified for mechanisms that lead to  
non-volumetric systems, and the leak models showed more accurate production predictions over the 
simple model. However, we have not yet devised a model which will produce accurate connectivity 
indices under all conditions. In practice, the leak mechanism might be different and more complicated 
than we have modeled here. For future work, considering more cases and mechanisms will help us to 
recognize the possible trends in the estimated connectivity indices (for example here, they were higher 
than the true ones) and interpret the results more accurately. 

4. Large Number of Wells 

In general, considering the symmetry of the heterogeneity matrix, we need to determine at least 
(I + K) × (I + K + 1)/2 parameters to model the system. For a small number of wells, evaluating these 
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parameters can be done quickly. For larger numbers of wells, this procedure will be very time 
consuming and may become computationally intractable. For example, the CPU time required to 
model a 25 × 16 system may be three orders of magnitude longer than the time needed for an 8 × 8 
case and four orders of magnitude longer than a 5 × 4 case. A possible strategy to overcome this 
problem is to eliminate the less important parameters that have only a small effect on reservoir 
performance predictions. Here, we describe a model reduction approach called windowing. (Our use of 
the term windowing is similar to that used in signal processing and data analysis, e.g., [13,14].) 

We define a region (window) for each well. This window can be defined based on distance of the 
wells and geology of the reservoir (if available). We only evaluate the connectivity indices between 
this well and the wells inside the window. For all the wells outside this window, we may calculate a 
single connectivity index (Figure 11). If the number of wells is large, we may define several windows 
for each well, where at each region between windows, a single connectivity index is assigned to the 
wells (Figure 12). Depending on the number of wells and sizes of the windows, this technique can 
reduce the number of parameters dramatically. For example, for a 8 × 8 case (Figure 11) with a 2750 ft 
window, the number of parameters decreases from 136 to 88 and for a 25 × 16 case (Figure 12), 
defining three windows at 3520, 4620 and 5720 ft, reduces the number of parameters from 861 to 425. 
In case we have some geological information about the reservoir, we may modify the shape of the 
window. For example, if we know a barrier exists in the reservoir, we can trim the window and add a 
new one to consider geological information in our model more effectively (Figure 13). In systems with 
ovate or linear deposits, such as may occur in barrier bar or channel sediments, we may define 
elliptical widows to use the directional connectivity information in the model. 

Figure 11. In the windowing technique, we only estimate the connectivity indices between 
the target well and the wells inside the window. For wells outside the window, we assign a 
single value to all connectivity indices. In this 8 × 8 system, for well I01 (a), wells I04, I07, 
I08, P02, P07, P06, and P08 are outside the window. However, for well I06 (b), no well is 
outside the window. 

(a) 

0 1500 ft

(b) 

0 1500 ft
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Figure 12. We can define more than one window for each well, where at each outer 
window a single value is assigned to the connectivity indices between the target well and 
the wells inside the window. Here, for well I01 (a), 7, 13 and 6 wells are in windows 1, 2 
and 3, respectively. For well I013 (b), only four wells are outside the first window. 

(a) 

0 3000 ft

(b) 

0 3000 ft

Figure 13. If we have geological information about the field, such as the location of a flow 
barrier, we may change the window shape. Because of the barrier, we assigned a different 
window size for the wells to the left of the barrier. 

 

Here, we show two cases of windowing using numerical simulation.  

Case 4. For this 8 × 8 heterogeneous system (Figure 14), the fluid and rock properties are identical 
to Case 1. Based on the simulated injection and production data, we calculated the δ´s of the system. 
We then defined a window at 2750 ft (Figure 11) and modeled the data and the modified connectivity 
indices, which were in very good agreement with those from the model with no window (Figure 15). 
The estimated δ´s of the closer wells are slightly more accurate than the distant ones. In addition, the 
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R2 of the predicted production rates and the injectors’ BHPs were 0.9996 and 0.9998, respectively, 
showing that the model with the smaller number of parameters was adequate to predict the reservoir 
performance. Applying this window reduced the CPU time by more than 3.5 times. 

Figure 14. Permeability map of Case 4. Four barriers and one channel exist in the system. 
The well spacing is 945 ft. 

 

Figure 15. For Case 4, applying a window (as we have in Figure 11) the estimated 
connectivity indices are in excellent agreement with the ones obtained using no window. 
The δ´s of the closer well pairs (<1375 ft) are estimated slightly more accurately than the 
more distant ones (between 1375 ft and 2750 ft). 
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Case 5. This case is a 25 × 16 heterogeneous reservoir (Figure 16) with rock and fluid properties 
identical to Case 1. At first, we applied a window at 2750 ft (Figure 17) that reduced the number of 
free parameters from 861 to 254. The R2 values of the predicted production rates and injectors’ BHPs 
were 0.9926 and 0.9987, respectively. Applying a larger window at 3520 ft, the R2 values of the 
predicted production rates and injectors’ BHPs slightly increased to 0.9964 and 0.9993, respectively. 
Both window sizes were able to predict the reservoir performance well. However, comparing the 
modified connectivity indices for the large and small windows with the true ones (obtained from the 
model with no window), we observed the large window better reveals the heterogeneity than the 
smaller one (Figure 18). The CPU time for case of no window was 20 times greater than the time using 
the large window and 150 times more than the time required when using the small window. In 
addition, we applied a three window pattern (similar to Figure 12) and the results were almost identical 
to the large window. Similar to Case 4, using both large and small windows in this case showed the 
estimated δ´s for the closer wells are more accurate than the δ´s for the more distant wells (Table 3 and 
Figure 18).  

Here, we only investigated cases with up to 41 wells. The reason we have not assessed cases with 
larger numbers of wells is the computational burden for these cases with larger numbers of wells. For 
example, for the 25 × 16 case, it took 40 days to calculate the δ´s using a standard PC. Larger numbers 
of wells need much longer times for estimation of the true δ´s (with no window); but we think our 
findings based on these two cases, however, can be extended to cases with larger numbers of wells.  

Figure 16. Permeability map of Case 5. The well spacing is 945 ft. 
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Figure 17. The two different window sizes applied for Case 5. For well I01, the larger 
window includes five more wells. 

 

Figure 18. The modified connectivity indices estimated by the large window (a) are more 
accurate than the ones obtained by the smaller window (b). 

(a) 

‐2.5

‐1.5

‐0.5

0.5

1.5

‐2.5 ‐1.5 ‐0.5 0.5 1.5

M
od

ifi
ed

 c
on

ne
ct
vi
ty
 in
de

x 
us
in
g 
w
in
do

w

Modified connectvity index with no window

<1375 ft

<2750 ft

(b) 

‐2.5

‐1.5

‐0.5

0.5

1.5

‐2.5 ‐1.5 ‐0.5 0.5 1.5

M
od

ifi
ed

 c
on

ne
ct
vi
ty
 in
de

x 
us
in
g 
w
in
do

w

Modified connectvity index with no window

<1375 ft

<2750 ft

Table 3. Comparison of R2 values for the Case 5 estimated modified connectivity indices 
with and without using window of size 2750 ft (small) and 3520 ft (large). 

  <1375 ft <2750 ft 
Small window 0.77 0.58 
Large window 0.87 0.70 

For the cases above we observed that the windowing technique could effectively reduce the number 
of parameters and the reduced model still contains the most important heterogeneity information and 
prediction ability. In particular, the estimated modified connectivity indices for the neighboring wells 
from all the cases are in good agreement with the ones obtained with now window. However, here we 
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only considered the distance and location of the wells as a parameter to select the window shape and 
size. For further development of this approach, defining criteria to select window size and shape based 
on the geological and engineering information is needed. 

5. Conclusions  

The multiwell productivity index (MPI)-based method, described in earlier studies, can provide 
estimates of production rates and interwell connectivity. The method, however, may not perform well 
in open systems and, in fields with large numbers of wells, can be computationally burdensome. 

1. We have developed two modified models to cope with escape of injected fluids.  
a. Using simulation cases, both methods (reduced and full leak models) gave particularly 

good performance (R2 > 0.99) regarding the predictions of production rates for a range of 
leakage scenarios, which included leakage amounts up to 47% of the injected fluids.  

b. The methods were able to accommodate conditions where the fluid escape was distributed 
across the reservoir. Interwell connectivity predictions suffered some loss of accuracy with 
these models, but the predictions nonetheless still provided useful information. Adding 
more than one virtual well in the model improved model performance for these distributed 
leak situations. Further work is required to develop a leak-tolerant method which will also 
accurately predict interwell connectivities. 

c. If the amount of noise on the rates and pressures is small (<20%), the leak models are able 
to estimate the reservoir performance and the model parameters with good accuracy. 
However, with a larger amount of noise (40%), the model could not provide any useful 
information about the reservoir.  

2. By introducing a windowing method, we have reduced the computational burden for MPI 
methods. Windowing reduces the number of parameters to be evaluated. Two cases showed 
results did not suffer by imposing windows around wells and the solutions with windows took 
between one-third and one-twentieth of the time required when no windowing was used. 
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Nomenclature 

Variables 

a = influence function, dimensionless 
B = formation volume factor, dimensionless 
c1 = arbitrary constant, L4t/m 
c2 = arbitrary constant, L3/t 
ct = total compressibility, (Lt2)/m 
I = total number of injection wells 
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J = productivity index, reservoir (L4t)/m 
K = total number of production wells 
p  = average reservoir pressure, m/(Lt2) 

0p  = average reservoir pressure at the previous state, m/(Lt2) 

q = total fluid rate, reservoir L3/t 
r = correlation coefficient, dimensionless 
R2 = coefficient of determination, dimensionless 
t = time, t 
t0 = time of the latest state change, t 
Vp = pore Volume, L3  

w = injection rate, L3/t 

Greek Symbols 

δ = element of the heterogeneity matrix, dimensionless 
δ´ = element of the modified heterogeneity matrix, dimensionless 
к = rock-fluid factor, L4t/m 
λ = interwell connectivity constant between injector/producer well pair in the CM, dimensionless 
μ = fluid viscosity, m/(Lt) 

Matrices and Vectors 

[A] = influence matrix, dimensionless 
[A(H)]= estimated influence matrix for the heterogeneous case, dimensionless 
[J] = productivity index, L4t/m 
[∆] = heterogeneity matrix, dimensionless 
w  = vector of injection rates, L3/t 
q  = vector of production rates, L3/t 

injp  = vector of injectors’ BHP, m/(Lt2) 

prodp  = vector of producers’ BHP, m/(Lt2) 

Subscripts and Superscripts 

con = index of the interaction of injector/producer well pairs in the influence and heterogeneity matrix 
i = well index 
inj = injector index in the influence and heterogeneity matrix and bottomhole pressure 
j = well index 
l = virtual well index in the leak model 
prod = producer index in the influence and heterogeneity matrix and bottomhole pressure 

Appendix A. Derivation of the MPI Non-Volumetric Model 

Defining influence matrix as Equation 12 the pressure drawdown at well locations will be: 

1
inj

T
prod

T T
l ll

p p w
p p q

a qp p
κ

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

inj con injl

con prod prodl

injl prodl

A A A
A A A
A A

(A.1)
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Solving for q we obtain: 

[ ] [ ]1 1 1

1

T
prod lKq p p w qκ

− − −

×
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦prod prod con prod prodlA 1 A A A A (A.2)

On the other hand, solving Equation A.1 for ql we obtain: 
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×
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Combining Equations A.2 and A.3 we obtain: 
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Rewriting material balance for this case we have: 

t p l
dpcV w q q
dt

= − − −∑ ∑ (A.5)

Replacing Equations A.2 and A.4 in Equation A.2 we obtain:  
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Solving for p gives us: 
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and: 
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On the other hand, solving Equation A.1 for injp , gives us: 

[ ] [ ]1

1 1 1
inj lKp p w q q

κ κ κ×
⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦inj con injl1 A A A (A.10)

In case, we use the reduced model where influence function is defined as Equation 18, by replacing 
[Ainjl] and [Aprodl] with [0]I×1 and [0]K×1 in Equations 13, 14, 15, and 17, the formula for the reduced 
model could be derived. 



Energies 2011, 4                            
 

 

1971

If instead of a leak with constant BHP, a constant rate leak (or source) exists in the system, we just 
need to add a constant term for each production rate to account for this increase.  

Appendix B. Physical Meaning of Zero Influence Function in Reduced Model 

In the reduced model (Equation 18) we assign zero to the non-diagonal elements of the virtual well 
row and column of the influence matrix. It may appear that the zero influence function means no 
connectivity between the wells; however, this is incorrect. Depending on the location of the wells, the 
influence function may have negative, positive, or zero value. To clarify this, let us take a look at the 
physical meaning of the influence function. Based on the definition, at point A in a reservoir where x is 
the only active well, we have: 

Ax
A x

ap p q
κ

− = (B.1)

where pA is pressure at point A, aAx is the influence function between point A and well x, and qx is 
production rate of well x. Based on this equation we can see that, if aAx is positive, the pressure at point 
A will be smaller than the average reservoir pressure; if it is negative, pA will be higher than the 
average reservoir pressure and if it is zero, pA will be equal to the average reservoir pressure  
(Figure B.1). For the reduced model, we assume that the virtual well is located where the pressure is 
p and has the same effect on all the wells. In a multiwell system such a point that has zero influence 

function with all the wells most likely does not exist; however, in practice, we observed that using this 
assumption for a virtual well works as well as the full leak model. 

Figure B.1. At each point of the reservoir, depending on distance from the well, the value 
of the influence function could be negative or positive, or zero. If the influence function is 
negative, the pressure will be less than average reservoir pressure, if it is negative the 
pressure will be higher than average reservoir pressure, and if it is zero, the pressure will be 
equal to average reservoir pressure. 
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