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I. INTRODUCTION

For the past decade or so, the study of first-order phase transitions in cosmology has been

the focus of much interest due to their possible relevance to the physics of the early Universe.

Some well-known examples are inflationary models [1], the quark-hadron transition [2] and,

more recently, the generation of the cosmological baryon asymmetry in the electroweak phase

transition [3].

In a first-order phase transition, the initial metastable phase decays to the stable phase

by the nucleation of bubbles larger than a critical size. This decay may be triggered by either

quantum or thermal fluctuations, depending on how the ambient temperature compares to

the nucleation barrier [4]. Within a cosmological context, the cooling is provided by the

expansion of the Universe; the long-wavelength modes of the order parameter responsible

for the symmetry breaking transition are coupled to the “environment”, which is assumed

to be in local thermal equilibrium at some temperature T . (Here, we are mainly concerned

with “late” transitions, for which the typical fluctuation time-scales are much shorter than

the expansion rate.)

Of great relevance to the understanding of the evolution of the phase transition is the

determination of the bubble nucleation rate per unit volume. This is a well-known problem

in classical statistical mechanics, with an long history [4]. Phenomenological field-theoretic

treatments were developed by Cahn and Hilliard [5], and by Langer [6] in the context of a

time-dependent coarse-grained Ginzburg-Landau model. Classical homogeneous nucleation

theory within a field theoretic context has been recently shown by numerical experiments

to successfully predict the nucleation barrier [7]. In the case of zero-temperature quantum

field theory, the study of metastable vacuum decay was initiated with the work of Voloshin,

Kobzarev, and Okun [8], and was put onto firm theoretical ground by Coleman and Callan

in the late seventies [9]. Finite temperature corrections to the vacuum decay rate were

first considered by Linde [10], who argued that temperature corrections to the nucleation

rate are obtained recalling that finite temperature field theory (at sufficiently high temper-

atures) in d + 1-dimensions is equivalent to d-dimensional euclidean quantum field theory
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with h̄ substituted by T . Thus, in d + 1 dimensions, the nucleation rate is proportional

to exp[−SdE(ϕb)/T ], where SdE(ϕb) is the d-dimensional euclidean action evaluated at its

extremum (specifically, a saddle point), the critical bubble, or bounce, ϕb(r). The usual

expression for the nucleation rate per unit volume used in the literature is [10]

Γ = T

(

S3
E(ϕb(r, T ), T )

2πT

) 3

2

{

det[−∇2 + V ′′
eff(ϕf , T )]

det′[−∇2 + V ′′
eff(ϕb(r, T ), T )]

} 1

2

exp

[

−S
3
E(ϕb(r, T ), T )

T

]

,

(1.1)

where ϕf is the value of the field φ at the metastable minimum, and the prime in the

determinant in the denominator is a reminder that one should omit the zero and negative

eigenvalues, associated with the translation symmetry of the bubble and with its instability

(being a saddle point configuration), respectively. Veff(φ, T ) is the one-loop approximation

to the finite temperature effective potential, and V ′′
eff(ϕ, T ) =

∂2Veff (φ,T )
∂φ2

|φ=ϕ.

There are three important points here. The first is that in order to estimate the de-

terminantal prefactor (the “equilibrium” part of the prefactor; there is a dynamic factor

which can not be obtained by using equilibrium arguments) one usually proceeds by in-

voking dimensional arguments to approximate it by a term of order T 4
C (TC is the critical

temperature). How good is this approximation? Clearly, in most cases it is impossible to

evaluate the determinants exactly. But can one obtain a better approximation than the

simple use of dimensional arguments? The second, and most important, point is that the

critical bubble configuration ϕb(r, T ) used to evaluate the nucleation barrier, denoted above

by S3
E(ϕb(r, T )), was obtained from an effective potential which includes corrections coming

from scalar loops. Hence the temperature dependence in ϕ(r, T ). We will show here that

this procedure is not in general justified and is only a good approximation if the corrections

from scalar loops are negligible. Finally, in the expression for the temperature corrected

barrier in Eq. (1.1), S3
E(ϕb(r, T ), T ), one uses the temperature corrected effective potential,

Veff(ϕ, T ) as opposed to the tree level potential. Thus, it is claimed that S3
E(ϕb(r, T ), T ) is

equivalent to the free energy of the temperature dependent bounce, given by

S3
E(ϕb(r, T ), T ) =

∫

d3x
[

1

2
(∇ϕb(r, T ))2 + Veff(ϕb(r, T ), T )

]

. (1.2)
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As far as we know, apart from the work of Affleck in the context of finite temperature quan-

tum mechanics [11], this point has never been properly addressed in the literature. How

did the temperature corrected potential appear in the exponent? Is the exponentiation of

the massless modes sufficient? In fact, most of the work done on cosmological phase tran-

sitions in which temperature effects are important (including some by the present authors)

simply invokes Linde’s results. Given the many applications of finite temperature vacuum

decay in cosmology, we feel that this important question should not be left unscrutinized.

This concern has also been expressed in recent works by Csernai and Kapusta [12], and by

Buchmüller, Helbig, and Walliser [13]. Both works attempted to improve on Linde’s results,

by generalizations of Langer’s work. Csernai and Kapusta obtained an expression for the

dynamical prefactor by using a relativistic hydrodynamic approach, while Buchmüller et

al. obtained an approximate expression for the decay rate in scalar electrodynamics (and

more recently, with Z. Fodor, in the standard electroweak model) by integrating out the

electromagnetic degrees of freedom from the partition function. However, a more detailed

analysis of the nucleation barrier and how it compares to the usual result is still lacking.

In this paper we address the three points raised above. We will be mostly interested in

the regime in which thermal fluctuations are much larger than quantum fluctuations. This

way we avoid the question of how to match continuously the two regimes, although we believe

this to be a very important question [14]. (See also Refs. [11] and [15].) The hope is that

in most situations of interest the transition will be dominated by one or the other regime.

By a saddle-point evaluation of the partition function in the case of a self-interacting scalar

field, it is possible to show that the temperature corrections to the nucleation barrier can be

interpreted as entropic contributions due to stable vibrational modes on the tree-level bounce

configuration, ϕb(r). In other words, the first corrections to the energy of the critical bubble

configuration come from temperature induced stable fluctuations on the bubble, which will

modify its volume and surface energies. We will show that these corrections are given by the

temperature corrected effective action evaluated at the tree-level bounce ϕb(r). In expression

(1.1), the bounce is obtained from the effective potential which includes scalar loops. The
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difference between the two nucleation barriers will be important whenever scalar loops are

not negligible. We will show that they become particularly important within the so-called

thin-wall limit, that is, in the vicinity of the critical temperature for the transition. This is

perfectly consistent with the fact that large entropic corrections are expected near the critical

temperature. We will obtain this result by a perturbative evaluation of the determinantal

prefactor. In principle, the determinantal prefactor can be evaluated in two ways. Clearly,

the computation can be done directly if we know the eigenvalues related to a given bubble

configuration. This method is not very useful in practice, since we in general do not know the

eigenvalues. (Unless, of course, we obtain them numerically.) Writing down explicitly the

eingenvalue equations, and using a thin-wall approximation to the bubble configuration, we

show how the temperature corrections to the nucleation barrier originate from fluctuations

about the critical bubble configuration. Even though the thin-wall approximation is not very

useful in realistic situations, there is no reason to believe that thicker wall bubbles will behave

any differently. (Unless the transition becomes too weak, in which case nucleation of critical

bubbles may not be the relevant mechanism for the transition [17].) The second approach we

use to evaluate the prefactor relies on a perturbative expansion of the determinants. Within

first-order, it is again possible to show how the prefactor accounts for the temperature

corrections to the nucleation barrier.

The paper is organized as follows. In Section 2 we briefly review Langer’s formalism for

obtaining nucleation rates, adapted to field theory at finite temperatures. That is, we obtain

the partition function for the metastable phase plus a nucleating fluctuation by a saddle-point

evaluation of the functional integral. In Section 3 we show how the determinantal prefactor

can account for the finite temperature corrections to the nucleation barrier. For simplicity,

the calculation is performed in the context of the thin-wall approximation for the bubble

profile, although in principle one could obtain results for any configuration. In Sections 2

and 3, for the sake of clarity, the discussion is somewhat oversimplified. We assume that the

system is initially in a metastable state and study only the scalar degrees of freedom in the

problem. This situation is not unrealistic, as it can be reproduced in numerical simulations
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of vacuum decay [7]. In Section 4 we study a model of a scalar field coupled to fermions.

This example is particularly interesting as it illustrates how a thermal state evolves into a

metastable state due to radiative corrections, very much like in the standard electroweak

model. (Recall that in a cosmological context the cooling is provided by the expansion of the

Universe.) A related problem has been recently studied by E. Weinberg, in the context of

massless scalar models for which symmetry breaking occurs due to radiative corrections. In

the regime dominated by quantum fluctuations, Weinberg showed how radiative corrections

induce a metastable state and how it is possible to evaluate its decay rate [18]. We show how

to obtain an effective partition function for the scalar field by integrating out the fermionic

modes, and proceed to obtain the decay rate. We then compare our results for the nucleation

barrier to the results obtained using Eq. (1.1). Conclusions are presented in Section 5 and

two Appendices are included to clarify a few technical points.

II. FINITE TEMPERATURE DECAY RATE: GENERAL FORMALISM

Consider a scalar field model with four-dimensional euclidean action

SE =
∫

d4xE LE , (2.1)

where LE is the euclidean lagrangian density given by

LE =
1

2
(∂µφ)

2 + V (φ) , (2.2)

and the potential in (2.2) has a metastable minimum at φ = ϕf and a stable minimum at

φ = ϕt, as shown in Fig. 1. [We will only consider potentials with two minima here.]

Let us assume that the system is prepared initially in the metastable phase, without

worrying for the moment about how this is done. (See Section 4.) The metastable phase

will decay into the stable phase by the nucleation of bubbles larger than a critical size. (For

a review see, e.g., [4].) As is well-known, in order to study the decay of the false vacuum at

finite temperature we impose the periodic boundary condition (anti-periodic for fermions)

φ(0,x) = φ(βh̄,x), so that the euclidean action becomes [16]
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SE[φ] =
∫ β

0
dτ
∫

d3x





1

2

(

∂φ

∂τ

)2

+
1

2
(∇φ)2 + V (φ)



 . (2.3)

The partition function of the system is given by a functional integral over all possible field

configurations weighted by their euclidean action,

Z =
∫

Dφe−SE(φ) . (2.4)

Following Langer [6], we describe the nucleation of bubbles of the stable phase inside the

metastable phase under the assumption that a dilute gas approximation for these droplets is

valid. Unless the transition is weakly first-order, this should be a very good approximation

to describe the early stages of the transition, when bubble collisions and other complicated

kinetic effects can be neglected. The critical configuration is an extremum of the euclidean

action,

δSE(φ)

δφ
|φ=ϕb = 0 , (2.5)

being thus a solution of the equation of motion,

(
∂2

∂τ 2
+∇2)φ = V ′(φ) , (2.6)

with boundary conditions, limτ→±∞φ(τ, ~x) = ϕf , and lim|~x|→∞ = ϕf . Coleman, Glaser, and

Martin [19], have shown that the configuration with minimum energy, i.e., the minimum

of all the maxima, will have O(4)-symmetry. As argued by Linde [10], for sufficiently high

temperatures the problem becomes effectively three-dimensional, and the saddle point will

be given by the O(3)-symmetric, or static, solution of

d2φ

dr2
+

2

r

dφ

dr
= V ′(φ) , (2.7)

with boundary conditions, limr→+∞ φ = ϕf and dφ
dr
|r=0 = 0. Note that the potential in (2.7)

is the tree-level potential. For future reference we note that when the false vacuum energy

density [∆V ≡ V (ϕf)− V (ϕt)] is much smaller than the barrier height [Vh, see Fig. 1], the

bubble radius R is much larger than the wall thickness ∆R ∼ m−1, where m is a typical

mass scale in the problem. In this case, the solution to Eq. (2.7) can be estimated by the

so-called thin-wall approximation and is given by
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ϕb(r) =



























ϕt, 0 < r < R−∆R

ϕwall(r), R−∆R < r < R +∆R

ϕf , r > R +∆R

(2.8)

which describes a bubble of radius R of the stable phase ϕt embedded in the metastable

phase ϕf . ϕwall(r) describes the bubble wall separating the two phases.

The main advantage of Langer’s approach is that in a dilute gas of bubbles one can infer

the thermodynamics of the system from the knowledge of the partition function of a single

bubble. We can write the partition function for the system with a bubble of the stable

vacuum inside the metastable vacuum as

Z = Z(ϕf ) + Z(ϕb) , (2.9)

where Z(ϕf) and Z(ϕb) are the partition functions of the system for the vacuum field con-

figuration ϕf and for the bubble field configuration ϕb, respectively [20]. The generalization

of (2.9) for several bubbles is given by

Z ≃ Z(ϕf) + Z(ϕf)

[

Z(ϕb)

Z(ϕf)

]

+ Z(ϕf)
1

2!

[

Z(ϕb)

Z(ϕf )

]2

+ . . .

≃ Z(ϕf) exp

[

Z(ϕb)

Z(ϕf)

]

. (2.10)

The proof of (2.10) can be found in the work of Arnold and McLerran [21], who studied the

properties of a dilute gas of sphalerons. They expressed the multiple-sphaleron configura-

tions as the superposition of many single sphalerons, with partition function approximated

as above.

The partition functions in (2.10) can be evaluated by the saddle-point method, expanding

the lagrangian field in (2.4) as φ(~x, τ) → ϕb(~x) + η(~x, τ) for Z(ϕb) and φ(~x, τ) → ϕf +

ζ(~x, τ) for Z(ϕf). η(~x, τ) and ζ(~x, τ) are small perturbations around the classical field

configurations ϕb(~x) and ϕf , respectively. These perturbations around each configuration

bring the temperature corrections to the nucleation barrier into the problem, as we shall see.

Up to 1–loop order one keeps the quadratic terms in the fluctuations η(~x, τ) and ζ(~x, τ) in

the expansion of the scalar field in the partition function (2.4). This way one can write the

following expressions for Z(ϕb) and Z(ϕf ), respectively,
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Z(ϕb)
1−loop order≃ e−SE(ϕb)

∫

Dη exp

{

−
∫ β

0
dτ
∫

d3x
1

2
η [−✷E + V ′′(ϕb)] η

}

(2.11)

and

Z(ϕf)
1−loop order≃ e−SE(ϕf )

∫

Dζ exp

{

−
∫ β

0
dτ
∫

d3x
1

2
ζ [−✷E + V ′′(ϕf)] ζ

}

, (2.12)

where V ′′(ϕ) = d2V (φ)
dφ2

|φ=ϕ and ✷E = ∂2

∂τ2
+ ~∇2 .

Performing the functional Gaussian integrals in (2.11) and (2.12) one gets the following

expression for the ratio between the partition functions, Z(ϕb)
Z(ϕf )

, appearing in (2.10):

Z(ϕb)

Z(ϕf )

1−loop order≃
[

det(−✷E + V ′′(ϕb))β
det(−✷E + V ′′(ϕf ))β

]− 1

2

e−∆S , (2.13)

where [det(M)β ]
− 1

2 ≡ ∫

Dη exp
{

− ∫ β0 dτ
∫

d3x1
2
η[M ]η

}

and ∆S = SE(ϕb) − SE(ϕf) is the

difference between the euclidean actions for the field configurations ϕb and ϕf . Note that

SE(ϕ), and hence ∆S, does not include any temperature corrections.

From (2.10) and (2.13), the free energy of the system, F = −β−1 lnZ can be written as

F = −T
[

det(−✷E + V ′′(ϕb))β
det(−✷E + V ′′(ϕf))β

]− 1

2

e−∆S . (2.14)

As is well-known, the determinantal prefactor evaluated for the bounce configuration

has one negative eigenvalue, signalling the presence of a metastable state, and also three

zero eigenvalues related with the translational invariance of the bubble in three-dimensional

space. Because of the negative eigenvalue, the free energy F is imaginary. As shown by

Langer [6] (see also Ref. [11]), the decay rate is proportional to the imaginary part of F

R =
|E−|
πT

ImF , (2.15)

where |E−| is the single negative eigenvalue. In general it depends on non-equilibrium aspects

of the dynamics, such as the coupling strength to the thermal bath.

III. EVALUATION OF THE DETERMINANTS

In this Section we compute the ratio of the determinants appearing in the decay rate,

and show how it provides a finite temperature correction to the nucleation barrier.
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First recall that for static field configurations ∆S is given by

∆S = β
∫

d3x [LE(ϕb)−LE(ϕf)] =
∆E

T
, (3.1)

where ∆E is simply the nucleation energy barrier, that is, the energy of a critical nucleation

within the metastable phase. For example, in the thin-wall approximation of Eq. (2.8), ∆E

is

∆E = −4πR3

3
∆V + 4πR2σ0 , (3.2)

where σ0 is the tree-level surface tension of the bubble wall (i.e. with no corrections due to

fluctuations around the bubble wall field configuration ϕwall)

σ0 ≃
∫ +∆R

−∆R
dr [LE(ϕwall)− LE(ϕf)] . (3.3)

Using (3.1) in Eqs. (2.14) and (2.15) we can write the decay rate as

R = −|E−|
π

Im

[

det(−✷E + V ′′(ϕb))β
det(−✷E + V ′′(ϕf))β

]− 1

2

exp
(

−∆E

T

)

. (3.4)

The determinantal prefactor in (3.4) will provide the temperature corrections to the nu-

cleation barrier. This should come as no surprise, given that the determinant is obtained

from integrating over thermally induced fluctuations about the tree-level bubble configura-

tion. (Recall that we are only considering the regime in which thermal fluctuations are much

larger than quantum fluctuations.) Once the negative and zero eigenvalues are taken care of,

the positive eigenvalues are easily associated with entropic contributions to the activation

energy due to stable deformations of the bubble’s shape, as in classical nucleation theory.

We now proceed to show how to incorporate temperature corrections to the nucleation

barrier. This can be done without an explicit evaluation of the eigenvalues of the operators in

the determinants. As we show next, all that we need is to separate consistently the positive

eigenvalues from the negative and zero eigenvalues, and then show how the former can be

exponentiated. In principle, the computation of the determinantal prefactor in (2.14) can

be performed by two different methods. The first involves obtaining directly (analytically,

or more realistically, numerically) the eigenvalues for the determinants in Eq. (2.14). The

second method consists in developing a consistent perturbative expansion for the ratio of

the determinants. We now examine both these possibilities.
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A. Evaluating the Determinantal Prefactor: Eigenvalue Equations

Consider the eigenvalue equations for the differential operators that appear in the deter-

minantal prefactor,

[−✷E + V ′′(ϕf)] Φf (i) = ε2f(i)Φf (i) (3.5)

and

[−✷E + V ′′(ϕb)] Φb(i) = ε2b(i)Φb(i) . (3.6)

In momentum space one writes, ε2 = ω2
n + E2, where ωn = 2πn

β
, n = 0,±1,±2, . . ., for

bosons (for fermion fields ωn = (2n+1)π
β

). From (3.5) and (3.6) one can write the determinant

ratio in (2.14) as

[

det(−✷E + V ′′(ϕf))β
det(−✷E + V ′′(ϕb))β

] 1

2

= exp

{

1

2
ln

[

det(−✷E + V ′′(ϕf))β
det(−✷E + V ′′(ϕb))β

]}

=

= exp







1

2
ln





∏+∞
n=−∞

∏

i

(

ω2
n + E2

f (i)
)

∏+∞
n=−∞

∏

j (ω
2
n + E2

b (j))











. (3.7)

Using the identity,

+∞
∏

n=1

(

1 +
z2

n2

)

=
sinh(πz)

πz
(3.8)

and taking into account that we have in the denominator of (3.7) one negative and three

zero eigenvalues, one obtains (for details see Appendix A)

[

det(−✷E + V ′′(ϕf))β
det(−✷E + V ′′(ϕb))β

] 1

2

= V T 4

i|E−|
β |E

−
|

2

sin
(

β |E
−
|

2

)

[

∆E

2πT

]

3

2

× exp

{

∑

i

[

β

2
Ef (i) + ln

(

1− e−βEf (i)
)

]

−
∑

j

′

[

β

2
Eb(j) + ln

(

1− e−βEb(j)
)

]







. (3.9)

The factor V
[

∆E
2πT

] 3

2 in the right hand side of Eq. (3.9) comes from the contribution of the

zero eigenvalues, which can be handled as in ref. [9], through the use of collective coordinates

corresponding to the position of the bubble. V is the volume of three space, while the prime
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in
∑

j is a reminder that we have excluded the negative and the three zero eigenvalues from

the sum. Thus, the argument of the exponential incorporates only the contributions from

the stable vibrational modes on the bubble, very much like in Langer’s result [6].

Substituting Eq. (3.9) in (3.4) one obtains the following expression for the nucleation

rate per unit volume, Γ ≡ R/V, as defined in Eq. (2.15):

Γ = AT 4 exp

[

−∆F (T )

T

]

, (3.10)

where we have denoted by A the dimensionless factor

A =
1

π

|E
−
|

2T

sin
(

|E
−
|

2T

)

[

∆E

2πT

]

3

2

. (3.11)

Note that the zero-mode contribution in the prefactor depends on the energy barrier of the

critical nucleation, and not on its free energy as in Eq. (1.1). In Eq. (3.10) we have incorpo-

rated the exponential contribution from the prefactor into the definition of the temperature

corrected nucleation barrier, which we call ∆F (T ). Within the thin-wall approximation we

can write

∆F (T ) = −4πR3

3
∆Veff(T ) + 4πR2σ(T ) , (3.12)

where

∆Veff(T ) = V (ϕf )− V (ϕt) + T
∫

d3k

(2π)3
ln
[

1− e−β
√
~k2+m2(ϕf )

]

−

− T
∫

d3k

(2π)3
ln
[

1− e−β
√
~k2+m2(ϕt)

]

(3.13)

and

σ(T ) = σ0 +
T

4πR2







∑

j

′

[

β

2
Ewall(j) + ln

(

1− e−βEwall(j)
)

]

−

−
∑

i

[

β

2
Ef (i) + ln

(

1− e−βEf (i)
)

]}

. (3.14)

In Eq. (3.13) we have substituted the discrete sums by integrals over momenta. [For field

configurations ϕf and ϕt, we have the continuum eigenvalues, E2
f = ~k2 +m2(ϕf) and E

2
t =

~k2 + m2(ϕt), respectively, with m2(ϕf) =
d2V (φ)
dφ2

|φ=ϕf and m2(ϕt) =
d2V (φ)
dφ2

|φ=ϕt .] We have
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omitted the usual zero-temperature ultraviolet divergent terms,
∫

d3k
√

~k2 +m2(ϕ), from Eq.

(3.13) since they can always be handled by the introduction of the usual counterterms [22].

In Eq. (3.14) Ewall(j) are the eigenvalues related with the bubble wall field configuration

ϕwall. Thus, within the thin-wall approximation, the problem is reduced to the computation

of these eigenvalues for a field configuration describing the bubble wall, a non-trivial task. It

is possible, however, that the temperature corrections to the surface density are negligible.

For example, in the context of the QCD transition, the surface density is obtained from

lattice calculations, and is shown not to be very sensitive to temperature [12].

It is easy to see from Eq. (3.13) that ∆Veff(T ) is the usual 1-loop approximation to the

finite temperature false vacuum energy density [22]. The second term in the right hand side

of (3.14) comes from the finite temperature 1-loop contribution to the surface tension σ0, due

to thermal fluctuations on the bubble wall. Thus, by exponentiating the contribution from

the stable modes, the activation energy for the critical bubble becomes indeed an activation

free energy. Note however, that contrary to Eq. (1.1), the free-energy functional is evaluated

for the tree-level bounce. In Section 4 we will compare the results obtained with the two

approaches.

B. Evaluating the Determinantal Prefactor: Perturbative Expansion

A second approach to the computation of the determinantal prefactor in (3.4) consists

in developing a perturbative expansion for it. First we write the determinantal ratio as

[

det(−✷E + V ′′(ϕf))β
det′(−✷E + V ′′(ϕb))β

]
1

2

= exp
{

1

2
Tr ln [−✷E + V ′′(ϕf )]β −

− 1

2
Tr′ ln [−✷E + V ′′(ϕb)]β

}

, (3.15)

where we have used in (3.15) the identity ln det M̂ = Tr ln M̂ and the prime in both sides

denote that the negative and the zero modes have been omitted. (They are treated as in

previous Section.)

We rewrite (3.15) as
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[

det(−✷E + V ′′(ϕf))β
det′(−✷E + V ′′(ϕb))β

] 1

2

= exp
{

−1

2
Tr ln

[

1 +Gβ(ϕf) [V
′′(ϕb)− V ′′(ϕf)]

]

}

, (3.16)

where

Gβ(ϕf) =
1

−✷E +m2(ϕf)
(3.17)

is just the propagator for the scalar field φ, with m2(ϕf) = V ′′(ϕf).

Expanding the logarithm in (3.16) in powers of

Gβ(ϕf) [V
′′(ϕb)− V ′′(ϕf)], we obtain the graphic representation,

Tr ln {1 +Gβ(ϕf) [V
′′(ϕb)− V ′′(ϕf)]} = ✖✕

✗✔
+ ✖✕

✗✔
+ ✖✕

✗✔
+ . . . ,

(3.18)

where the dashed lines correspond to the background “field” [V ′′(ϕb)− V ′′(ϕf)] and the

internal lines denote the propagator Gβ(ϕf). The expression (3.18) can be written as

Tr ln {1 +Gβ(ϕf) [V
′′(ϕb)− V ′′(ϕf)]} =

+∞
∑

m=1

(−1)m+1

m

∫

d3x [V ′′(ϕb)− V ′′(ϕf )]
m ×

×
+∞
∑

n=−∞

∫

d3k

(2π)3
1

[

ω2
n +

~k2 +m2(ϕf)
]m . (3.19)

The sum in m can be performed and one obtains

Tr ln {1 +Gβ(ϕf) [V
′′(ϕb)− V ′′(ϕf)]} =

∫

d3x
+∞
∑

n=−∞

∫

d3k

(2π)3
ln

[

1 +
V ′′(ϕb)− V ′′(ϕf)

ω2
n +

~k2 +m2(ϕf)

]

.

(3.20)

This expression can be further simplified by means of the identity, (E2
b (
~k) ≡ ~k + m2(ϕb),

and E2
f(
~k) ≡ ~k +m2(ϕf))

+∞
∑

n=−∞

ln





ω2
n + E2

b (
~k)

ω2
n + E2

f (
~k)



 = βEb(~k) + 2 ln
(

1− e−βEb(
~k)
)

−

− βEf(~k)− 2 ln
(

1− e−βEf (
~k)
)

. (3.21)

The terms proportional to β can be renormalized. We are left with the familiar tempera-

ture corrected effective potential (we neglect terms coming from zero temperature quantum

corrections) [22],
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Veff(ϕ, T ) = V (ϕ) + T
∫

d3k

(2π)3
ln
(

1− e−β
√
~k2+m2(ϕ)

)

. (3.22)

Within the thin-wall limit, using (3.21) into (3.20), and substituting into Eq. (3.16), we

obtain, from Eq. (3.4) the temperature corrected barrier,

∆F (T ) = −4πR3

3
∆Veff(T ) + 4πR2σ(T ) , (3.23)

where

∆Veff(T ) = V (ϕf)− V (ϕt)−
1

β

∫ d3k

(2π)3
ln





1− e−βEt(
~k)

1− e−βEf (
~k)



 (3.24)

and

σ(T ) = σ0 +
1

4πR2

∫

d3x
1

2β

+∞
∑

n=−∞

∫

d3k

(2π)3
ln

[

1 +
V ′′(ϕwall)− V ′′(ϕf)

ω2
n +

~k2 +m2(ϕf )

]

. (3.25)

Expression (3.24) for the temperature corrected false vacuum energy density can be easily

identified with ∆Veff(T ), as defined in Eq. (3.13). Also, expression (3.25) for σ(T ) can be

identified with the temperature corrected surface tension of the bubble wall, by writing it

as

σ(T ) =
1

4πR2
[F (ϕwall, T )− F (ϕf , T )] , (3.26)

with

F (ϕ, T ) = − 1

β
lnZ(ϕ) , (3.27)

where F (ϕ, T ) is the free energy for the field configuration ϕ. σ(T ), as given by (3.26), is

then the free energy difference (per unit area of the bubble) between the two configurations

(ϕwall and ϕf ), which defines the surface tension. As shown in Ref. [23], the expressions for

the free energies in (3.26), at 1-loop order give (3.25).

IV. EFFECTS OF INTERACTIONS ON THE DECAY RATE

In the previous two Sections we have obtained the temperature effects on the nucleation

barrier by assuming that the system becomes trapped in a metastable phase as the temper-

ature drops below the critical temperature TC . This assumption is not very realistic, and
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was addopted so that we could stress the main points of the calculation without having to

worry about the effects of interactions of the order parameter with other fields. However,

in models of interest within a cosmological context, such as the standard electroweak model

and some of its extensions, the Universe becomes trapped in a metastable phase due to the

interactions of the Higgs field (or effective scalar order parameter) with other massless fields,

such as gauge bosons or fermions. In fact, it is possible to formulate this statement in terms

of conditions that a general effective potential must satisfy, if it is to develop a metastable

phase below TC [24]. Basically, the condition states that the mass gap between the symmet-

ric and broken-symmetric phases must be large enough so that massive fluctuations away

from the symmetric minimum are suppressed. Since the mass gap is given in terms of the

(temperature dependent) vacuum expectation value of the Higgs field and of its coupling to

other fields, the condition states that the transition cannot be too weakly first order.

The question then is what effective potential should be considered when calculating the

decay rate. As recently shown by E. Weinberg for the zero-temperature Coleman-Weinberg

models (which exhibit symmetry breaking only due to radiative corrections), the effective

potential relevant in the calculation of the bounce solution is obtained by integrating over

all fields but the scalar field; the radiative corrections coming form these fields modify the

vacuum structure of the model, making metastability possible. In this Section, we argue

that the same procedure must be followed when calculating the nucleation rate at finite

temperature. We first review, in general terms, how to take into account the interactions of

the scalar field with other fields in the calculation of the decay rate. (For details see, Ref.

[18].) Then we apply our method to an example involving fermions, explicitly comparing

our results to those obtained from Eq. (1.1).

A. General Formalism

Let us consider a system described by a scalar field φ and a set of fields ξ (bosonic or

fermionic fields) which are coupled to φ. The partition function of the system is given by

Z =
∫

DφDξe−SE(φ,ξ) , (4.1)
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where SE(φ, ξ) is the euclidean action of the system and the functional integration is carried

over field configurations subject to periodic boundary conditions, φ(~x, 0) = φ(~x, β), for

bosons or antiperiodic, ψ(~x, 0) = −ψ(~x, β), for fermion fields.

If one integrates out the ξ fields in (4.1), the partition function can be written as

Z =
∫

Dφe−W
β(φ) , (4.2)

where

W β(φ) = − ln
∫

Dξe−SE(φ,ξ) . (4.3)

W β(φ) can be viewed as an effective action for the scalar field φ, where only ξ-loop terms

are included. Note that these ξ-loop terms introduce finite temperature corrections in (4.3).

SE(φ, ξ) in (4.1) and (4.3) includes renormalization counter-terms and, if one or more of the

ξ-fields is a gauge field, SE(φ, ξ) also includes the gauge fixings and the corresponding ghost

terms.

The procedure is now, in principle, straightforward. We evaluate the partition function

in Eq. (4.2) semiclassically by expanding the effective action W β(φ) around its extremum

configuration, which will be the bounce. Note that the bounce will include the radiative

corrections coming from the fields that couple to φ, but not from φ itself. The determinan-

tal prefactor can be evaluated as before, by considering the negative and zero eigenvalues

separately from the positive eigenvalues. However, as pointed out by Weinberg [18], W β(φ)

cannot always be obtained in closed form, being in general a nonlocal functional. He pro-

poses to resolve this difficulty by considering a local action W0(φ) which is close enough to

the original one. From a derivative expansion of W β(φ), W0(φ) is found to be

W0(φ) =
∫

d4xE

[

1

2
(∂µφ)

2 + V̂1−loop(φ)
]

, (4.4)

where V̂1−loop(φ) includes the tree level potential V (φ) and the 1-loop contributions coming

only from the ξ-field integration. The bounce solution can then be obtained from (4.4).

W0(φ) should be a good approximation to W β(φ) as long as the typical interaction length

scale set by the field(s) ξ is shorter than the scale for the nonlocality of W β(φ).
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In what follows we will apply the above formalism to a specific example of a scalar field

coupled to fermions. For large enough Yukawa couplings, this model has been shown to

satisfy the conditions for metastability specified in Ref. 24.

B. Application: Real scalar field coupled to fermion fields

Consider a model of a real scalar field φ coupled to fermion fields with a lagrangian

density

L =
1

2
(∂µφ)

2 − V (φ)− gφψ̄ψ + iψ̄ 6∂ψ , (4.5)

with V (φ) given by

V (φ) =
λ

4!
φ4 − αµ

3!
φ3 +

µ2

2
φ2 , (4.6)

where λ and α are positive, dimensionless constants and µ2 > 0 is a (mass)2 parameter.

A large enough coupling to fermions guarantees that a metastable phase is possible as the

system is cooled below TC ; the high temperature minimum of the 1-loop effective potential,

〈ϕ〉T ≃ α
λ+4g2

µ , lies to the left of the maximum of the potential at T = TC , and thermal

fluctuations away from the symmetric minimum are suppressed. Numerical values for the

couplings satisfying these conditions can be found in Ref. 24.

The partition function for this model is given by

Z =
∫

DφDψDψ̄e−
∫ β

0
dτ
∫

d3xL(φ,ψ,ψ̄) . (4.7)

As the fermion fields appear quadratically in (4.7), they can be integrated out, giving

Z =
∫

Dφe−W0(φ) , (4.8)

where

W0(φ) =
∫ β

0
dτ
∫

d3x
[

1

2
(∂τφ)

2 +
1

2
(~∇φ)2 + V (φ)

]

− Tr ln(− 6∂ − igφ)β , (4.9)

and
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Tr ln(− 6∂ − igφ)β = ln det(− 6∂ − igφ)β . (4.10)

Thus, W0(φ) can be written as

W0(φ) =
∫ β

0
dτ
∫

d3x
[

1

2
(∂τφ)

2 +
1

2
(~∇φ)2 + V̂ψ(φ, T )

]

, (4.11)

where, for sufficiently smooth fields (see Appendix B), the effective potential obtained af-

ter integrating over the fermions and renormalizing is (we will drop all zero temperature

quantum corrections)

V̂ψ(φ, T ) = V (φ)− 4T
∫ d3k

(2π)3
ln
(

1 + e−β
√
~k2+g2φ2

)

, (4.12)

The temperature dependent term accounts for finite temperature corrections coming from

fermion loops. V̂ψ(φ, T ) is the potential we should use to compute the bounce. Note that,

neglecting the T = 0 quantum corrections, the high-temperature limit of V̂ψ(φ, T ) is approx-

imately

V̂ψ(φ, T ) ≃ V (φ) +
T 2

12
g2φ2 , (4.13)

so that for (T/µ)2 > (9α2/λ − 24)/4g2, a condition which is easily satisfied for reasonable

values of the couplings, the high-temperature minimum is 〈ϕ〉T ≃ 0.

Once we have the action W0(φ), the bounce is obtained as a solution of

δW0(φ)

δφ
|φ=ϕb = 0 . (4.14)

Thus, for a static, spherically symmetric configuration, the bounce configuration ϕb(r) will

be a solution of

d2φ

dr2
+

2

r

dφ

dr
= V̂ ′

ψ(φ, T ) , (4.15)

with boundary conditions, limr→∞ ϕb(r) = ϕf ≃ 0 and dϕb
dr

|r=0 = 0. (From now on ϕf and

ϕt should be understood as being the minima of (4.12) and not the minima of the tree-level

potential V (φ).)

The procedure is now identical to that of Sections 2 and 3. Having a bounce solution

we can evaluate the partition function written in Eq. (4.8) semiclassically, exactly as was
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done in Eqs. (2.11) and (2.12), by expanding around ϕf and ϕb. We then obtain, from Eqs.

(2.14) and (2.15), the nucleation rate,

R = −|E−|
π

Im

[

det(−✷E +m2
β(ϕb))β

det(−✷E +m2
β(ϕf))β

]− 1

2

e−∆W0 , (4.16)

where m2
β(ϕ) =

d2V̂ψ(φ)

dφ2
|φ=ϕ, with V̂ψ(φ) obtained above. ∆W0 is given by

∆W0 =W0(ϕb)−W0(ϕf) , (4.17)

where W0(φ) was defined in Eq. (4.11).

In order to proceed, we must rewrite the determinantal prefactor explicitly isolating the

negative and zero modes from the positive modes. This is done following the same steps

of Section 3, although now we must handle the fermionic contribution to the determinants.

The details of the perturbative expansion for the fermionic determinantal prefactor are given

in Appendix B. We can then write the nucleation rate per unit volume as

Γ =
T 4

π

|E
−
|

2T

sin
(

|E
−
|

2T

)

[

∆W0

2π

]

3

2

exp

[

−∆F (T )

T

]

, (4.18)

where ∆F (T ), the bubble activation free energy in the 1-loop approximation, is given by

∆F (T ) =
∫

d3x







1

2
(∇ϕb)2 + V̂ψ(ϕb)− V̂ψ(ϕf ) +

1

2β

+∞
∑

n=−∞

∫ d3k

(2π)3
ln



1 +
m2
β(ϕb)−m2

β(ϕf)

ω2
n +

~k2 +m2
β(ϕf)











.

(4.19)

As usual, the sum over n can be performed and we get,

∆F (T ) =
∫

d3x
[

1

2
(∇ϕb)2 + V̂eff(ϕb, T )− V̂eff(ϕf , T )

]

, (4.20)

where the effective potential V̂eff(φ, T ), is given by (neglecting zero temperature quantum

corrections)

V̂eff(φ, T ) = V (φ)− 4T
∫

d3k

(2π)3
ln
(

1 + e−β
√
~k2+g2φ2

)

+

+ T
∫

d3k

(2π)3
ln



1− e
−β

√

~k2+m2

β
(φ)



 , (4.21)
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where V (φ) is the tree level potential (4.6) and the mass term appearing in the scalar loop

contribution is m2
β(φ) ≃ V ′′(φ)+ T 2

6
g2 in leading order in the fermion loops. It is instructive

to contrast this result with that obtained for self-coupled scalars, Eq. (3.22). The coupling

to fermions modifies the scalar mass propagating in the loops. This effect naturally improves

the infrared behavior of the theory, and can be of importance in weak first-order transitions.

We will say more about this later. Note also a crucial difference between this expression

for the free energy barrier and the expression for the free energy barrier in Eq. (1.1): Here,

the bounce is obtained with the effective potential that does not include the corrections

coming from scalar loops. The corrections from scalar loops which appear in the last term

of Eq. (4.21) are thermally induced fluctuations about the bounce solution computed with

V̂ψ(φ, T ). In the usual expression for the nucleation barrier the bounce is obtained from the

full effective potential including the scalar loops. The two expressions are definetely not

equivalent, even though for small scalar self-couplings the differences are negligible. In order

to illustrate the differences let us look at a specific example.

In Fig. 2 we contrast the two approaches by comparing the nucleation barriers as a

function of the temperature for a fixed set of coupling constants. The barriers in the figure

were obtained by a numerical integration of the bounce equation including the relevant loops

according to each approach. For clarity let us call the nucleation barrier obtained in the usual

approach, i.e., by including the scalar loops in the bounce calculation, the scalar barrier.

The nucleation barrier obtained without including the scalar loops we call the fermionic

barrier. In Fig. 2 we take λ = 1.0, α = 2.0, and g2 = 0.5. Since λ controls the strength of

the scalar corrections, we expect the differences between the two barriers to be noticeable.

We find that this is indeed the case, noting that as we approach the critical temperature

(that is, as we move closer to the thin-wall limit) the differences between the two barriers

increase, with the scalar barrier always larger than the fermionic barrier. This is precisely

what one expects if the scalar corrections are entropic corrections to the nucleation barrier.

Thus, the nucleation barrier used in expression Eq. (1.1) is overestimated for large enough

scalar corrections.
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Finally, we point out two additional differences between the results. First note that the

contribution from the zero modes to the prefactor depends on ∆W0(φ), as opposed to ∆F (T ).

This could be important for weak transitions in which the prefactor may play a relevant rôle.

Most importantly, the expression for V̂eff(φ, T ), Eq. (4.21), differs from the usual 1-loop finite

temperature effective potential by the mass term for the scalar field loops, m2
β(φ) = V̂ ′′

ψ (φ).

Since we have used the stationary points of W0(φ), Eq. (4.11), as opposed to the stationary

points of SE(φ, ψ), as the effective “background” fields in the saddle-point evaluation of the

partition function, the scalar field propagator carries the finite temperature mass m2
β(φ).

The propagator is dressed by the quantum corrections due to fermion loops. In the usual

1-loop finite temperature effective potential, the stationary points are obtained from the

tree level action, with mass term for scalar loops, m2
0(φ) = V ′′(φ). This results in the usual

negative mass terms related to the change in convexity of the effective potential between

the inflection points, and, in the case of very shallow potentials, in bad infrared behavior

near ϕf . The incorporation of the fermionic corrections to the scalar propagator, which is

demanded by our method of calculation atenuates these problems. In the example above,

the scalar mass gets dressed by fermionic loops, being given by m2
β(φ) ≃ V ′′(φ) + 1

6
g2T 2,

where V (φ) is the tree-level potential (4.6). The temperature term in mβ works as the

infrared regulator for small values of m2
0(φ) = V ′′(φ). This result is independent of the

particular model studied. Similar conclusions have been obtained in Ref. [13] for scalar

electrodynamics.

V. CONCLUSIONS

In this paper we examined in some detail the computation of false vacuum decay rates

at finite temperatures in the regime in which quantum fluctuations are negligibly small

compared to thermal fluctuations. We have shown that temperature corrections to the

nucleation barrier can be obtained from a saddle-point evaluation of the partition function

in a dilute gas approximation. In fact, the temperature corrections are simply due to the

positive eigenvalues from stable fluctuations around the critical bubble. That is, they are
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the entropic contributions due to thermally induced deformations on the bubble.

Even though this result has been known in classical statistical mechanics for more than

two decades [6], we believe that a consistent treatment within field theory is still lacking.

Although we left many questions unanswered, we hope to have clarified some of the issues

involved in the calculation of finite-temperature decay rates. Of particular importance is the

fact that the bounce is not obtained from the full 1-loop corrected effective potential, but

from the potential excluding the scalar loops. Thus, for a self-interacting scalar, the bounce

is obtained from the tree-level potential. The full finite temperature potential appears in the

exponent only after properly accounting for the positive eigenvalues of the determinantal

prefactor. That is, the scalar contributions account for entropic corrections to the nucleation

barrier. We obtained a temperature corrected nucleation barrier which can differ from the

usual result. We showed this to be particularly true for sufficiently large scalar self-couplings

in the vicinity of the critical temperature for the transition.

Also, we found that the interaction with other fields gives rise to a potential which is

better behaved in the infrared. (See also Ref. [13].) This result is the finite-temperature

equivalent to what E. Weinberg found for the zero-temperature case, once the integration

over the other fields is performed [18].

The reader may be wondering if our results will have any consequences to current work on

the electroweak phase transition. The answer depends on the Higgs mass. For a sufficiently

light Higgs it is consistent to neglect the contribution from scalar loops to the effective

potential. In this case, the usual estimate for the nucleation barrier is a valid approximation.

However, the situation may change for a heavier Higgs. Given that the experimental lower

bound on the Higgs mass is now above 60 GeV, we believe it worthwhile to study this

question in more detail, keeping in mind that the transition becomes weaker as the Higgs

mass increases.
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Figure Captions

Figure 1: A typical asymmetric double-well potential.

Figure 2: A comparison of the nucleation barrier as a function of temperature, in

units of mass parameter µ, obtained by including (stars) and excluding (dots) scalar

loops in the computation of the bounce. The parameters in the tree-level potential are

λ = 1.0, α = 2.0, g2 = 0.5.

Figure 3: A comparison of the terms g2φ2(r) and g dφ(r)/dr appearing in Appendix B.

The parameters in the tree-level potential are λ = 1, α = 0.56, g2 = 0.5.

APPENDIX A:

Let us show that the determinant ratio of Eq. (3.7), denoted here as R, gives (3.9).

Separating the negative and zero eingevalues in the denominator of Eq. (3.7), one can write

R = exp







1

2
ln





∏+∞
n=−∞

∏

i

(

ω2
n + E2

f (i)
)

∏+∞
n=−∞(ω2

n + E2
−)(ω2

n + E2
0)

3
∏′
j (ω

2
n + E2

b (j))











, (A1)

24



where the prime in
∏

j means that the negative eigenvalue, E2
−, and the three zero eigen-

values, E2
0 , are now excluded from the product. The term for n = 0 in (ω2

n + E2
0), can be

handled as in Ref. [9], resulting in the factor V
[

∆E
2πT

] 3

2 in Eq. (3.9). Separating the n = 0

modes both in the numerator and the denominator of (A1), and using the identity (3.8), we

get,

R = V
[

∆E

2πT

]

3

2

exp









−4 +
∑

i

−
∑

j

′



 ln
+∞
∏

n=1

ω2
n − ln

(

E2
−

)1/2 − ln

[

sin(β
2
|E−|)

β
2
|E−|

]

+

+





∑

j

′ −
∑

i



 lnβ +
∑

i

[

β

2
Ef (i) + ln

(

1− e−βEf (i)
)

]

+

−
∑

j

′

[

β

2
Eb(j) + ln

(

1− e−βEb(j)
)

]







. (A2)

In the above expression we used that the negative eigenvalue can be written as (E2
−)

1

2 =

i|E−|. Remembering that
∑′
j has four eigenvalues less than

∑

i, we can write

R = V
[

∆E

2πT

]

3

2

exp

{

−4lnβ − ln
(

E2
−

)1/2 − ln

[

sin(β
2
|E−|)

β
2
|E−|

]

+

+
∑

i

[

β

2
Ef(i) + ln

(

1− e−βEf (i)
)

]

−
∑

j

′

[

β

2
Eb(j) + ln

(

1− e−βEb(j)
)

]







(A3)

which reduces to Eq. (3.9).

APPENDIX B:

In (4.16), the exponential term ∆W0 can be written as (from (4.17) and (4.9))

∆W0 = [SE(ϕb)− Tr ln(− 6∂ − igϕb)β]− [SE(ϕf)− Tr ln(− 6∂ − igϕf)β] , (B1)

where SE(φ) =
∫ β
0 dτ

∫

d3x
[

1
2
(∂µφ)

2 + V (φ)
]

, is the classical action for the scalar field as in

(4.5). The exponential in (4.16) can be written then as

e−∆W0 =

[

det(− 6∂ − igϕb)β
det(− 6∂ − igϕf)β

]

e−∆S , (B2)

with ∆S = SE(ϕb)− SE(ϕf).
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If one uses the identity (which follows from charge-conjugation invariance):

[det(− 6∂ − igϕ)]2 = det(− 6∂ − igϕ). det(− 6∂ + igϕ) =

= det
[

(−✷E + g2ϕ2)14×4 − igγµE∂µϕ
]

, (B3)

where 14×4 is the 4× 4 unit matrix, then, for ϕ = ϕf , one gets

det(− 6∂ − igϕf)β =
[

det(−✷E + g2ϕ2
f)β
]
1

2 . (B4)

For the determinant involving the spherically symmetric bounce ϕb, the Dirac matrix γµE in

(B3) is radial and one can write

γr = i







12×2 0

0 −12×2





 , (B5)

where 12×2 denotes a 2 × 2 unit matrix. Then, for ϕb = ϕb(r), det(− 6∂ − igϕb(r))β can be

written as

det(− 6∂ − igϕb(r))β = det Ω̂(+)(ϕb). det Ω̂
(−)(ϕb) , (B6)

where

Ω̂(±)(ϕb) = −✷E + g2ϕ2
b ± g

∂ϕb
∂r

. (B7)

Therefore, the determinants in (B2) can be written as (using that ln det M̂ =

Tr ln M̂ )

det(− 6∂ − igϕb)β
det(− 6∂ − igϕf)β

= exp {Tr ln(− 6∂ − igϕb)β − Tr ln(− 6∂ − igϕf)β} =

= exp







Tr ln

[

−✷E + g2ϕ2
b + g

∂ϕb
∂r

]

β

+ Tr ln

[

−✷E + g2ϕ2
b − g

∂ϕb
∂r

]

β

−

− 2Tr ln
[

−✷E + g2ϕ2
f

]

β

}

. (B8)

As in (3.16), one can write (B8) as

det(− 6∂ − igϕb)β
det(− 6∂ − igϕf)β

= exp

{

Tr ln

[

1 + Sβ(ϕf)

[

g2(ϕ2
b − ϕ2

f) + g
∂ϕb
∂r

]]

+

+ Tr ln

[

1 + Sβ(ϕf)

[

g2(ϕ2
b − ϕ2

f )− g
∂ϕb
∂r

]]}

, (B9)

26



where, in analogy to Eq. (3.16), we introduce the propagator

Sβ(φf) =
1

−✷E + g2ϕ2
f

(B10)

The argument of the exponent in the rhs of (B9) can be written as a series, analogously to

Eq. (3.19):

Tr ln

[

1 + Sβ(ϕf)

[

g2(ϕ2
b − ϕ2

f)± g
∂ϕb
∂r

]]

=
+∞
∑

m=1

(−1)m+1

m

∫

d3x

[

g2(ϕ2
b − ϕ2

f)± g
∂ϕb
∂r

]m

×

×
+∞
∑

n=−∞

∫

d3k

(2π)3
1

[

ω̄2
n +

~k2 + g2ϕ2
f

]m , (B11)

where ω̄n = (2n+1)π
β

. As before, (B11) can be expressed as a graphic expansion similar to

(3.18), with the propagators Gβ(ϕf) replaced now by Sβ(ϕf) and the external lines given by

g2(ϕ2
b − ϕ2

f) + g ∂ϕb
∂r

or g2(ϕ2
b − ϕ2

f )− g ∂ϕb
∂r

.

The determinant factor in (4.16), coming from the functional integration of the scalar

field, can be evaluated by the same methods of Sec. 3. In (4.16), the determinant term

det[−✷E + m2
β(ϕb)]β, with m2

β(ϕb) = V̂ ′′
ψ (ϕb), has a negative eigenvalue, E2

−, associated

with the instability of the critical bubble, and the three zero eigenvalues, associated with

the translational invariance of the bubble. These eigenvalues can be handled as usual,

giving the preexponential term in (4.18). The part of the determinant involving the positive

eigenvalues can be written as an expansion exactly as in (3.19),





det′(−✷E + V̂ ′′
ψ (ϕb))β

det(−✷E + V̂ ′′
ψ (ϕf))β





− 1

2

= exp
{

−1

2
Tr ln

[

1 + Ĝβ(ϕf)
[

V̂ ′′
ψ (ϕb)− V̂ ′′

ψ (ϕf)
]]

}

, (B12)

with Ĝβ(ϕf ) =
1

−✷E+m
2

β
(ϕf )

and

Tr ln
{

1 + Ĝβ(ϕf)
[

V̂ ′′
ψ (ϕb)− V̂ ′′

ψ (ϕf)
]}

=
+∞
∑

m=1

(−1)m+1

m

∫

d3x
[

V̂ ′′
ψ (ϕb)− V̂ ′′

ψ (ϕf)
]m ×

×
+∞
∑

n=−∞

∫

d3k

(2π)3
1

[

ω2
n +

~k2 +m2
β(ϕf)

]m . (B13)

The sum in m in both (B11) and (B13) can be performed as in Eq. (3.19)). Therefore, from

Eqs. (B2), (B11) and (B13), we can write the relevant part of Eq. (4.16) as
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



det(−✷E + V̂ ′′
ψ (ϕb))β

det(−✷E + V̂ ′′
ψ (ϕf ))β





− 1

2

e−∆W0 =





det(−✷E + V̂ ′′
ψ (ϕb))β

det(−✷E + V̂ ′′
ψ (ϕf))β





− 1

2

det(− 6∂ − igϕb)β
det(− 6∂ − igϕf)β

e−∆S =

= V T 4

i|E−|
β |E

−
|

2

sin
(

β |E
−
|

2

)

[

∆W0

2π

]

3

2

exp







−∆S +
∫

d3x
+∞
∑

n=−∞

∫

d3k

(2π)3



ln



1 +
g2(ϕ2

b − ϕ2
f) + g ∂ϕb

∂r

ω̄2
n +

~k2 + g2ϕ2
f



+

+ ln



1 +
g2(ϕ2

b − ϕ2
f)− g ∂ϕb

∂r

ω̄2
n +

~k2 + g2ϕ2
f



− 1

2
ln



1 +
m2
β(ϕb)−m2

β(ϕ
2
f)

ω2
n +

~k2 +m2
β(ϕ

2
f )















, (B14)

where ∆W0 is given by

∆W0 = ∆S −
∫

d3x
+∞
∑

n=−∞

∫

d3k

(2π)3



ln



1 +
g2(ϕ2

b − ϕ2
f ) + g ∂ϕb

∂r

ω̄2
n +

~k2 + g2ϕ2
f



+

+ ln



1 +
g2(ϕ2

b − ϕ2
f )− g ∂ϕb

∂r

ω̄2
n +

~k2 + g2ϕ2
f







 . (B15)

Apart from the derivative terms ∂ϕb/∂r, the momentum integral reproduces the finite

temperature corrections to the the tree-level potential appearing in ∆S. When we wrote

the expression for ∆F (T ) in Eq. (4.19), these terms were not included in the effective

potential V̂eff(φ, T ). There are two reasons for negleting this term. First, due to the graphic

expansion we used for the determinants, it is easy to see that at least at the tadpole level,

their contribution cancels. Since the tadpole gives the dominant temperature contribution

to the potential, terms that depend on ∂ϕb/∂r will be sub-dominant. Second, it is possible

to explicitly compare the terms g2ϕ2
b and g∂ϕb/∂r, by obtaining ϕb(r) numerically. We

have performed this comparison for the same set of parameters used in Figs. 2 and 3, and

convinced ourselves that the derivative term will indeed be sub-dominant. A typical example

is shown in Fig. 4. Thus, neglecting the term ∂ϕb/∂r, we can use Eqs. (B14) and (B15) to

obtain the expression for ∆F (T ) in (4.19).
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