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Abstract. - We show that the strong Nernst signal observed recently in amorphous superconduct-
ing films far above the critical temperature is caused by the fluctuations of the superconducting
order parameter. We demonstrate a striking agreement between our theoretical calculations and
the experimental data at various temperatures and magnetic fields. Besides, the Nernst effect
is interesting not in the context of superconductivity only. We discuss some subtle issues in the
theoretical study of thermal phenomena that we have encountered while calculating the Nernst
coefficient. In particular, we explain how the Nernst theorem (the third law of thermodynamics)
imposes a strict constraint on the magnitude of the Nernst effect.

The recent observations of a transverse thermoelectric
signal in the presence of a magnetic field (the Nernst
effect) well above the critical temperature of the super-
conducting transition (Tc) both in conventional and high-
Tc material have made this phenomenon an area of high
theoretical interest [1, 2]. The Nernst effect in high-Tc
superconductors [3, 4] has been attributed to the mo-
tion of vortices [5–7] existing even above Tc (the vortex-
liquid regime). In conventional amorphous superconduct-
ing films the strong Nernst signal observed deep in the
normal state [8, 9] cannot be explained by the vortex-like
fluctuations. Rather, the authors of Refs. [8, 9] suggested
that the effect is caused by fluctuations of the supercon-
ducting order parameter. In this letter, we analyze this
mechanism and demonstrate a quantitative agreement be-
tween the theoretical expressions and the experiment [9].
No fitting parameters have been used; the values of Tc
and the diffusion coefficient have been taken from inde-
pendent measurements (see Refs. [8,9]). In particular, we
succeeded in reproducing the non-trivial dependence of the
signal on the magnetic field. Our results imply that in the
quest for understanding the thermoelectric phenomena in
high-Tc materials the fluctuations of the order parameter
should also not be ignored.

In metallic conductors the quasi-particle excitations
yield a negligible contribution to the Nernst effect and
to its counterpart, the Ettingshausen effect. Under the

approximation of a constant density of states at the Fermi
energy, which is a standard approximation for the Fermi
liquid theory, this contribution vanishes completely [10].
On the other hand, there is no general reason why the col-
lective modes describing all kinds of fluctuations should
not contribute to the Nernst effect (in our opinion, the
opposite statement in Ref. [11] has not been justified).
Obviously, neutral modes are not deflected by the Lorentz
force and cannot contribute to the transverse-voltage sig-
nal. However, the charged modes, such as the fluctuations
of superconducting order parameter, can be a source for
the strong Nernst effect even far from the superconducting
transition.

The contributions to the electric conductivity caused by
the superconducting fluctuations (paraconductivity) have
already been known for 40 years [12–14]. Close enough to
the superconducting transition the paraconductivity in-
creases rapidly and may even overcome the Drude con-
ductivity. Far from the transition the superconducting
fluctuations produce only one among many corrections to
the conductivity and, therefore, can hardly be identified.
Owing to the fact that in the absence of fluctuations the
Nernst effect is negligible, measurements of the Nernst
signal provide a unique opportunity to study the super-
conducting fluctuations deep inside the normal state.

The transport coefficients for the electric and heat cur-
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Fig. 1: The setup of the Nernst effect measurement. The sam-
ple is placed between two thermal baths of different temper-
atures. The temperature gradient is in the x-direction, the
magnetic field is along the z-direction and the electric field is
induced in the y-direction.

rents are defined via the standard conductivity tensor:

(

je
jh

)

=

(

σ̂ α̂
ˆ̃α κ̂

)(

E

−∇T

)

. (1)

When the thermo-magnetic phenomena are studied in
films (or layered conductors) the magnetic field is conven-
tionally directed perpendicularly to the conducting plane,
see Fig. 1. Then each element of the conductivity ten-
sor corresponds to a 2 × 2 matrix describing the con-
ductivity components in the x − y plane (see Fig. 1).
The Onsager relations imply that σij(H) = σji(−H) and
α̃ij(H) = Tαji(−H). From the condition, je = 0, one gets
that the Nernst coefficient is

eN =
Ey

−∇xT
=
σxxαxy − σxyαxx

σ2
xx + σ2

xy

. (2)

We checked that the second term in the numerator is neg-
ligible in comparison to the first one (see the comment
below Eq. 13). Therefore, the leading order term for the
Nernst coefficient is eN ≈ αxy/σxx and our goal is to find
the transverse Peltier coefficient, αxy.
In the linear regime, the electric current generated as

a response to an external force, such as the electric field,
can be found using the Kubo formula [15] which expresses
the response in terms of a correlation function. Extending
the Kubo formalism to the calculation of the response to
the temperature gradient is not trivial because this gra-
dient is not directly connected to any mechanical force.
Following the scheme used in the derivation of the Ein-
stein relation, Luttinger [16] made a connection between
the responses to the temperature gradient and to an arti-
ficial gravitational field. As a result, Luttinger succeeded
to relate all transport coefficients with various current-
current correlation functions. However, in the presence of
interactions, the expression for the heat current becomes
a non-trivial function of the interaction. Usually, instead
of the full expression for the heat current operator, the
operator of a non-interacting electrons is used (see e.g.,
Ref. [17]). Unfortunately, such a simplified version of the
Kubo formula has no justification for the problem consid-
ered here. In the presence of a magnetic field, the Kubo
formalism meets with an additional difficulty when the

thermoelectric currents are considered. Obraztsov [18] has
pointed out that the heat current describing the flow of
entropy must also include a contribution from the mag-
netization [18–20]. Thus, the problem of this approach
is that the current cannot be expressed by a correlation
function alone.
In the derivation of the thermoelectric currents we have

decided, instead of applying the Kubo formula, to em-
ploy a different approach and to use the quantum kinetic
equation [21–23]. One main advantage of this approach
as we will show is that the problem of the magnetization
current has been automatically solved. In this way, we
obtain that the Peltier and Nernst coefficients, which are
related to the flow of entropy, vanish as T → 0 in accor-
dance with the third law of thermodynamics [24]. As we
will see, the third law of thermodynamics imposes a strict
constraint on the structure of the different contributions
to the Peltier coefficient. 1

The quantum kinetic approach. – In the presence
of superconducting fluctuations we describe the system
using two fields. One is the quasi-particles field ψ, while
the other represents the fluctuations of the superconduct-
ing order parameter ∆. The matrix functions Ĝ(r, r′, ǫ)
and L̂(r, r′, ω) written in the Keldysh form [21–23] de-
scribe the propagation of these two fields, respectively.
The propagators depend on the two spatial coordinates
because we postpone the averaging over the disorder until
the last stage of the calculation. The ∇T -dependent part
of the quasi-particles Green function is naturally separated
into two terms. The first one describes the readjustment
of quasi-particles to the non-uniform temperature when
the system is trying to maintain a local equilibrium. In
the regime of linear response, this local-equilibrium Green
function becomes:

Ĝloc−eq(r, r
′, ǫ) = −

(r+ r′)∇T

2T
ǫ
∂ĝ(r, r′, ǫ)

∂ǫ
. (3)

Here ĝ(r, r′, ǫ) is the equilibrium quasi-particles Green
function at a constant temperature T . We see that the lo-
cal equilibrium Green function is a straightforward exten-
sion of the equilibrium Green function for a non-uniform
temperature. Since the same relation holds for the equi-
librium and local equilibrium self-energies, σ̂ and Σ̂loc−eq,

the equation for Ĝloc−eq is a closed equation fully deter-
mined by the equilibrium properties of the system.
The other term in the ∇T -dependent part of the Green

function is

Ĝ∇T (r, r
′, ǫ) = ĝ (ǫ) Σ̂∇T (ǫ) ĝ (ǫ) (4)

−
i∇T

2T
ǫ

[

∂ĝ (ǫ)

∂ǫ
v̂(ǫ)ĝ (ǫ)− ĝ (ǫ) v̂(ǫ)

∂ĝ (ǫ)

∂ǫ

]

.

1Besides the Peltier coefficient, we may independently find the
heat current induced by an applied electric field. Thus, the quantum
kinetic approach allows us to calculate separately both off-diagonal
components of the conductivity tensor (see Eq. 1) and directly verify
the Onsager relations.
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The product of matrices should be understood as a convo-
lution in real space. The matrix v̂(r, r′, ǫ) is the velocity
of the quasi-particles at equilibrium renormalized by the
self-energy σ̂(r, r′, ǫ):

v̂(r, r′, ǫ) = −
i

2m
lim
r
′
→r

(

∇−
ie

c
A(r) −∇

′ −
ie

c
A(r′)

)

(5)

− i(r− r′)σ̂(r, r′, ǫ),

where A(r) is the vector potential.
Let us point out an important difference between the

two parts of the Green function depending on the temper-
ature gradient, Ĝloc−eq and Ĝ∇T . As has been already

mentioned, Ĝloc−eq and Σ̂loc−eq are a straightforward ex-
tension of the equilibrium Green function and self-energy
for a non-uniform temperature. On the other hand, the
equation for Ĝ∇T contains the self-energy Σ∇T which by
itself is a function of Ĝ∇T . Thus, this is a self consistent
equation, and in order to find a close expression for Ĝ∇T ,
one has to determine the structure of the self-energy.
The equations for the ∇T -dependent parts of the super-

conducting fluctuations propagator remind the first term
in Eq. 4 for Ĝ∇T :

L̂loc−eq(r, r
′, ω) = −L̂(ω)Π̂loc−eq(ω)L̂(ω); (6)

L̂∇T (r, r
′, ω) = −L̂(ω)Π̂∇T (ω)L̂(ω).

Here L̂ is the equilibrium propagator of the fluctuations
at temperature T . The self-energy of the superconducting
fluctuations Π(r, r′, ω) depends on the temperature gradi-
ent through the quasi-particle Green functions. Similar to
Eq. 5, we define V̂(r, r′, ω) to be the ”renormalized veloc-
ity” of the superconducting fluctuations (with a contact
s-wave interaction):

V̂(r, r′, ω) = −i(r− r′)Π̂(r, r′, ω). (7)

Note that in fact V̂ does not have the dimension of veloc-
ity.
For the calculation of the Nernst effect, we need to ob-

tain the expression for the electric current in terms of the
∇T -dependent propagators. In the presence of a magnetic
field, the electric current is a sum of two terms:

je = jcone + jmag
e . (8)

The current jcone can be as usually derived through the
continuity equation for the electric charge. Since the field
∆ carries charge, it is obvious that the charge of the
quasi-particles, −e|ψ(r)|2, is not conserved unless the cur-
rent carried by the superconducting fluctuations is also
included. Then, we obtain using the expressions for the
∇T -dependent propagators that

see eq. (9)

Note that the local equilibrium propagators do not con-
tribute to jcone .

(a) (b)

(c)

Fig. 2: The diagrammatic contributions to the thermoelectric
current. Diagrams a) and b) describe the fluctuation of the su-
perconducting order parameter decorated by three Cooperons
and c) is the Aslamazov-Larkin diagram. (The obvious coun-
terpart diagrams for a) and b) are not shown.) These contri-
butions should be supplemented by the magnetization current
term.

Our only assumption in the derivation of Eq. 9 is that
the current is obtained in the regime of linear response
to ∇T . As we are interested in the Gaussian fluctua-
tions, we expand the expression for the current with re-
spect to the interaction with the superconducting fluctu-
ations. In Fig. 2, we give a diagrammatic interpretation
for the dominant contributions to the transverse thermo-
electric current after averaging over the disorder. The an-
alytical structure and the expression for the vertices of
these diagrams have been found from the quantum kinetic
equation. In principle, the same diagrams can be calcu-
lated using the Kubo formula. However, if for simplic-
ity one uses in the Kubo formula the heat current opera-
tor of non-interacting electrons, the resulting expressions
for these diagrams differ from those obtained using the
quantum kinetic equation. Most important, as one can
see from Eq. 9, in the quantum kinetic approach the fre-
quency accompanies the renormalized velocity, so that the
expression for the electric current is generally of the form
eg(ǫ)vi(ǫ)g(ǫ)ǫvj(ǫ)∇jT/T . In other words, the frequency
appears together with the velocity that has been already
renormalized by the interaction. On the other hand, ow-
ing to the fact that the frequency in the simplified version
of the Kubo formula is attached to the external vertex be-
fore the renormalization of the velocity, the expression for
the current has a totaly different structure.
The second contribution to the electric current is from

the magnetization current. Since the magnetization cur-
rent is divergenceless, it cannot be obtained using the con-
tinuity equation. Rather, it is found directly from the
action:

jmag
e = −2ic∇ ×M(r) (10)

lim
r
′→r

∫

dǫ

2π

[

Ĝloc−eq(r
′; r, ǫ) + Ĝ∇T (r

′; r, ǫ)
]<

,
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jcone i = −
e∇jT

2T

∫

dǫ

2π
ǫ
∂nF (ǫ)

∂ǫ

[

vRi (ǫ)g
R(ǫ)vAj (ǫ)g

A(ǫ) + vRi (ǫ)g
R(ǫ)vRj (ǫ)g

A(ǫ)− vRi (ǫ)g
R(ǫ)vRj (ǫ)g

R(ǫ) (9)

−gR(ǫ)vRj (ǫ)g
R(ǫ)vAi (ǫ)

]

−
e∇jT

T

∫

dǫ

2π
ǫnF (ǫ)

[

vRi (ǫ)
∂gR(ǫ)

∂ǫ
vRj (ǫ)g

R(ǫ)−−vRi (ǫ)g
R(ǫ)vRj (ǫ)

∂gR(ǫ)

∂ǫ

]

− ie

∫

dǫ

2π
vRi (ǫ)g

R(ǫ)
[

Σ<
∇T (ǫ)(1− nF (ǫ)) + Σ>

∇T (ǫ)nF (ǫ)
]

(gR(ǫ)− gA(ǫ))

+ ie

∫

dω

2π
VR
i (ω)LR(ω)

[

Π<
∇T (ω)(1 + nP (ω))−Π>

∇T (ω)nP (ω)
]

(LR(ω)− LA(ω)) + c.c.

where M(r) denotes the magnetization and the factor of
2 is due to the summation over the spin index. It can be
checked that Ĝ∇T does not contribute to jmag

e . On the
other hand, the explicit dependence of the local equilib-
rium Green function on the center of mass coordinate leads
to a non-zero contribution to the magnetization current:

jmag
e = 2ic∇×M(r) lim

r
′
→r

∫

dǫ

2π
ǫ
(r+ r′)∇T

2T

∂g<(r, r′, ǫ)

∂ǫ
.

(11)

Thus, G∇T and Gloc−eq are complementary to each other;
while the first contributes only to jcone , the other one fully
determines jmag

e . One should recall that we are looking
for a current that does not vanish after spatial averaging,
i.e., after integration with respect to the center of mass
coordinate r. Since in the process of averaging over r we
may integrate by parts, the magnetization current can be
written as

j
mag
e i = 2iεij

∇jT

T
cMz lim

r
′
→r

∫

dǫ

2π
g<(r, r′, ǫ) (12)

≡ −εijc〈Mz〉
∇jT

T
,

where εij is the anti-symmetric tensor. In the transition
between Eqs. 11 and 12 we integrated by parts over the
frequency as well. The result demonstrates the strength
of the quantum kinetic approach. This method provides
a way to derive both components of the current quantum
mechanically without engaging any thermodynamical ar-
guments. At this point we may employ in Eq. 12 the
known expression for the magnetization in the presence of
superconducting fluctuation:

j
mag
e i = εij

∇jT

T

∂

∂H

eH

π

∞
∑

N=0

∞
∑

ωm=−∞

ln
[

L−1

N (ωm)
]

; (13)

L−1

N (ωm) = −ν

[

ln
T

Tc
+ ψ

(

1

2
+

|ωm|+Ωc(N + 1/2)

4πT

)

−ψ

(

1

2

)

+ iςωm

]

.

Here Ωc = 4eHD/c is the cyclotron frequency for the col-
lective mode of the fluctuation of the superconducting or-
der parameter where D is the diffusion coefficient. The

parameter ς ∝ 1/(gεF ) is important for understanding
the difference in magnitude between the longitudinal and
transverse Peltier coefficients (εF is the Fermi energy while
g is the dimensionless coupling constant determining Tc).
The longitudinal Peltier coefficient, αxx, contains an in-
tegral over the frequency that vanishes when ς = 0 while
the integrand that determines αxy remains finite even in
the absence of ς . As a result, in the expression for the
Nernst coefficient given in Eq. 2, the second term in the
numerator is smaller than the first one by a factor of the
order T/(gεF ) [25].

Further analysis of jcone and jmag
e at arbitrary tempera-

tures and magnetic fields shows that they have contribu-
tions where the frequency integration accumulates over a
wide interval between T and 1/τ (the scattering rate of
electrons by impurities). The outcome of the integration
depends logarithmically on 1/τ that acts as an ultravio-
let cutoff. In addition, as the temperature goes to zero,
there is even a more serious problem with these terms be-
cause their pre-factor is proportional to Ωc/T . We have
found a way to verify that the logarithmic parts of jmag

e

and jcone cancel each other out. We have obtained that
the total current is independent of τ in the whole temper-
ature range T ≪ 1/τ . As a result of this cancellation, the
Nernst signal is regular at T → 0. Moreover, the contribu-
tions which are constant with respect to the temperature
also vanish, and the remaining terms are linear in T in
accordance with the third law of thermodynamics.

The phase diagram for the Nernst effect. – In
the following section we present the theoretical expressions
for the transverse Peltier coefficient for a superconducting
film in the normal state for various regions of the tem-
perature and the magnetic field. The phase diagram for
the Peltier coefficient is plotted in Fig. 3. In the area
below the line ln(T/Tc(H)) = Ωc/4πT the Landau level
quantization of the superconducting fluctuations becomes
essential. The line ln(H/Hc2(T )) = 4πT/Ωc separates the
regions of classical and quantum fluctuations.

For a small magnetic field, Ωc ≪ T , close to the tran-
sition temperature (T ≈ Tc) the leading contribution to
αxy is given by the Aslamasov-Larkin term (see Fig. 2(c))
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Eq. 15

Eq. 14

Eq. 16 Eq. 17 

Fig. 3: The phase diagram for the Peltier coefficient αxy . We
indicate the equations in the text which give the corresponding
expressions to αxy in the different limits. Ωc = 4eHD/c is the
cyclotron frequency for the fluctuations of the superconducting
order parameter in the diffusive regime.

and the magnetization current:

αxy ≈
eΩc

192T lnT/Tc(H)
. (14)

Note that unlike the electric conductivity, σxx, for which
the anomalous Maki-Thompson [13] and the Aslamazov-
Larkin terms yield comparable corrections, the contribu-
tion from the anomalous Maki-Thompson term to the
Nernst signal is ∼ (T/εF )

2 ≪ 1 smaller than the one given
by Eq. 14. Therefore, it is natural that in the vicinity of Tc
our result coincides with the expression [14, 26] obtained
phenomenologically from the time dependent Ginzburg-
Landau equation (TDGL).
When temperature is increased further away from the

critical temperature, the sum of the contributions to the
transverse Peltier coefficient from all the diagrams and the
magnetization current yields:

αxy ≈
eΩc

24π2T lnT/Tc
. (15)

The comparison of our result with the experimental obser-
vation of Ref. [9] for a Nb0.15Si0.85 film of thickness 35nm
and Tc = 380mK is given in Fig. 4. The Peltier coefficient
depends on the mean field temperature of the supercon-
ducting transition, TMF

c , and on the diffusion coefficient
through Ωc. Throughout the paper we fit the data using
the same diffusion coefficient D = 0.187cm2/sec which is
within the measurement accuracy of the value that has
been extracted from the experiment in Ref. [9]. We take
TMF
c = 385mK which is slightly higher than the mea-

sured critical temperature anticipating a small suppres-
sion of the temperature of the transition by fluctuations.
(An equally well fitting of the data has been obtained for
a thinner film of thickness 12.5nm.)
In the vicinity of Tc, one can interpret the expression

in Eq. 14 in terms of the classical picture in which the
Cooper pairs with a finite lifetime are responsible for the

0.02 0.05 0.1 0.5 1 2

10
−5

10
−4

10
−3

10
−2

ln(T/Tc)

α xy
 / 

H
 (µ

A
/K

T
)

 

 

ln(T/Tc)

α xy
 / 

H
 (µ

A
/K

T
)

 

 

0.02 0.1 1   

10
−2

10
−3

10
−4

Fig. 4: The transverse Peltier coefficient αxy divided by the
magnetic field H as a function of lnT/Tc for a vanishingly
small magnetic field. The experimental data of Ref. [9] are
presented by the black squares and the solid line corresponds
to the theoretical curve given by Eq. 15. The inset presents
the fitting of the data in the vicinity of Tc with Eq. 14.

thermoelectric current. Far from the critical tempera-
ture, the quantum nature of the fluctuations reveals it-
self in contributions to jcone and jmag

e that are of the or-
der ln(ln 1/T τ)− ln(ln T/Tc). However, these τ -dependent
terms in jcone and in the magnetization current cancel each
other out. Thus, the third law of thermodynamics con-
strains the magnitude of the Nernst signal not only at
T → 0 but also at high temperatures, T ≫ Tc.
Finally, we present the expressions for the Nernst signal

in the high magnetic field part of the phase diagram, Ωc ≫
T . As has been discussed above, after the cancelation of
the diverging terms, the remaining contributions to αxy in
the limit T → 0 are linear in the temperature:

αxy ≈ −
eT ln 3

3Ωc(lnH/Hc2(T ))
2

for H ≈ Hc2 , (16)

and

αxy ≈
2eT

3Ωc lnH/Hc2

for H ≫ Hc2 . (17)

Notice that αxy changes its sign in this region. Since the
transverse signal is non-dissipative the sign of the effect is
not fixed. Although we are in the low temperature limit, as
we have already explained, the integrals determining αxy

accumulate at low frequencies. This situation is rather
peculiar; it is not typical for fluctuations induced by a
quantum phase transition.
In Fig. 5 we plot the curve for the Peltier coefficient as

a function of the magnetic field at a temperature higher
than Tc. Fig. 5 demonstrates the agreement between the
theoretical expressions and the experimental observation
for a broad range of magnetic fields. In addition, we show
that the experimental data are well described by Eq. 14 in
the limit of vanishing magnetic field (see inset of Fig. 5).
Since Eq. 14 is valid in the limit Ωc ≪ T , it can describe
only the first few points in the measurement. In order to
fit the entire range of the magnetic field, we had to include
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T
/T

c
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Ω  / 4πTc

α
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A
/K

)
x

y
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µ

Α
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y

Fig. 5: The transverse Peltier coefficient αxy as a function of
the magnetic field measured at T = 410mK. The black squares
correspond to the experimental data of Ref. [9] while the solid
line describes the theoretical result. The arrow on the phase
diagram illustrates the direction of the measurement. In the
inset the low magnetic field data are fitted with the theoretical
curve given by Eq. 14.

higher order terms of Ωc/T . For that, we needed to sum
the contributions from all diagrams and the magnetiza-
tion current. We performed the calculation assuming that
ln(T/Tc(H)) ≪ 1; therefore the theoretical curve starts to
deviate from the measured data when ln(T/Tc(H)) is no
longer small (H ≈ 1Tesla).

Summary. – In this letter, we have demonstrated
that the fluctuations of the superconducting order param-
eter are responsible for the large Nernst effect observed
in disordered films far away from the transition. Under
the condition of the experiment [8, 9], the signal gener-
ated by the fluctuations dominates the one produced by
the quasi-particles up to T . 100Tc and H . 100Hc2.
We have outlined the main steps in the derivation of the
Nernst effect using the quantum kinetic equation. In this
method, one gets automatically all contributions to the
Nernst coefficient as response to the temperature gradient,
in particular, the one from the magnetization current. We
have shown that the important role of the magnetization
current is in canceling the quantum contributions, thus
making the Nernst signal compatible with the third law of
thermodynamics. The third law of thermodynamics con-
strains the magnitude of the Nernst signal not only at low
temperatures, but also far from Tc. As a consequence of
this constraint the phase diagram is less rich and diverse
than one expects in the vicinity of a quantum phase tran-
sition.
The Nernst effect provides an excellent opportunity to

test the use of the quantum kinetic equation in the descrip-
tion of thermoelectric transport phenomena. We should
remark that our results are different in few aspects from
the expressions for the Peltier coefficient recently obtained
using the Kubo formula in Ref. [27]. The striking agree-
ment between our results and the experiment in the dif-
ferent limits (and the fact that we have reproduced the

phenomenological result of the TDGL [26]) reinforces us
in the correctness of our method.
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