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Abstract. Development of scientific software involves tradeoffs between ease of use, generality, and perfor-
mance. We describe the design of a general hyperbolic PDE solver that can be operated with the convenience of
MATLAB yet achieves efficiency near that of hand-coded Fortran and scales to the largest supercomputers. This
is achieved by using Python for most of the code while employing automatically-wrapped Fortran kernels for
computationally intensive routines, and using Python bindings to interface with a parallel computing library
and other numerical packages. The software described here is PyClaw, a Python-based structured grid solver
for general systems of hyperbolic PDEs [18]. PyClaw provides a powerful and intuitive interface to the algo-
rithms of the existing Fortran codes Clawpack and SharpClaw, simplifying code development and use while
providing massive parallelism and scalable solvers via the PETSc library. The package is further augmented by
use of PyWENO for generation of efficient high-order weighted essentially non-oscillatory reconstruction code.
The simplicity, capability, and performance of this approach are demonstrated through application to example
problems in shallow water flow, compressible flow and elasticity.

1. Introduction. Traditionally, scientific codes have been developed in compiled lan-
guages like Fortran or C. There exists an abundance of well-tested, efficient, often serial
implementations of numerical algorithms in those languages. It is often desirable to paral-
lelize and extended such codes with new algorithmic components in order to apply them
to increasingly challenging problems.

More recently, high-level scientific programming languages, such as MATLAB, IDL,
and R, have also become an important platform for numerical codes. These languages
offer powerful advantages: they allow code to be written in a language more familiar
to scientists and they permit development to occur in an evolutionary fashion. Problem
parameters can be specified and plotting can be performed interactively, bypassing the
comparatively slow edit/compile/run/plot cycle of development in Fortran or C [23].
However, programs written in such high-level languages are not portable to high perfor-
mance computing platforms and may be very slow compared to compiled code.

We present one approach to leveraging the advantages of both kinds of languages.
Our starting point is Clawpack [16]: a widely used, state-of-the-art package for solving
hyperbolic systems of partial differential equations, such as those arising in fluid me-
chanics, astrophysics, geodynamics, magnetohydrodynamics, oceanography, porous me-
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dia flow, and numerous other fields. In this paper we present PyClaw, a package that
brings greater accessibility, flexibility, and parallelization to Clawpack and related pack-
ages. PyClaw is used as an illustration to describe, demonstrate, and provide support for
a particular approach to construction of scientific software. The approach we advocate
consists of three steps:

(i) use Python to create a convenient interface to serial legacy code;
(ii) use Python to interface the resulting code with software tools for parallelization

of the code, with minimal modification of the serial legacy code;
(iii) use Python to interface the resulting parallel code to other packages that provide

extended functionality.
In the case of PyClaw, (i) consists of a Python interface to the Clawpack and SharpClaw
Fortran-based packages for numerical solution of systems of hyperbolic PDEs. This inter-
face allows the code to be operated in the same convenient and interactive way that one
works with MATLAB. In step (ii), PyClaw was parallelized by interfacing with PETSc, a
state-of-the-art library for parallel scientific computing. This enables parallel computation
that scales to large supercomputers and achieves on-core performance close to that of the
legacy code. Finally, step (iii) is illustrated in that PyClaw was interfaced with PyWENO,
to increase the available order of accuracy of numerical approximation. A key in all three
steps is the use of the numerical Python package numpy [22]. The idea of using a layer of
numpy-based Python code on top of Fortran, C, or C++ kernels to solve PDEs has become
increasingly popular over the past several years; see for instance [19, 6]. We consider
PyClaw to be a very convincing case study.

PyClaw is one of the most highly scalable Python-based codes available. Perhaps
the first well-known scientific project to provide a parallel solver in Python is GPAW,
which extends the Python interpreter itself with parallel data structures and algorithms
for electronic structure calculations [20]. Python has also previously been used as a tool
for parallelizing Fortran and C codes by introducing parallel code in a Python layer that
also calls the Fortran/C kernels [21]. In the FiPy package, parallelism is achieved by us-
ing an existing parallel library (Trilinos) through its Python bindings [6]. PyClaw takes
an approach similar to that of FiPy, in which all parallel operations over distributed-
memory processes are handled by the PETSc library through the petsc4py Python package
(http://code.google.com/p/petsc4py/). This approach offers the advantages of utiliz-
ing a documented, well-designed abstract parallel interface for developers that is already
known to achieve excellent scaling on many architectures.

The algorithms of Clawpack and its high-order extension, SharpClaw, are described
in Section 2. The PyClaw framework is described in Section 3. Section 4 describes the
parallelization of PyClaw. As demonstrated in Section 5, PyClaw maintains both the serial
performance of Clawpack and the parallel scalability of PETSc. In Section 6, we briefly
highlight some of the software development practices that have contributed to the success
of PyClaw. The combination of wave propagation algorithms and scalable parallelization
enables efficient solution of interesting scientific problems, as demonstrated through three
examples in Section 7.

A repository containing the data, software, and hardware environments for repro-
ducing all experimental results and figures in this paper is available online (http://
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Listing 2: Solution of a 2D Euler Riemann problem
1 from clawpack import pyclaw
2 from clawpack import riemann
3 # Define the equations and the solution algorithm
4 solver = pyclaw.ClawSolver2D(riemann.rp2_euler_4wave)
5 # Define the problem domain
6 domain = pyclaw.Domain ([0. ,0.] ,[1. ,1.] ,[100 ,100])
7 solver.all_bcs = pyclaw.BC.extrap
8 solution = pyclaw.Solution(solver.num_eqn ,domain)
9 # Set physical parameters

10 gamma = 1.4
11 solution.problem_data[’gamma’] = gamma
12 # Set initial data
13 xx,yy = domain.grid.p_centers
14 l = xx <0.5; r = xx >=0.5; b = yy <0.5; t = yy >=0.5
15 solution.q[0 ,...] = 2.*l*t + 1.*l*b + 1.*r*t + 3.*r*b
16 solution.q[1 ,...] = 0.75*t - 0.75*b
17 solution.q[2 ,...] = 0.5*l - 0.5*r
18 solution.q[3 ,...] = 0.5* solution.q[0 ,...]* \
19 (solution.q[1 ,...]**2+ solution.q[2 ,...]**2) \
20 + 1./( gamma -1.)
21 # Solve
22 solver.evolve_to_time(solution ,tend =0.3)
23 # Plot
24 pyclaw.plot.interactive_plot ()

bitbucket.org/ahmadia/pyclaw-sisc-rr). The most recent release of the PyClaw code
is hosted at http://github.com/clawpack/pyclaw and can be installed alongside its de-
pendencies in the clawpack distribution in a few minutes with the following pip com-
mands (pip is a freely available Python package installer and manager):

Listing 1: Installing the most recent release of PyClaw and its dependencies
1 pip install numpy
2 pip install clawpack

The petsc4py package is not an explicit dependency of PyClaw, but if it has been
installed, the PetClaw parallel extension described in Section 4 is seamlessly enabled.

It is our hope that readers will download and try the code. To whet the reader’s
appetite, an example of a complete PyClaw program is shown in Listing 2. This example
sets up, runs, and plots the solution of a two-dimensional inviscid fluid dynamics problem
(specifically, test case 6 of [13]).
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2. Finite Volume Hyperbolic PDE solvers. The numerical methods in PyClaw com-
pute approximate solutions of systems of hyperbolic conservation laws:

κ(x)qt +∇ · f(q, x)x = s(q, x). (2.1)

Here q(x, t) is a vector of conserved quantities (e.g., density, momentum, energy) and
f(q, x) represents the flux (modeling wave-like phenomena), while s(q, x) represents ad-
ditional non-hyperbolic source terms, such as diffusion or chemical reactions. The capacity
function κ(x) is frequently useful for taking into account variations in material properties
or in the use of non-uniform grids (see [15, Chapter 6]). Here we describe high-resolution
shock capturing methods, which is one of the most successful classes of numerical meth-
ods for solving (2.1).

Computing solutions to nonlinear hyperbolic equations is often costly. Solutions of
(2.1) generically develop singularities (shocks) in finite time, even if the initial data are
smooth. Accurate modeling of solutions with shocks or strong convective character re-
quires computationally expensive techniques, such as Riemann solvers and nonlinear lim-
iters.

In a finite volume method, the unknowns at time level tn are taken to be the averages
of q over each cell:

Qn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

q(x, tn) dx, (2.2)

where ∆x = xi+ 1
2
− xi− 1

2
and i are the local grid spacing and the cell’s index, respec-

tively. A simple update of the cell averages based on the resulting waves gives the classic
Godunov method, a robust but only first-order accurate numerical scheme:

Qn+1
i = Qn

i −
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
, (2.3)

where F and ∆t are the numerical flux function and the time step. Godunov’s method
results from taking a particular choice of F referred to as the upwind flux.

The first-order method just described is very dissipative. Higher-order extensions
require the computation of higher derivatives of the solution or flux. Near a solution
discontinuity, or shock, spurious oscillations tend to arise due to dispersion and numerical
differencing across the discontinuity. In order to combat this, shock-capturing methods
use special nonlinear algorithms to compute numerical derivatives in a non-oscillatory
way by limiting the the value of the computed derivative in the vicinity of a discontinuity
[15].

The classic Clawpack algorithm is based on the second-order Lax-Wendroff difference
scheme that was later extended by LeVeque [14, 15]. This scheme can be written in the
flux-differencing form (2.3) by an appropriate choice of numerical flux, which has the
form

Fn
i− 1

2
= Fupwind + Fcorrection, (2.4)
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where Fupwind is the Godunov flux. The classic Clawpack algorithm is based on mod-
ifying (2.4) by applying a limiter to Fcorrection. However, in LeVeque’s extension, rather
than applying the limiter to the flux variables, the limiter is applied directly to the waves
computed by the Riemann solver. This allows for better accuracy by limiting only the
characteristic families that are discontinuous in a given neighborhood. Furthermore, the
first-order contribution is written in terms of fluctuations (which approximate the quasi-
linear term Aqx) rather than fluxes (which approximate f (q)). This allows the algorithm
to be applied to hyperbolic systems not in conservation form.

While the Lax-Wendroff approach can be extended to even higher order, this is cum-
bersome because of the large number of high order terms appearing in the Taylor series. A
simpler alternative is the method of lines, in which the spatial derivatives are discretized
first, leading to a system of ODEs that can be solved by traditional methods. This is the
approach taken in SharpClaw [10, 9, 11]. First, a non-oscillatory approximation of the so-
lution is reconstructed from the cell averages to give high order accurate point values just
to the left and right of each cell interface. This reconstruction is performed using weighted
essentially non-oscillatory (WENO) reconstruction in order to avoid spurious oscillations
near discontinuities. As in the classic Clawpack algorithm, the scheme is written in terms
of fluctuations rather than fluxes, so that it can be applied to non-conservative problems.

2.1. Clawpack and SharpClaw. We now describe the "legacy" Fortran codes on which
PyClaw is built.

The classic algorithm implemented in Clawpack (“Conservation Laws Package”) in-
cludes extensions to two and three dimensions, adaptive mesh refinement, and other en-
hancements [16]. The unsplit multidimensional Clawpack algorithms include additional
correction terms, computed by a secondary “transverse” Riemann solver, which approx-
imates corner transport terms. The Clawpack software (http://www.clawpack.org) and
its extensions, consisting of open source Fortran code, have been freely available since
1994. More than 7,000 users have registered to download Clawpack.

Clawpack is a very general tool in the sense that it is easily adapted to solve any
hyperbolic system of conservation laws. The only specialized code required in order to
solve a particular hyperbolic system is the Riemann solver routine. A wide range of
Riemann solvers, including several for the most widely studied hyperbolic systems, have
been developed by Clawpack users and are also freely available. Clawpack handles not
only simple Cartesian grids but any logically quadrilateral grid, provided that there is a
map from a uniform Cartesian domain to the desired physical domain (see Section 7.1).
Non-hyperbolic source terms (s(q, x)) can be easily included via operator splitting. For
more examples and details regarding Clawpack, see [14] and [15, Chapter 23].

The high-order WENO-based wave propagation method is implemented in Sharp-
Claw, another Fortran package designed similarly to Clawpack and which makes use
of the same Riemann solver routines. The default options in SharpClaw employ fifth-
order WENO reconstruction in space and the fourth-order strong stability preserving
(SSP) Runge–Kutta method of [8] in time. In multi-dimensions SharpClaw requires prop-
agation of waves only in the normal direction to each edge.

5
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3. PyClaw. PyClaw is an object-oriented framework that incorporates the function-
ality of Clawpack and SharpClaw. This functionality may be provided via either pure
Python or calls made to the underlying Fortran routines included in Clawpack and Sharp-
Claw. PyClaw is designed such that the user provides appropriate call-back functions,
such as a Riemann solver, that describe and implement the problem in question, PyClaw
than manages the “main” routine including appropriate time stepping and output. It also
avoids the need to deal with strictly formatted data files and reduces the need to write
custom Fortran routines for new problems. Instead, problems can be set up interactively
or in a simple scripting language. PyClaw also allows for simulation and visualization
to be done in a single, interactive environment. Users may engage with this framework
at different levels, depending on their expertise and requirements. These interfaces are
described in Section 3.1.

PyClaw wraps the full functionality of the “classic” 1D, 2D and 3D Clawpack code
including the use of capacity functions, mapped grids, and both dimensionally-split and
fully-multidimensional algorithms. It also provides the full functionality of SharpClaw,
and adds to this with higher order WENO reconstruction. It does not presently include
adaptive mesh refinement, which is part of the AMRClaw and GeoClaw extensions of
Clawpack.

3.1. Interfaces. The PyClaw distribution includes pre-written application scripts that
solve problems in acoustics, elasticity, compressible flow, shallow water flow, and other
application domains. These application scripts represent the typical “main” routines that
lower-level language developers are used to, and are written with ease of understanding
as their most important goal. These scripts run both on serial workstations and from
batch processing queues for, e.g., 8,000-node parallel jobs without modification. Novice
users can solve a wide range of problems by modifying the example scripts to deal with
different domains, initial conditions, boundary conditions, and so forth. This requires
only simple understanding of high-level scripting code, but allows users to compute so-
lutions of complex problems on large supercomputers. The scripts for the applications in
this paper have all been added to the distributed examples, and we plan to continue this
practice with respect to future publications that use PyClaw.

Novice or advanced users may also run problems and analyze results in an interactive
shell. When Python is invoked with standard input connected to a tty device, it reads and
executes commands interactively. This feature simplifies serial development, debugging,
and visualization, and is familiar to users of commercial software such as MATLAB and
Mathematica. PyClaw’s top level classes present the same API whether used in serial
or parallel, allowing users to develop interactively, then run production jobs in batch
environments.

Advanced users may want to solve a hyperbolic system that is not included among the
example applications. In Clawpack a number of Riemann solvers have been written for
specific systems and are included with Clawpack. Since PyClaw and Clawpack Riemann
solvers are interoperable, many systems of interest have already been implemented and
can be used immediately in PyClaw. A user also has the option of writing his/her own
Riemann solver in Fortran which can then be utilized in Clawpack as well as PyClaw.
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Clawpack users who wish to run an existing serial Clawpack application in parallel can do
so easily by wrapping any problem-specific Fortran routines (such as those that set initial
conditions or compute source terms) automatically with f2py and using the resulting
Python function handles in PyClaw.

Numerical analysts are often interested in comparing solutions of a problem obtained
with different methods or different values of method parameters. The sample application
scripts provide a common functional interface that can be accessed from the command
line for selecting between solvers, choosing serial or parallel computation, and other op-
tions. Users are free to extend this interface to allow more programmatic flexibility at
the command line or from within a batch environment. PyClaw also fully exposes the
full range of command line options available from the underlying PETSc library, allow-
ing advanced users to tweak low-level settings such as message-passing communication
strategies.

Frequently, research scientists are interested in comparing the performance of numer-
ical methods. PyClaw enables this comparison by allowing scientific developers to extend
the software with a new Solver class. The Solver class, described in the next section, is
responsible for prescribing a single time step of the numerical algorithm. In PyClaw this
is accomplished by implementing a homogenous_step routine which evolves the solution
of the PDE from time t to t + ∆t. Since most existing codes have such a routine already, it
is often straightforward to include legacy code in the PyClaw framework by simply wrap-
ping this function. Non-hyperbolic terms s(q, x) can also be incorporated via operator
splitting. This is the most common way to extend the Solver class and allows for easy
comparison between different numerical methods.

3.2. Classes. The primary abstractions used in PyClaw are the Solver and the Solu-
tion. The Solver class provides an abstract interface to evolve a Solution object forward in
time. The Solution class is a data abstraction containing information about the domain of
the PDE and the state of the solution at a particular time inside the domain. Here we will
discuss these classes and how they interact.

The role of the Solver is illustrated in Figure 3.1(b). The Solver class prescribes how a
State Qn is evolved forward in time to obtain Qn+1; in general this consists of three parts:

(i) set ghost cell values based on the prescribed boundary conditions;
(ii) advance the solution based on the hyperbolic terms (i.e., qt +∇ · f(q, x) = 0);

(iii) advance the solution based on the source term s(q, x) (if present) by a fractional-
step approach [15, Chapter 17].

The base Solver class implements the basic interface to each of these functions and a
subclass of the Solver class is expected to implement the appropriate functions depending
on the numerical method being implemented. The Solver class is sufficiently abstract to
accommodate algorithms that are based on the method of lines, such as SharpClaw, as
well as algorithms that are not, such as Clawpack.

The Solution class, depicted in Figure 3.1(a), has two purposes:
• Describe the problem domain
• Keep track of the values of the state variables Qn and PDE coefficients

Like Clawpack, PyClaw simulations are always based on a computational domain com-
7



posed of tensor products of one-dimensional equispaced discretizations of space. More
general physical domains may be used as long as it is possible to map them to that
computational domain. PyClaw includes a set of geometry classes that implement these
abstractions.

The solution values Qn and the PDE coefficients are contained in numpy arrays stored
in the Solution object. Thus the full Solution class represents a snapshot of the gridded
data. The class acts as a container object with one or more Grid and State objects such as
in the case of adaptive mesh refinement or nested grids, both of which are possible with
Clawpack algorithms, though not yet available in PyClaw. This hierarchical class structure
allows the underlying data and algorithms to be modified without the knowledge of the
interacting objects and without changing the interface presented to the user. An example
of this is the PetClaw State object, which reimplements State functionality over distributed
memory. In the future, we intend to provide State objects that implement other strategies
for accelerating performance.

Solution

Dimension x

Dimension y

Grid 1

Dimension x
Grid 2

State A
q aux

State B
q

State C
q aux

(a) Structure of a PyClaw Solution object, which
may contain multiple Grid objects, each of which
may have multiple associated State objects. Each
State object has a associated fields of conserved
quantities (e.g., density, momentum) and option-
ally, associated auxiliary property fields.

Other Solver

Solution at 

Solver

Solution at 

Riemann 
Solver

Boundary 
Conditions

Source 
Terms

(b) Role of Solver object. The Solver acts on a So-
lution object in order to evolve it to a later time.

Fig. 3.1: Structure and function of the main PyClaw classes.

3.3. Extension using PyWENO. One of the principal achievements of PyClaw has
been to facilitate the extension of Clawpack and SharpClaw by interfacing with other
packages. For example, PyWENO [3] has been used to add much higher-order function-
ality to the existing SharpClaw code, within PyClaw.

The Fortran code SharpClaw contains only fifth-order WENO routines for evaluation
at cell interfaces. New WENO routines for PyClaw were generated by PyWENO, which
is a standalone package for building custom WENO codes. For a given (arbitrarily high)
order of reconstruction, PyWENO symbolically computes the smoothness coefficients, re-
construction coefficients, and optimal (linear) weights of the WENO method. From these
symbolic results, PyWENO generates Fortran kernels that perform the WENO reconstruc-
tions (it can also generate C and OpenCL kernels). The generated kernels can optionally
perform individual steps of the reconstruction process (i.e., computing smoothness in-
dicators, nonlinear weights, or the final reconstruction) or combinations thereof. This
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affords authors some flexibility in avoiding redundant computations or minimizing mem-
ory allocations and accesses. Furthermore, the points within each cell at which the WENO
reconstruction is performed are also arbitrary. Negative weights are automatically split
into positive and negative parts [26], allowing PyWENO to generate kernels for routines
for arbitrary sets of points (such as arbitrary order Gauss-Legendre quadrature points).

For PyClaw, odd-order WENO routines to approximate the solution at the left and
right edges of each cell were generated from fifth to seventeenth order. All aspects of
the WENO reconstruction are wrapped into standalone subroutines and no temporary
work arrays are allocated. Using these routines is trivially easy; for instance, to use the
9th-order WENO method instead of the classic algorithm in Listing 2 one needs only to
replace line 9 by the two lines

Listing 3: Using SharpClaw (with PyWENO)
1 solver = pyclaw.SharpClawSolver1D ()
2 solver.weno_order = 9

4. Parallelization. Like many finite difference and finite volume codes, Clawpack
and SharpClaw implement boundary conditions through the use of ghost cells. In this
approach, fictitious layers of cells are added around the edge of the problem domain;
the number of layers depends on the width of the stencil of the numerical scheme. At
the beginning of each step, the ghost cell values are set to satisfy the specified boundary
conditions. Then the numerical scheme is applied on all the interior (non-ghost) cells.
Many types of boundary conditions can be handled well in this manner, including peri-
odicity, reflection, and outflow (non-reflecting). Custom boundary conditions may also be
specified, for instance to model time-dependent inflow.

This approach is highly amenable to parallelization, since it is based on the idea that
information at the edge of a domain is filled in by a routine that is independent of the
rest of the numerical scheme. Therefore, the serial kernels can be applied on each proces-
sor of a distributed parallel machine as long as some routine first fills the ghost cells on
the processor either by appeal to boundary conditions or through communication with
neighboring processors, as appropriate. Only this ghost cell routine needs to know the
global topology of the problem; the serial kernels operate based entirely on local infor-
mation. This orthogonality allows independent development of serial numerical schemes
and parallel communication patterns, and is a key strategy in combining the work of
computational mathematicians and computer scientists.

The same global-local decomposition is employed in PETSc. The PETSc library in-
cludes a DMDA object that implements parallelization through the use of ghost cells. The
DMDA is a highly scalable class for data layout across parallel, structured grids. All stor-
age allocation and communication of ghost values is handled by the DMDA, but storage is
returned to the PyClaw program as numpy arrays so that no code changes are necessary
and the user experience is identical. In Figure 4.1, we show three different representations
of data over a simple 5× 6 structured grid. The global ordering is used as input to PETSc
linear and nonlinear solvers, whereas the natural ordering is used for output since it is
independent of the particular parallel partition. Local ordering is used to extract data over
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Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Fig. 4.1: A simple 5 × 6 structured mesh is represented using a DMDA. The leftmost
figure shows the natural numbering of unknowns, for instance used by most visualiza-
tion packages, which is independent of the parallel layout. The middle figure shows the
PETSc global numbering of unknowns, which is contiguous for each process. The right-
most figure shows the local numbering of unknowns for process 0, which includes ghost
unknowns shared with neighboring processes.

a “halo” region, including ghost unknowns shared with other processes.
This is, in fact, how PyClaw makes use of the DMDA structure. Local vectors are

extracted with a given number of overlap unknowns, and computations are performed
using the same serial routines. These local vectors are then used to update a global vector,
and PETSc performs the appropriate accumulation for shared unknowns. This simple
mechanism in PETSc for integrating local and global data (which works also for unstruc-
tured grids) allows easy parallelization. Thus PyClaw relies on Clawpack and SharpClaw
to provide computational kernels for time-dependent nonlinear wave propagation and
on PETSc (through petsc4py) to manage distributed data arrays and the communication
between them. The data structures in PETSc and Clawpack/SharpClaw are directly inter-
faced through the Python package numpy [22].

The parallel extension of PyClaw consists of only about 300 lines of Python code. Any
PyClaw script can be run in parallel simply by replacing the statement from clawpack
import pyclaw with

Listing 4: Running in parallel
1 from clawpack import petclaw as pyclaw

and invoking the Python script with mpirun.
The serial PyClaw routines handle discretization, Riemann solves, limiting and re-

construction, since they only depend on local data. PETSc handles parallel layout and
communication, but has no information about the local computations. PETSc allows fine-
grained control of the ghost value communication patterns so that parallel performance
can be tuned to different supercomputing architectures, but by default a user does not
need to manage parallelism or see PETSc code. In fact, the PetClaw user is shielded from
PETSc in much the same way that a PETSc user is shielded from MPI. This separation can
enable future development. For instance, an unstructured mesh topology of hexahedral
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elements could be managed by PETSc, using a Riemann solver which could accommodate
deformed elements, without changes to PyClaw.

In addition to communication of ghost cell values, parallel hyperbolic solvers require
communication of the maximum wave speed occurring on each processor in order to
check whether a prescribed stability condition (generally phrased in terms of the Courant
number) has been satisfied and choose the size of the next time step appropriately. This
is also handled by a single PETSc call.

Although the basic Clawpack and SharpClaw algorithms are explicit and require no
algebraic solver, a powerful advantage gained by using PETSc for parallelization is the
possibility of employing PETSc’s solvers for implicit integration of hyperbolic problems
that are stiff due to source terms or fast waves that do not need to be accurately resolved.
This is the subject of ongoing work.

A particular challenge of using Python is that most parallel debuggers support only
C or Fortran, making parallel debugging of Python codes difficult [4]. This is yet another
motivation for using a tested parallel library like PETSc.

5. Performance. A few previous works have considered efficiency of scientific Python
codes in serial as well as in parallel; see for instance [1, 12, 21, 4]. Those studies consisted
mainly of simple code snippets run in serial or on up to a few dozen processors until the
recent work [4], which includes scalability studies up to 16,384 cores. In this section, we
investigate the efficiency of a full object-oriented Python framework (PyClaw) compared
with hand-coded Fortran (Clawpack). We also consider the scaling of PetClaw on all
65,536 cores of the Shaheen supercomputer at KAUST.

We consider only the second-order classic Clawpack algorithm here, as we are mainly
interested in the effect of using a Python framework (in the serial case) and the cost of
communication (in the parallel case). In terms of these factors, roughly similar results
may be expected for the performance of the higher order algorithms, and preliminary
tests (not described here) indicate good scaling of those also.

5.1. Serial performance. For a detailed serial performance comparison of an explicit
stencil-based PDE code in Python, see [12]. In that work, vectorized numpy code was
found to be fast enough for some operations, while wrapped Fortran loops performed
identically to a pure Fortran code. In contrast to the simple kernel code considered there,
we present tests of a full object-oriented solver framework. Our results thus extend those
of [12], providing an indication of the efficiency that can be expected for a sophisticated
Python-based PDE solver framework.

Table 5.1 shows an on-core serial comparison between the Fortran-only Clawpack
code and the corresponding hybrid PyClaw implementation for two systems of equations
on two different platforms. The hyperbolic systems considered are the 2D linear acoustics
equation and the 2D shallow water (SW) equations [15]. The acoustics test involves a very
simple Riemann solver (amounting to a 3× 3 matrix-vector multiply) and is intended to
provide an upper bound on the performance loss arising from the Python code overhead.
The shallow water test involves a more typical, costly Riemann solver (specifically, a Roe
solver with an entropy fix) and should be considered as more representative of realistic
nonlinear application problems. Clawpack and PyClaw rely on similar Fortran kernels
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that differ only in the array layout. Because most of the computational cost is in executing
the low-level Fortran kernels, the difference in performance is relatively small – though
not negligible. The results for the Shallow water equations are in rough agreement with
the 10% overhead reported in [4]. A 10-30% increase in computational time (for realistic
applications) seems well worth the advantages provided by the use of Python (in partic-
ular, easy parallelism). The overhead is expected to be even smaller for more complex
systems or in three dimensions.

Table 5.1: Timing results (in seconds) for on-core serial experiments solving acoustics and
shallow water problems implemented in both Clawpack and PyClaw on Intel Xeon and
the IBM BlueGene/P PowerPC 450 processors

Application Processor Clawpack PyClaw Ratio

Acoustics
Intel Xeon 28s 41s 1.5

PowerPC 450 192s 316s 1.6

Shallow Water
Intel Xeon 79s 99s 1.3

PowerPC 450 714s 800s 1.1

5.2. Parallel performance. We now investigate the parallel performance of PetClaw
on the Shaheen supercomputer at KAUST, an IBM BlueGene/P system consisting of 65,536
cores. When characterizing the performance of scientific codes on supercomputers, a
commonly used characterization is that of weak scalability, which is assessed by studying
how the run time of the code is affected when the resolution of the simulation and the
number of processors is increased commensurately to maintain a fixed amount of work
per processor. The parallel efficiency is given by dividing the run time of the single
processor job by the run time of the parallel job.

The problem used for the comparisons is of a compressible, inviscid flow that consists
of a shock impacting a low-density bubble (examined in detail in Section 7.2). We inves-
tigate weak scaling by running the problem for a fixed number of time steps and with a
fixed number of grid cells (400× 400 = 160, 000) per core, while increasing the number
of cores from one up to the whole machine. Figure 5.1 shows the results, with parallel
efficiency provided in the last row. It is important to note that the time required to load
the necessary Python packages and shared objects, which occurs only once at the begin-
ning of a simulation (or series of batch simulations) has been excluded from the results
presented here. This load time is discussed in the next section.

Observe that in all parallel runs, more than 90% of the time is spent in the computa-
tional kernels. The parallel operations scale extremely well: the the CFL condition-related
reduction takes essentially the same amount of time for all runs from 16 processors up, as
does the communication of ghost cell values in localToGlobal. Together these parallel op-
erations consume about 6% of the total run time. Parallel initialization consists of PETSc
parallel object construction, including memory allocation and MPI communicator initial-
ization. Note that the parallel initialization, while significant in these artificial test runs,
will not contribute significantly to the cost of real simulations because it is a one-time cost.
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Fig. 5.1: Weak scaling performance profile of the shock bubble problem with 160,000 grid
cells per core

5.3. Dynamic Loading. As alluded to already, the work of loading Python libraries
and objects dynamically at run-time does not currently scale well on the Shaheen sys-
tem. Large-scale supercomputers such as Shaheen rely on parallel file systems that are
designed to support large distributed loads, with each process independently accessing
data. Dynamic loading does not follow this pattern because every process is attempting
to access the same data simultaneously. This issue was partially addressed in [4], but an
implementation capable of supporting dynamic library loading is still lacking.

The dynamic loading time for the PetClaw runs in Section 7 is less than 5% of the total
simulation time, and this will generally be the case for 2D wave propagation problems be-
cause the CFL condition means that large simulations of hyperbolic problems necessarily
require long run times in order for waves to propagate across the full domain.
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6. Software Development Practices. The majority of software development practices
utilized in PyClaw are inherited from the open source software community. The com-
munity’s atmosphere of free and open sharing complements the tradition of scientific
inquiry. In fact, growing movements within the scientific community seek to embrace
scientific reproducibility for software tools used in conducting mathematical and scientific
research [5, 27].

In addition to making our results reproducible, we also intend that our software be
useful as a reference for understanding numerical methods involved in solving hyper-
bolic PDEs and as a platform for extending and applying these techniques. As such, we
also seek to provide a friendly and inviting context for scientists working in this cross-
disciplinary environment to conduct their research.

6.1. Application Tests. The goal of reproducibility in research is to improve not only
confidence in results, but their extensibility as well. A series of regression tests have been
devised for every major application where PyClaw has been used. The script and param-
eters for generating the test are stored in the repository (typically in a single file), along
with verified output from a successful run. Where possible, the output is verified against
a different solver implementation or by analysis. These “application tests” produce the
same output regardless of the choice of solver type, kernel implementation, or computer
architecture. The python-nose (http://code.google.com/p/python-nose/) unit testing
framework simplifies development and selective execution of the tests. Programmatic test
code generation is used to exercise the full range of solver and kernel options for each
test. Scientific results are archived as application tests within the unit testing framework,
ensuring that our published results are reproducible in current and future versions of the
PyClaw solver.

In our experience, the application tests are the single greatest factor in facilitating
adoption, refactoring, and extension of the code. New users are confident that they have
a working installation (or can tell us what doesn’t work on their architectures) and are
capable of reproducing our published scientific results. Developers refactoring the code
for improved organization, performance, or readability can rely on the application tests
for regression testing, to ensure that their changes have not incidentally broken anything.
Perhaps most importantly, new solver methods and their implementations can be verified
against known solutions with the application tests. This facilitates and encourages the
development of new ideas within the PyClaw framework.

6.2. Hosted Distributed Version Control. Our use of git (http://git-scm.com/), a
modern, distributed version control system, provides many benefits. Development need
not be synchronized through a master server, which makes it easier to incorporate sub-
projects from developers loosely attached to the core team. Management of releases and
bugfix updates has been greatly simplified. However, perhaps the greatest beneficiary is
the user. Users do not have to wait for PyClaw releases in order to retrieve bugfixes for
particular machines or improvements which are under active development, they need only
update to a given changeset. Moreover, a user can easily switch between an approved re-
lease and experimental code for comparison with a single version control command. This
allows the user a much finer-grained manipulation of versioning than was previously
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possible.
There are many excellent open source distributed version control hosting sites, in-

cluding Bitbucket (http://www.bitbucket.org) and GitHub (http://www.github.org),
which provide a range a services to both developers and community users. PyClaw
leverages the services provided at GitHub, which includes wiki webpages for user com-
munication, as well as a bug reporting and tracking infrastructure integrated with the
hosted version control repository. We have separately engaged the use of Google Groups
to provide a mailing list for the PyClaw user and developer community.

6.3. Documentation. PyClaw is provided with a range of documentation suitable for
the variety of users interacting with the software. While this paper provides a high-level
overview of the capabilities of the code and its application, it is our experience from
using other projects that the best software documentation includes a separate tutorial and
user’s guide with a class reference section. The tutorial and user’s guide are maintained
in the ReStructured Text format, from which they can be translated into HTML, PDF, and
several other output formats using for instance Sphinx (http://sphinx.pocoo.org/). The
PyClaw code itself is documented inline using Python’s docstring conventions, allowing
us to automatically generate class and module reference sections for our documentation.

7. Applications. The numerical algorithms made accessible in PyClaw, empowered
by parallelization, are capable of modeling challenging wave propagation phenomena. In
this section, we provide three example applications. They are not intended to break new
scientific ground, but rather to demonstrate the versatility of the algorithms accessible
through PyClaw, and (in the third application) the power of PetClaw as a scalable parallel
solver.

7.1. Shallow Water Flow on the Sphere. Classical shallow water equations on a
sphere are an approximation of the flow on the earth’s surface. They are of interest
because they capture most of the flow’s features of a thin layer of fluid tangent to the
surface of the sphere. Therefore, they are often used by meteorologists, climatologists and
geophysicists to model both atmosphere and oceans.

In three-dimensional Cartesian coordinates, using h and u = (u, v, w)T to define the
height and the fluid velocity vector, the shallow water equations are of the form (2.1), with
q = (h, hu, hv, hw)T and

f (q) =


hu hv hw

hu2 + 1
2 gh huv huw

huv hv2 + 1
2 gh hvw

huw hvw hw2 + 1
2 gh

 , (7.1)

where g is the gravitational acceleration. The source term s (q, x) includes the Coriolis
force and an additional term that ensures that the velocity is tangent to the sphere:

s (q, x) = −2Ω
a

z (x× hu) +
(
x ·
(
∇ · f̃

))
x. (7.2)

Here Ω and a are the rotation rate and the radius of the earth, respectively. In (7.2) f̃ is
the part of the flux matrix associated with the momentum equations [2].
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In this framework, we consider the numerical solution of the zonal wave number
4 Rossby-Haurwitz problem [30]. Rossby-Haurwitz waves are steadily propagating ini-
tial conditions of the nonlinear non-divergent barotropic vorticity equation on a rotating
sphere [7]. Although they do not represent exact steady solutions of the shallow water
equations, they are expected to evolve in a similar way [29]. For this reason Rossby-
Haurwitz waves have also been used to test shallow water numerical models and are
among the standard shallow water model test cases proposed by Williamson et al. [30].

The problem consists of a divergence-free initial velocity field that rotates about the
z−axis without significantly changing form on short time scales (dynamical weak insta-
bilities). On longer time scales (50-100 days) the instabilities effects lead to the breakdown
of the wave structure. Previous studies have shown that the time at which the solution
symmetry breaks depends strongly on the numerical truncation error of the scheme [29].
Because of this the Rossby-Haurwitz problem is frequently used to assess the accuracy
of a numerical algorithm for the solution of the shallow water equations on a rotating
sphere.

The three-dimensional shallow water equations are solved on the logically rectangu-
lar grid introduced in [2], using the same approach employed there, namely the classic
Clawpack method with Strang splitting for the source term [28]. Simulations have been
performed on four grids with 100× 50, 200× 100, 400× 200 and 800× 400 cells. Table
7.1 lists the breakdown time. With the coarsest mesh, the diffusive part of the numerical
error suppresses the instability completely (cfr. [29]). The finer grid results confirm that
the time at which the initial velocity loses its symmetry is sensitive to the numerical error.

Table 7.1: Time at which the symmetry of the Rossby-Haurwitz wave breaks down.

Grid Breakdown
100× 50 -

200× 100 ≈ 34 d
400× 200 ≈ 45 d
800× 400 ≈ 46 d

Figure 7.1 shows the contour line of the water height at day 0 (initial solution), 38, 45
and 48, for the grid with 400× 200 cells. These plots show qualitatively the evolution of
the instability.

7.2. Shock-Bubble Interaction. The Euler equations for a compressible, inviscid fluid
with cylindrical symmetry can be written as

ρt + (ρu)z + (ρv)r = −
ρv
r

,

(ρu)t + (ρu2 + p)z + (ρuv)r = −
ρuv

r
,

(ρv)t + (ρuv)z + (ρv2 + p)r = −
ρv2

r
,

(ρE)t + ((ρE + p)u)z + ((ρE + p)v)r = −
(ρE + p)v

r
.

(7.3)
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(a) 0 days. (b) 38 days.

(c) 45 days. (d) 48 days.

Fig. 7.1: Water height of the zonal wave number 4 Rossby-Haurwitz problem at different
times; grid with 400× 200 cells. Contour interval 120 m.

Here the z-coordinate represents distance along the axis of symmetry while the r-coordinate
measures distance away from the axis of symmetry. The quantities ρ, E, p represent den-
sity, total energy, and pressure, respectively, while u and v are the z- and r-components of
velocity.

We consider an ideal gas with γ = 1.4 in the cylindrical domain [0, 2]× [0, 0.5]. The
problem consists of a planar shock traveling in the z-direction that impacts a spherical
bubble of lower-density fluid. In front of the shock u = v = 0 and ρ = p = 1 except inside
the bubble, where p = 1, ρ = 0.1. Behind the shock, p = 5, ρ ≈ 2.82, v ≈ 1.61, and these
conditions are also imposed at the left edge of the domain. In addition to (7.3), we solve
a simple advection equation for a tracer that is initially set to unity in the bubble and
zero elsewhere in order to visualize where the fluid interior to the bubble is transported.
Reflecting boundary conditions are imposed at the bottom of the domain while outflow
conditions are imposed at the top and right boundaries.
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Since the edge of the bubble is curved, it does not align with the Cartesian grid.
Thus, in the cells that are partly inside and partly outside the bubble, the initial condi-
tion used is a weighted average of the different solution values, based on the fraction
of the cell that is inside. This fraction is computed by adaptive quadrature using the
scipy.integrate.quad package.

Figure 7.2 shows the initial condition and results of this problem, using a 1280× 320
grid and the unsplit classic Clawpack algorithm with full transverse corrections. The bub-
ble is observed to transform into a “smoke ring”. Considerably more detailed structure
is evident in this simulation compared to lower-resolution adaptively refined results from
AMRClaw that are published at http://depts.washington.edu/clawpack/clawpack-4.
3/applications/euler/2d/shockbubble/amr/www/index.html. Figure 7.3 shows a close-
up of the smoke ring solution obtained with the classic Clawpack algorithm, as well as
solutions obtained using the SharpClaw algorithm with fifth- (WENO5) and seventh-order
(WENO7) reconstructions. All runs were performed on a 1280× 320 grid with a maxi-
mum CFL number of 0.8. Although the overall features of the solutions are similar, more
fine structure is apparent in the SharpClaw results. For instance, several vortices can be
seen to the left of the smoke ring in the WENO7 run that are not resolved in the classic
run.

7.3. Cylindrical Solitary Waves in a Periodic Medium. The problem considered in
this section is taken from [24]. It involves the propagation of nonlinear waves in a two-
dimensional crystal, leading to the formation of solitary radial waves or “rings”. For this
purpose, we consider the 2D p-system with spatially-varying coefficients as a model for
elastic waves:

εt − ux − vy = 0,

ρ(x, y)ut − σ(ε, x, y)x = 0,

ρ(x, y)vt − σ(ε, x, y)y = 0.

(7.4)

Here ε represents the strain, u and v are the velocities in x and y respectively, ρ(x, y) is the
spatially-varying material density and σ(ε, x, y) is the stress. The system (7.4) is closed by
introducing a nonlinear constitutive relation σ(ε, x, y). Similar to [17], we take

σ(ε, x, y) = exp(K(x, y)ε) + 1, (7.5)

where K(x, y) is the spatially-varying bulk modulus.
The medium, a small part of which is shown in Figure 7.4(a), is in a checkerboard

pattern with alternating squares of two different materials:

(K(x, y), ρ(x, y)) =


(1, 1) if

(
x− bxc − 1

2

)(
y− byc − 1

2

)
< 0

(5, 5) if
(

x− bxc − 1
2

)(
y− byc − 1

2

)
> 0.

(7.6)

The problem is quite challenging, for multiple reasons. First, the flux is spatially varying
and even discontinuous – meaning that the solution variables (strain and momentum)
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(a) Initial tracer showing location of low-density bubble.

(b) Tracer showing location of of bubble material after shock impact.

(c) Schlieren plot of density.

Fig. 7.2: Results of shock-bubble interaction computation, showing the transformation of
the initially spherical bubble into a “smoke ring” after it is impacted by a shock wave.

are also discontinuous. Furthermore, these discontinuities include corner singularities.
Finally, and owing in part to these discontinuities, it is necessary to use a large number of
cells per material period (& 100) in order to get even qualitatively accurate results. As we
are interested in a phenomenon that arises only after waves pass through many (> 100)
material periods, this leads to a very high computational cost.

The problem is solved using the SharpClaw algorithm with fifth-order WENO re-
construction. As explained in Section 2.1, the implementation in SharpClaw is based on
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(a) Classic Clawpack solution.

(b) SharpClaw solution using WENO5 reconstruc-
tion.

(c) SharpClaw solution using WENO7 reconstruc-
tion.

Fig. 7.3: Schlieren plots of density, zoomed in on the smoke ring. All solutions are com-
puted on a 1280× 320 grid.

solving normal Riemann problems at the grid interfaces; see [25] for a detailed explana-
tion of the approximate Riemann solvers employed and for a much more detailed study
of this problem.

A close-up view of the initial stress is shown in Figure 7.4(b). The stress is a Gaussian
pulse with an amplitude of 5 and a variance in x and y of 5, centered at the origin. The
velocity is initially zero. The problem is symmetric with respect to reflection about the
x- and y- axes, so the computational domain is restricted to the positive quadrant and
reflecting boundary conditions are imposed at the left and bottom boundaries. Outflow
(zero-order extrapolation) conditions are imposed at the top and right boundaries. In
units of the medium periodi, the domain considered is 200× 200, and the grid spacing is
∆x = ∆y = 1/240. Hence the full simulation involves 6.8× 109 unknowns. It was run on
16,384 cores of the Shaheen supercomputer at KAUST, over a period of about 3.2 days.

The formation of solitary wave rings is seen clearly in Figure 7.5(a), which depicts the
stress at t = 200. The structure of these waves is shown in Figure 7.5(b), which displays

20



(a) Detail of checkerboard medium. (b) Detail of initial stress.

Fig. 7.4: The medium and initial condition (both shown zoomed-in) for the cylindrical
solitary wave problem.

(a) Solitary wave train (stress shown). (b) One-dimensional slices of the stress. Solid
black line: 45◦; dashed red line: 0◦.

Fig. 7.5: Solution of the p-system (7.4) in a checkerboard medium, showing 2D cylindrical
solitary wave formation.

slices of the stress at 45◦ (solid line) and 0◦ (dashed line) with respect to the x-axis.

8. Discussion and future plans. This work demonstrates that the use of Python in
combination with existing Fortran and C codes allows the production of scientific software
that is accessible, extensible, and efficient. The serial performance loss is relatively small,
and is more than compensated for even on a typical laptop by the ability to run in parallel
without any additional effort. Combining scalable parallelism with the algorithms of
Clawpack and SharpClaw yields a potent tool for exploring novel wave phenomena.

We are in the process of extending PyClaw to include three-dimensional wave prop-
agation and implicit time stepping. Both of these are straightforward steps, since the Py-
Claw framework was written with such developments in mind and the related software
packages (Clawpack and PETSc) already support these features. Preliminary implemen-
tations are under testing.
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The use of Python in scientific computing has many potential benefits [23]. The
Python packages numpy, scipy, and matplotlib offer essential numerical tools with inter-
faces familiar to users of MATLAB (the lingua franca of numerical methods) in a general-
purpose programming language. An increasing number of important libraries (like PETSc
and Trilinos) now have Python bindings, making it relatively easy to add powerful capa-
bilities like massively scalable parallelism to Python codes. As discussed in Section 6, the
Python community promotes a range of positive code development practices that are not
common in scientific teams but are often picked up by those who begin to work in Python
[6].

While the existence of multiple scientific codes for solving the same problems is
healthy, it is widely recognized that increased code sharing and reuse would benefit the
numerical analysis and scientific computing communities. Closer integration of code de-
veloped by different groups would not only allow researchers to be more productive (by
reducing duplication of effort), but would also allow useful algorithmic improvements
to be more rapidly distinguished from insignificant ones by simplifying the task of com-
paring them. In our experience, the adoption of Python as a high-level scientific coding
language dramatically increases opportunities for code-sharing and reuse. Indeed, the
results described in this paper consist largely of combining a few powerful existing pieces
of scientific software.
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