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The complementarity of single-photon’s particle-like and wave-like behaviors can be described
by the inequality D

2 + V
2
≤ 1, with D being the path distinguishability and V being the fringe

visibility. In this paper, we generalize this duality relation to multi-photon case, where two new
concepts, higher order distinguishability and higher order fringe visibility, are introduced to quantify
the higher order particle-like and wave-like behaviors of multi-photons.
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I. INTRODUCTION

The complementarity principle, developed and intro-
duced by Bohr in 1927 [1], is fundamentally important
in the quantum theory, which predicts that a quantum
system may exhibit different properties based on differ-
ent measurement schemes. As the most typical example
of complementarity, wave-particle duality has attracted
much attention since the early days of the quantum the-
ory [2]. By defining the particle-like knowledge of an ob-
ject governed by quantum mechanics as the distinguisha-
bility (D) of its passage in a two-path interferometer, and
the wave-like knowledge as the visibility (V ) of the in-
terference pattern behind the interferometer, a tradeoff
relation between an object’s particle-like and wave-like
behaviors can be established [3–7],

D2 + V 2 ≤ 1, (1)

where the equal sign holds for pure state of single-
particles. This duality relation, already confirmed in
many experiments [8], is valid even when the choice of
measuring apparatus is delayed after the single-particle’s
entrance into the interferometer [9]. Such a delayed-
choice gedanken experiment has been realized in exper-
iments at single-photon level by Roch group [10]. The
scheme of quantum eraser [11], with the experimental re-
alization reported in Ref.[12], provides another clear way
to demonstrate the exclusive relation between an object’s
particle-like and wave-like behaviors. Recently, a new op-
tical device named quantum beam splitter (QBS) is theo-
retically proposed in Ref. [13, 14], and the wave-particle
morphing behaviors of single-photons in this quantum
device is becoming a hot topic [15].
In this paper, we generalize the discussion on the du-

ality of single-photons and investigate the higher order
duality relations of multi-photons, no matter what kind
of state, pure or mixed, is prepared for the multi-photons.
The organization of the paper is as follows: In section

II we introduce two new concepts, higher order distin-
guishability and visibility. In section III, we derive an
inequality for higher order duality. In section IV, we
present a physical interpretation on the higher order dis-

tinguishability and visibility and in section V we present
a measurement scheme for the higher order visibility.

II. HIGHER ORDER DISTINGUISHABILITY

AND VISIBILITY

Before the concept of higher order duality is intro-
duced, we first recall the definitions of the particle-like
information and the wave-like information for single-
photons. By feeding the interferometer with single-
photons, the particle-like information is usually quanti-
fied as the distinguishability (D) of single-photons’ pas-
sage along the two paths inside the interferometer (see
Fig. 1). Thus we can use an operator [16],

D̂ ≡
a†1a1 − a†2a2

〈a†1a1〉+ 〈a†2a2〉
, (2)

to describe the measurement of the particle-like infor-

mation mentioned above. Here a†1 (a1) and a†2 (a2) de-
note the creation (annihilation) operators of the modes

in path 1 and 2, and the denominator 〈a†1a1〉+ 〈a†2a2〉 is
for normalization. The wave-like information is defined
as the visibility (V ) of the interference pattern after the
single-photons pass through the A interferometer, whose
measurement is in accord with the following operator,

V̂ ≡
a†1a2e

iφ + a†2a1e
−iφ

〈a†1a1〉+ 〈a†2a2〉
(3)

By describing the distinguishability and visibility in
terms of operators, the particle-like and wave-like in-
formation of single-photons are then the modules of
the two expectation values, i.e., D = |〈D̂〉| and V =

|〈V̂ ′〉|max by φ, where the phase parameter φ, controlled
by the phase shifter in the interferometer, should be ap-
propriately chosen to maximize the expectation value of
the operator (3).

The terms a†1a1 (a†2a2) in Eq. (2) and a†1a2 in Eq.
(3) are just the first order auto-correlation of the field
in path 1 (2) and the first order coherence between the
fields in the two paths [17], respectively. Therefore the
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distinguishability and visibility defined in Eqs. (2) and
(3) can be regarded as the difference and coherence be-
tween the first order correlation function of the two fields
in the two paths 1 and 2.
Based on this viewpoint, we now introduce the con-

cepts of kth-order distinguishability,

D̂k ≡
(a†1)

kak1 − (a†2)
kak2

〈(a†1)
kak1〉+ 〈(a†2)

kak2〉
, (4a)

and kth-order visibility,

V̂k ≡
(a†1)

kak2 e
ikφ + (a†2)

kak1 e
−ikφ

〈(a†1)
kak1〉+ 〈(a†2)

kak2〉
, (4b)

the denominator 〈(a†1)
kak1〉+ 〈(a†2)

kak2〉 in both equations
is again for normalization. Here we have used kth-order

auto-correlation (a†1)
kak1 ((a†2)

kak2) and kth-order coher-

ence (a†1)
kak2 to replace the first order auto-correlation

and the first order coherence used in Eqs. (2) and (3),
which can now be regarded as the special case of the def-
initions in (4) by setting k = 1. Similar to the above
treatment on the first order distinguishability and vis-
ibility, the kth-order particle-like information and kth-
order wave-like information are just the modules of the
corresponding expectation values, i.e., Dk = |〈D̂k〉| and

Vk = |〈V̂k〉|max by φ. Here the phase parameter φ should
be appropriately chosen to maximize the visibility Vk,
whose measurement will be introduced in section V in
more details.

III. INEQUALITY FOR HIGHER ORDER

DUALITY

Now we define the kth-order duality as the sum of the
squared kth-order particle-like information and kth-order
wave-like information, which is,

D2
k + V 2

k =

(

〈(a†1)
kak1〉+ 〈(a†2)

kak2〉

〈(a†1)
kak1〉+ 〈(a†2)

kak2〉

)2

(5)

+ 4

∣

∣

∣〈(a
†
1)

kak2〉
∣

∣

∣

2

− 〈(a†1)
kak1〉〈(a

†
2)

kak2〉
(

〈(a†1)
kak1〉+ 〈(a†2)

kak2〉
)2 .

The Cauchy-Schwarz inequality predicts
∣

∣

∣〈(a
†
1)

kak2〉
∣

∣

∣

2

≤ 〈(a†1)
kak1〉〈(a

†
2)

kak2〉. (6)

Therefore, the second term in Eq. (5) is negative or zero.
This result leads to the inequality for higher order dual-
ity,

D2
k + V 2

k ≤ 1, (7)

which is the main conclusion in this paper. Although this
inequality has a similar formula to Eq. (1), it undoubt-
edly carries more information about the wave-particle du-
ality and helps deepen our understanding. In fact, we

FIG. 1: The distinguishability and visibility are measured in
the open (removing the beam splitter BS) and closed (em-
ploying the beam splitter BS) interferometer, respectively.

have generalized the duality relation from single-photon
fields to multi-photon fields. In a typical duality experi-
ment, if the interferometer (see Fig. 1) is fed with multi-
photons, besides single-photons, according to our conclu-
sion, the fields in the two paths have to obey not only
the first order duality relation (1), but also the higher
order duality relation (7). Since n-photon component in
a field only contributes the kth-order correlation func-
tion and the kth-order coherence with k ≤ n, and takes
no effect for the k′th-order correlation function or coher-
ence if k′ > n, all higher than nth-order duality informa-
tion does not exist (sums up to zero) for the case that
at most n-photon component is found in the field. As
a consequence, for a state with n-photons there exist n
inequalities, D2

k + V 2
k ≤ 1, with k = 1, 2, . . . , n. That is

why we only need to consider the first order distinguisha-
bility (2) and the first order visibility (3) in the duality
experiments with single-photons.

From Eq. (5), it is easy to find that the equality sign
in the higher order duality relation (7) will be satisfied

under the condition |〈(a†1)
kak2〉|

2 = 〈(a†1)
kak1〉〈(a

†
2)

kak2〉.
For example, the kth-order duality, if it exists, is sat-
urated for k-photon pure states, which is a generaliza-
tion of the first order duality relation D2

1 + V 2
1 = 1

for the single-photons in a pure state. The condition
on which the kth-order duality (7) achieves its maxi-
mum value unity is usually very complicated if n-photon
component with n > k is involved in the field, and

|〈(a†1)
kak2〉|

2 = 〈(a†1)
kak1〉〈(a

†
2)

kak2〉 is at present the only
test equation we can obtain.
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IV. PHYSICAL INTERPRETATION

The kth-order auto-correlation (a†i )
kaki (i=1,2) used in

the definition (4a) is equal to,

(a†i )
kaki =

k−1
∏

j=0

(n̂†
i − j), (8)

with the number operator n̂i = a†iai. Imposing this oper-

ator onto a number state |ni >, we have, (a†i )
kaki |ni >=

(
n
k
)|ni >, with the binomial coefficient (

n
k
) = n!

k!(n−k)! .

Thus 〈(a†i )
kaki 〉 can be regarded as the combination num-

ber of picking out k photons, disregarding order, in path
i, no matter what state is prepared for the optical field
in this path. The kth order distinguishability Dk then
has a very clear physical meaning, i.e., the normalized
difference between the k-combinations of the photons in
paths 1 and 2.
In the basis |0102 >, |0112 >, · · · , |n1n2 >, a general

quantum state for the photons in the interferometer can
be described by a density matrix,

ρ =







ρ11 · · · ρ1(n+1)2

...
. . .

...
ρ(n+1)21 · · · ρ(n+1)2(n+1)2






(9)

Under this quantum state, we can directly write down
the expectation value of the kth order distinguishability,

〈Dk〉 =

∑n
i=k

∑n
j=0

(

ρpi,jpi,j
− ρqi,jqi,j

)

(

i
k

)

∑n
i=k

∑n
j=0

(

ρpi,jpi,j
+ ρqi,jqi,j

)

(

i
k

) , (10)

with pi,j = i ∗ n+ i + j + 1 and qi,j = j ∗ n + i + j + 1.
Here we see that only the diagonal elements contribute
to the distinguishability.
Just as we already mentioned, the visibility in a du-

ality experiment is actually related to the coherence
between the two paths. Thus the visibility is deter-
mined by the off diagonal elements of the density ma-
trix for the photons in an interferometer. For exam-

ple, for the operator (a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ used
in the definition of the kth order visibility (4b), the off
diagonal elements < m′

1m
′′
2 |ρ|(m

′ + k)1(m
′′ − k)2 > and

< m′
1m

′′
2 |ρ|(m

′ − k)1(m
′′ + k)2 > with m′,m′′ ∈ [0, n]

have contributions. The diagonal elements play no role
in the evaluation of the visibility. However, for a density
matrix, what we can directly measure in experiments are
just the diagonal elements, usually represented as the
photon counting or higher order coincidence counting.
So we have to turn the information carried by the off
diagonal elements to diagonal elements. That is why a
50 : 50 beam splitter is to be employed at the output
of the interferometer for the measurement of the visibil-
ity. For more details on the measurement of higher order
visibility, please see section V.

Now we can conclude that the distribution of the pho-
tons in an interferometer projected on the Fock states,
i.e., the diagonal elements of the density matrix in the
Fock state basis, determines the photons’ particle infor-
mation, and the wave information relies on the off diag-
onal elements, no matter what order distinguishability
and visibility is considered.

V. MEASUREMENT SCHEME FOR THE

VISIBILITY

Compared with the measurement of the distinguisha-
bility Dk, which is directly defined by the auto-
correlation, the measurement of the fringe visibility Vk,
which depends on higher order coherence, is more com-
plicated. For k = 1, there exist a straight forward way
to measure V1. Suppose the beam splitter in Fig. 1 is
active and the modes after the beam splitter are denoted
with C and D, then the annihilation operators c and d
of the modes in these two paths are connected to the
annihilation operators a1 and a2 of the modes in paths
1 and 2 through the relations, c = 1√

2
(a1 + a2e

iφ) and

d = 1√
2
(a1 − a2e

iφ), respectively, where the phase dif-

ference φ between the two paths can be controlled in
experiments by a phase shifter (see Fig. 1). The count-
ing difference between the two detectors D1 and D2 (see
Fig. 1) is equal to,

〈c†c− d†d〉φ = 〈a†1a2e
iφ + a†2a1e

−iφ〉, (11)

which is just the first order visibility defined in Eq. (3).
The second order correlation function, needed for V2,

can also be measured in experiments based on current
technology [18]. However, the measurement of the higher
order visibility Vk is complicated.
For a general description, we now suppose the two de-

tectors, D1 and D2, in Fig. 1 are ideal ones, so that
all Fock states with arbitrary photon number can be di-
rectly detected and distinguished. For the case of k = 2,
we take the sum of the expectation value of the both
detectors and obtain,

〈(c†)2c2 + (d†)2d2〉φ =
1

2
〈(a†1)

2a21 + (a†2)
2a22 + 4a†1a

†
2a1a2

+ (a†1)
2a22e

2iφ + (a†2)
2a21e

−2iφ〉.

(12)

Further retarding the phase shift φ between the two path
1 and 2 by the value π/2, we obtain another similar re-
lation,

〈(c†)2c2 + (d†)2d2〉φ+π/2 =
1

2
〈(a†1)

2a21 + (a†2)
2a22 + 4a†1a

†
2a1a2

− (a†1)
2a22e

2iφ − (a†2)
2a21e

−2iφ〉.
(13)

In the following, we use two symbols R±
k,φ, whose values

are in principle obtainable in experiments, to replace the
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expectation values 〈(c†)kck ± (d†)kdk〉φ. Thus the equal-

ity (11) can be rewritten as 〈a†1a2e
iφ+a†2a1e

−iφ〉 = R−
1,φ,

and the quantity 〈(a†1)
2a22e

2iφ + (a†2)
2a21e

−2iφ〉, involved
in both equalities (12) and (13), can be described by

〈(a†1)
2a22e

2iφ + (a†2)
2a21e

−2iφ〉 = R+
2,φ −R+

2,φ+π/2. (14)

The maximum value of 〈(a†1)
2a22e

2iφ+(a†2)
2a21e

−2iφ〉 over
the phase factor φ, required in the quantification of the
second order visibility V2, can then be evaluated by,

|〈(a†1)
2a22e

2iφ + (a†2)
2a21e

−2iφ〉|2max by φ =
(

R+
2,φ′ −R+

2,φ′+π/2

)2

+
(

R+
2,φ′−π/4 −R+

2,φ′+π/4

)2

,

(15)

where (R+
2,φ′ − R+

2,φ′+π/2) is the real part of

the vector 2〈(a†1)
2a22e

2iφ′

〉 (see Eq. (14)), and
(R+

2,φ′−π/4 − R+
2,φ′+π/4) is the real part of the vector

2〈(a†1)
2a22e

2i(φ′−π/4)〉, which is equal to the imagi-

nary part of the vector 2〈(a†1)
2a22e

2iφ′

〉. The absolute
value of this quantity is mathematically equivalent
to the unnormalized visibility V2, due to the relation

|〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉|max by φ = 2|〈(a†1)
kak2〉|.

The phase φ′ can be arbitrarily chosen, because the
modulus of a vector should remain invariant under the
rotation of the coordinate system.

In general, the term 〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉 can
be determined by adding and subtracting 〈(c†)kck ±
(d†)kdk〉φ for k different values of φ. For example, for
odd number of k, we have

〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉 =
2k−1

k

k−1
∑

m=0

R−
k,φ+2mπ/k.

(16)

Accordingly, the maximum value of 〈(a†1)
kak2 e

ikφ +

(a†2)
kak1 e

−ikφ〉 over the phase factor φ, used for the kth
order visibility Vk, can be evaluated by,

|〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉|2max by φ =

(

2k−1

k

)2

×





(

k−1
∑

m=0

R−
k,φ′+2mπ/k

)2

+

(

k−1
∑

m=0

R−
k,φ′−π/(2k)+2mπ/k

)2


 ,

(17)

where the phase φ′ can be arbitrarily chosen.
For even number of k, we have

〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉 =
2k−1

k

k−1
∑

m=0

(−1)mR+
k,φ+mπ/k.

(18)

The maximum value of 〈(a†1)
kak2 e

ikφ+(a†2)
kak1 e

−ikφ〉 over
the phase factor φ, used for the kth order visibility Vk,
can be evaluated by,

|〈(a†1)
kak2 e

ikφ + (a†2)
kak1 e

−ikφ〉|2max by φ =

(

2k−1

k

)2

×





(

k−1
∑

m=0

(−1)mR+
k,φ′+mπ/k

)2

+

(

k−1
∑

m=0

(−1)mR+
k,φ′−π/(2k)+mπ/k

)2


 ,

(19)

with an arbitrary phase factor φ′.

VI. CONCLUSIONS

The distinguishability of photons’ passage in the in-
terferometer and the visibility of the interference pattern
after the interferometer can be regarded as the first or-
der particle-like information and the first order wave-like
information. By introducing the concepts of higher order
distinguishability and visibility for multi-photons, which
are related to higher order auto-correlation and coherence
between the fields in the two paths of the interferometer,
we generalize the wave-particle duality relation from the
first order case to higher order case. We believe it to
be a useful tool for analyzing the duality experiments
with the input of multi-photons, or even a classical light.
If we do the duality experiment by using different light
sources, the same results may be obtained if only the first
order duality is considered. However, we believe it will
exhibit different results for higher order duality informa-
tion. The concept of higher order duality may provide us
more information about the duality experiments, espe-
cially with the input of multi-photons, and accordingly
helps us deepen the understanding on the wave-particle
duality.
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