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ABSTRACT

Nonlinear filtering is the problem of estimating the state of a stochastic nonlinear

dynamical system using noisy observations. It is well known that the posterior state

estimates in nonlinear problems may assume non-Gaussian multimodal probabil-

ity densities. We present an unscented Kalman-particle hybrid filtering framework

for tracking the three dimensional motion of a space object. The hybrid filtering

scheme is designed to provide accurate and consistent estimates when measurements

are sparse without incurring a large computational cost. It employs an unscented

Kalman filter (UKF) for estimation when measurements are available. When the

target is outside the field of view (FOV) of the sensor, it updates the state prob-

ability density function (PDF) via a sequential Monte Carlo method. The hybrid

filter addresses the problem of particle depletion through a suitably designed filter

transition scheme. The performance of the hybrid filtering approach is assessed by

simulating two test cases of space objects that are assumed to undergo full three

dimensional orbital motion.

Having established its performance in the space object tracking problem, we ex-

tend the hybrid approach to the general multimodal estimation problem. We propose

a particle Gaussian mixture-I (PGM-I) filter for nonlinear estimation that is free of

the particle depletion problem inherent to most particle filters. The PGM-I filter

employs an ensemble of randomly sampled states for the propagation of state prob-

ability density. A Gaussian mixture model (GMM) of the propagated PDF is then

recovered by clustering the ensemble. The posterior density is obtained subsequently

through a Kalman measurement update of the mixture modes. We prove the con-

vergence in probability of the resultant density to the true filter density assuming
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exponential forgetting of initial conditions by the true filter. The PGM-I filter is

capable of handling the non-Gaussianity of the state PDF arising from dynamics,

initial conditions or process noise. A more general estimation scheme titled PGM-II

filter that can also handle non-Gaussianity related to measurement update is consid-

ered next. The PGM-II filter employs a parallel Markov chain Monte Carlo (MCMC)

method to sample from the posterior PDF. The PGM-II filter update is asymptoti-

cally exact and does not enforce any assumptions on the number of Gaussian modes.

We test the performance of the PGM filters on a number of benchmark filtering

problems chosen from recent literature. The PGM filtering performance is compared

with that of other general purpose nonlinear filters such as the feedback particle filter

and the log homotopy based particle flow filters. The results also indicate that the

PGM filters can perform at par with or better than other general purpose nonlinear

filters such as the feedback particle filter (FPF) and the log homotopy based particle

flow filters. Based on the results, we derive important guidelines on the choice be-

tween the PGM-I and PGM-II filters. Furthermore, we conceive an extension of the

PGM-I filter, namely the augmented PGM-I filter, for handling the nonlinear/non-

Gaussian measurement update without incurring a large computational penalty. A

preliminary design for a decentralized PGM-I filter for the distributed estimation

problem is also obtained. Finally we conduct a more detailed study on the perfor-

mance of the parallel MCMC algorithm. It is found that running several parallel

Markov chains can lead to significant computational savings in sampling problems

that involve multi modal target densities. We also show that the parallel MCMC

method can be used to solve global optimization problems.
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1. INTRODUCTION

Recent advances in engineering and computer science have made it possible to

bring a wide variety of systems, larger in scale and complexity than ever before,

within the scope of automation. Supervision and control of a dynamical system or

industrial process requires the knowledge of its underlying state. Consequently, there

is a growing interest in recursive and computationally efficient algorithms for esti-

mating the state and associated uncertainty in higher dimensional nonlinear systems.

A filter is an algorithm that makes use of the information about the time evolution of

a system and its relationship with the recorded measurements to provide estimates of

its current state. The limitations in exact modeling of physical phenomena and the

ubiquity of noise necessitates probabilistic representation of state estimates. In this

thesis, we consider the Bayesian approach to estimation, that allows prior knowledge

concerning the statistics of the state to be combined with the likelihood of measure-

ment data. We propose a unifying framework for incorporating the nonlinearity of the

process and measurement models and non-Gaussian statistics of the noise and state

variables within a Bayesian estimation paradigm∗. We examine the strengths and

limitations of various existing estimation algorithms and propose combining them

to secure better estimation performance. The state PDF, in its functional form, is

modeled as a GMM to incorporate the effects of non-Gaussianity and multimodality.

The exponential growth in computational requirements with the increasing dimen-

sion of the state space, also known as the ‘Curse of Dimensionality’, has been a

major challenge to the scalability of several existing estimation algorithms. We at-

tempt to establish non exponential bounds on the required computational resources.

∗Parts of this chapter were reprinted with permission from [1, 3, 2, 4].
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Additionally, we propose incorporating machine learning algorithms to enhance the

filtering performance. We consider it a central objective to obtain rigorous guar-

antees on estimation performance. Extensive simulation studies are conducted to

compare the performance of the proposed filtering approach to existing methods. In

section 1.1 we briefly review the two step recursive Bayesian approach to estimation.

In section 1.2 we discuss the essentials of mixture model filtering with emphasis on

Gaussian mixture models.

1.1 Preliminaries: Bayesian Filtering

Let x ∈ <d be the state of a dynamical system given by

xt+1 = f(xt, wt), (1.1)

where wt is a noise term with known distribution. Let z1, z2, · · · , zn be a sequence

of measurements of the system where

zk = h(xk) + νk. (1.2)

The distribution of the measurement noise term νk is assumed to be known. Given

this state space description and the initial state PDF P (X0), the objective of the

filtering problem is to be able to determine the conditional state PDF P (Xt|Zt).

Here Zt represents the sequence of all measurements recorded until time t.

The transition kernel pn(x/x′) of the state Markov chain can be derived from the

process model given in equation 1.1. Given the transition kernel pn(x/x′) and the

measurement likelihood pn(zn|x), the filtered density of the state Markov chain can

be computed using a recursive algorithm that involves two basic steps. Let πn−1 be

the PDF of the state at time n− 1 conditioned on Zn−1. Given πn−1, the prediction
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step evaluates the propagated prior π−n (x), i.e., the PDF of the state at n conditioned

on Zn−1, using the law of total probability.

π−n (x) =

∫
pn(x/x′)πn−1(x′)dx′, (1.3)

In the measurement update step, the propagated PDF π−n (x) is updated with the

new measurement zn according to the Bayes rule to obtain the posterior PDF πn(x).

πn(x) =
pn(zn/x)π−n (x)∫
pn(zn/x′)π−n (x′)dx′

, (1.4)

The prediction and the update steps above are the key steps to any recursive filtering

algorithm. In practice, obtaining closed form expressions for the integral in equa-

tion 1.3 and the integral denominator term in equation 1.4 are extremely difficult

except in a few cases. Most nonlinear filters attempt to obtain good approximations

to these integrals.

1.2 Preliminaries: Mixture Model Filtering

Let us assume that a mixture representation has been chosen for the predicted

and posterior PDFs. In particular, let:

π−n (x) =

M−(n)∑
i=1

ω−i (n)p−i,n(x),

πn(x) =

M(n)∑
i=1

ωi(n)pi,n(x), (1.5)

where p−i (.), pi(.) are standard PDFs, and {ω−i (n)}, {ωi(n)} are positive sets of

weights that both add up to unity. The terms M−(n) and M(n) represent the

number of components used in the mixture representation. The prediction equation
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for the mixture model then boils down to the following:

π−n (x) =

M(n−1)∑
i=1

ωi(n− 1)︸ ︷︷ ︸
ω−i (n)

∫
pn(x|x′)pi,n−1(x′)dx′︸ ︷︷ ︸

p−i,n(x)

. (1.6)

Explicitly, the mixture prediction step can be split into the following two steps:

ω−i (n) = ωi(n− 1), (1.7)

p−i,n(x) =

∫
pn(x|x′)pi,n−1(x′)dx′. (1.8)

Given an observation zn, the prior mixture π−n (x) is transformed into the posterior

mixture πn(x) as follows:

πn(x) =

∑M−(n)
i=1 ω−i (n)pn(zn|x)p−i,n(x)∑M−(n)

i=1 ω−i (n)
∫
pn(zn|x′)p−i,n(x′)dx′

. (1.9)

Define the likelihood that zn comes from the ith mixture component as:

li(n) ≡
∫
pn(zn|x′)p−i,n(x′)dx′. (1.10)

Rearranging the above mixture expression using the definition of the component/

mode likelihood gives us:

πn(x) =

M−(n)∑
i=1

w−i (n)li(n)∑
j w
−
j (n)lj(n)︸ ︷︷ ︸
wi(n)

pn(zn|x)p−i,n(x)

li(n)︸ ︷︷ ︸
pi,n(x)

. (1.11)

The above expression shows that the measurement update has a hybrid nature, a

standard update of the individual modes of the mixture with the measurement zn,
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and a discrete Bayesian update of the mode weights using the mode likelihoods li(n).

Note that the mode likelihoods are the Bayes’ normalization factors for the individual

modes. Explicitly, we delineate the discrete and continuous updates of the mixture

model below:

ωi(n) =
w−i (n)li(n)∑
j w
−
j (n)lj(n)

, (1.12)

pi,n(x) =
pn(zn|x)p−i,n(x)

li(n)
. (1.13)

Let us now assume that we have fixed the form of the mixture model to a GMM,

i.e., the posterior PDF at time n− 1 can be represented by the GMM:

pi,n−1(x) = G(x;µi(n− 1), Pi(n− 1)), (1.14)

where G(x;µ, P ) represents the Gaussian PDF with mean µ and covariance P . Con-

sider first the prediction equations. Note that from equation 1.6, the number of

mixture components at time n− 1, M(n− 1), is the same as the number of mixture

components of the prediction at time n, M−(n). However, this assumes that the

prediction of the ithGaussian component pi,n−1 of the posterior PDF at time n − 1

remains a single Gaussian at time n, p−i,n. However, this is, in general, not true. The

number of mixture components necessary to approximate the state PDF may vary

from one time step to the other. For example, consider the nonlinear dynamical
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system given by

ẋ1

ẋ2

 =

 −x1

2

sin(x2

2
)

+ Γ(t), (1.15)

π0(X) =G(X,

−12

0

 ,
0.2 0

0 1

), (1.16)

where Γ(t) is a white noise process.

Figure 1.1: Formation of multimodality through dynamics. Reprinted with permis-
sion from [1, 2].

In Figure 1.1, the locations of 200 particles sampled from the unimodal initial

PDF π0(x0) are seen to separate into two distinct modes as time progresses. Hence,

in order to use mixture models for prediction, we have to find a way to deal with
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time varying number of GMM components.

Next, let us consider the measurement update equation 1.13. Since the prior

component is Gaussian, and if the update equation 1.13 is approximated using the

Kalman/ least squares update [8, 5], we have :

µi(n) = µ−i (n) + P T
i,zx(n)P−1

i,zz(n)(zn − Ei[h(X)]), (1.17)

Pi(n) = P−i (n)− P T
i,zx(n)P−1

i,zz(n)Pi,zx(n), (1.18)

where,

Pi,zx(n) = Ei[h(X)− Ei(h(X))(X − Ei(X))T ], (1.19)

Pi,zz(n) = Ei[(h(X)− Ei(h(X))(h(X)− Ei(h(X))T ]. (1.20)

Here Ei[f(X)] represents the expectation of the function f(X) with respect to the

random variable X where X ∼ G(x;µ−i (n), P−i (n)). However, similar to the predic-

tion case, in general, a single predicted Gaussian component can split into multiple

modes after the update 1.13. An illustration of this is given in Figure 1.2. In this

case we have a prior ensemble generated from π(x) = G(X,

0

0

 ,
1 0

0 2

). Then, a

noisy measurement z = 2 is recorded where

z = x2
1 + τ, τ ∼ G(x, 0, 2). (1.21)

An ensemble for the posterior PDF π(x|z) is obtained through resampling and is

seen to split into two separate modes. Hence, just as in the prediction step, there is

a need to deal with the time varying number of GMM components after an update.

A fully nonlinear filter that employs a Gaussian mixture representation of the state
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PDF must be able to split/fuse individual mixture modes when necessary.

Figure 1.2: Formation of multimodality through measurement update. Reprinted
with permission from [1, 3, 2, 4].

1.3 Outline

In the next chapter, we extensively review relevant previous literature and discuss

the context of our contributions. In chapter 3, we consider a space object tracking

problem and formulate a hybrid filtering approach that is capable of providing accu-

rate and consistent estimates even when the measurements are sparse. In chapter 4,

we discuss the PGM-I filter, an extension of the hybrid filtering approach to incor-

porate multimodal state PDFs arising from nonlinear uncertainty propagation. A

generalization of this method, namely the PGM-II filter, that can also handle multi-

modal measurement updates is discussed in chapter 5. The PGM-II filter relies on a
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parallel MCMC method to obtain samples from multimodal posterior distributions.

In chapter 6, we test the performance of the PGM filters performance in various

benchmark problems. We study how dimensionality, nonlinearity, sample size etc

influence the estimation performance. In chapter 7, we develop a preliminary design

for a decentralized PGM-I filter for the distributed estimation problem. In chapter

8, we test the performance of the parallel MCMC method, first developed in chapter

5, in sampling and optimization problems. Lastly, we summarize the conclusions of

this work and discuss directions for future research in chapter 9. An illustration of

the structure of this dissertation is given in Figure 1.3.

Figure 1.3: Structure of the dissertation.

9



2. LITERATURE REVIEW*

In this chapter we survey previous work that are relevant to the contributions of 

this thesis. The optimal linear estimator, known as the Kalman filter, set the 

framework for recursive estimation of uncertain dynamical systems using state space 

description [9, 10]. The Kalman filter furnishes the unbiased minimum variance 

estimates when the dynamical system is linear and the uncertainties involved are 

Gaussian. The extended Kalman filter (EKF) was introduced to incorporate non-

linear systems into the Kalman filtering framework [11]. However, the limitations 

of the Jacobian linearization assumptions and the accumulation of linearization er-

rors can result in the divergence of EKF estimates. The emergence of sigma point 

Kalman filters, specifically the UKF, gave rise to a derivative free alternative to the 

EKF [12, 13, 14]. The UKF computes the statistics of the state PDF using care-

fully chosen and weighted sigma points. It was found to consistently outperform 

the EKF at a comparable computational cost. However, as the UKF approximates 

the statistics of the posterior PDF using the first two moments, it can be ineffec-

tive in the estimation of a general multimodal non-Gaussian PDF. Handling the 

non-Gaussianity of the state PDF is crucial in problems such as space object track-

ing wherein the measurements may be sparse and the PDF may undergo extensive 

distortion induced by nonlinearities. In such cases, the UKF may even produce sub-

optimal and diverging estimates [15]. Cubature Kalman filters (CKF) that rely on 

a spherical-radial cubature rule to evaluate the integrals involved in the estimation 

have been proposed [16]. A variant of cubature filters, that perform random scaling 

and rotation of cubature points and axes, known as stochastic integration filter (SIF) 
∗Parts of this chapter were reprinted with permission from [1, 3, 2, 4].

10



has also been proposed recently [17].

2.1 Gaussian Mixture Filters

A Gaussian mixture approximation of the state PDF was proposed to incorporate

the multimodality of the problem in nonlinear settings [18, 19]. These approaches

however had a major shortcoming as the number of Gaussian components were fixed

initially and kept constant through out the estimation process. Also the component

weights were updated only during the measurement update. Approaches to adapting

the weights of individual Gaussian modes by minimizing the propagation error com-

mitted in the Gaussian mixture model (GMM) approximation have been proposed

recently [20]. A different approach to improving the accuracy of GMM filters is by

splitting the Gaussian components during the propagation based on nonlinearity in-

duced distortion [21]. Both of these approaches require frequent optimizations, or

entropy calculations, to be performed during the propagation, which significantly

add to the overall computational requirement. A Gaussian mixture ‘blob’ filter that

relies on EKF for propagation and update has been proposed recently [22]. It per-

forms a resampling step between the propagation and update stages. The resampling

step ensures that the component covariances of the propagated PDF all obey a linear

matrix inequality (LMI) based upper bound.

2.2 Ensemble/ Particle Filters

The particle filters (PF) are a class of sequential Monte Carlo methods that em-

ploy an ensemble of states known as particles to represent the state PDF [23, 24].

These states are sampled from the initial PDF and propagated forward in time based

on the nonlinear system model. The measurement updates are performed by assign-

ing weights to individual particles which may then be resampled. The PF does not
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enforce restrictive assumptions on the nature of dynamics or PDF. However particle

filters are subject to the curse of dimensionality due to the particle depletion prob-

lem wherein a significant fraction of particles lose their importance weights during

the measurement update. Preventing depletion requires the number of particles to

be increased exponentially with the dimension of state space [25]. Particle based

approaches such as the Ensemble Kalman filter (EnKF) and the Feedback Parti-

cle Filter (FPF) that forego the resampling based measurement update have been

demonstrated to be effective in higher dimensional filtering problems involving uni-

modal PDFs [26, 27]. The Gaussian sum particle filter (GSPF) is a nonlinear filter

that uses a GMM representation of the state PDF [28]. It obtains an ensemble of

particles from each GMM component. The ensembles are then propagated forward

separately like a parallel bank of filters. The GSPF relies on an importance sampling

based approach to perform the measurement update.
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3. THE SPACE OBJECT TRACKING PROBLEM*

In this chapter, we consider the probabilistic estimation of a space object. The 

dynamics model of the orbiting objects and an angles-only measurement model are 

discussed in the section 3.1. We propose a novel unscented Kalman particle hy-

brid filtering framework which incorporates select features of both UKF and PF to 

produce a fast and accurate nonlinear filter that can be employed for space object 

tracking [5, 6]. A detailed account of the filter design process is provided in section 

3.3. The state PDF in the space object tracking problem is assumed to be unimodal. 

However, the more general PGM-I filtering algorithm discussed in chapter 4 can be 

obtained as the natural multimodal extension of the hybrid filtering approach pro-

posed here. The hybrid filter is employed in the estimation of two tests cases of LEO 

objects in the section named Simulations and Results.

3.1 Dynamics & Measurement Models

This section contains a brief description of the perturbed dynamics of orbiting 

objects. Following this, an angles-only measurement model, employed to aid state 

estimation, is described.

3.1.1 Dynamics of space objects

The acceleration experienced by an object, of mass mo in the inverse square 

gravitational field of earth is given by

ag = −GMemor

r3
. (3.1)

∗Parts of this chapter were reprinted with permission from [6, 5].
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Here G is the universal gravitational constant, r the vector joining the center of

earth to the center of mass (CM) of the object, r its magnitude and Me the mass

of earth. The gravitational acceleration, as given in equation 3.1, assumes that

the central body is spherically symmetric. In reality, the earth has a non-symmetric

mass distribution similar to an oblate ellipsoid, with more mass distributed along the

equator. To account for the non-sphericity, the gravitational potential is expanded

into a series of spherical harmonics. The dominant perturbation term in the resulting

expansion is called the J2 harmonic. The perturbing acceleration arising from the J2

term, aJ2 is given by

aJ2 = −3

2
J2
GMe

r2

(req
r

)2


(1− 5(x3

r
)2)x1

r

(1− 5(x3

r
)2)x2

r

(3− 5(x3

r
)2)x3

r

 , (3.2)

where req is the equatorial radius of the earth and x1, x2, x3 are the Cartesian coor-

dinates of the CM of the object measured from the center of earth [29]. In addition

to this, the orbital motion is also affected by the non-conservative atmospheric drag

which may be significant in low earth orbits. Assuming a blunt form factor, the

acceleration due to atmospheric drag force can be computed as

aD = −
(
Acs
mo

)
ρCd

(
v2

2

)
iv. (3.3)

Here Acs is the cross sectional area of the object, Cd, the drag coefficient, and ρ

the atmospheric density. The term v represents the magnitude of relative velocity

between atmosphere and orbiting object whereas iv is the unit vector along its di-

rection. A simple exponential model may be employed to describe the variation of
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atmospheric density with altitude, according to which

ρ(r) = ρ0 exp

(
−
(
r − r0

H

))
. (3.4)

Here ρ0 and r0 are reference density and radius. The variable H, known as scale

height, is the vertical distance over which the density of the atmosphere reduces by

a factor of mathematical constant e. The resultant acceleration experienced by the

object is then given by

r̈ = ag + aJ2 + aD. (3.5)

In this study we have ignored the effects of other forces such as third body perturba-

tions since we consider only space objects in low earth orbits(LEO). The perturbation

terms present in the resultant acceleration force the object to undergo full three di-

mensional motion. Hence the state of the system is taken to be

X = [x1 x2 x3 ẋ1 ẋ2 ẋ3]T . (3.6)

where x1, x2, x3 are the Cartesian coordinates of the object measured with respect to

an inertial frame placed at the center of earth. In practice, we integrate equation 3.5,

which describes a continuous time dynamical system, numerically with fixed time

steps ∆t. This allows us to obtain an approximate discrete time solution f(Xt)

which maps the state Xt at time t to that at t + ∆t, i.e., Xt+∆t. In addition to the

acceleration terms described in the equation (3.5), a sequence of independent and

normally distributed noise terms are added in the state update equations to account

for modeling uncertainties.
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3.1.2 Measurement Model

Let r and rs be the inertial position vectors of the space object O and the ground

station respectively. Then the relative position of the object with respect to the

ground station is given by

ri = r− rs. (3.7)

The sensor measures the topocentric inclination (θ) and right ascension (φ) from

a ground station assumed to be located on the earth’s equator. The coordinatization

of the relative position vector of the space object with respect to the ground station,

in the station frame, may be computed by multiplying the inertial vector ri with

the appropriate orthonormal transformation matrix. If the effects due to precession,

nutation etc. of the earth are neglected, then the ground station is in an elemental

rotation about the polar axis with respect to the inertial frame. At t = 0, both ground

frame and inertial frame are aligned. Assuming a constant spin rate ω for the earth,

the transformation matrix for the ground station at time t may be calculated as

F (t) =


cosωt sinωt 0

− sinωt cosωt 0

0 0 1

 . (3.8)

If [rix r
i
y r

i
z] are the Cartesian coordinates of the object in the ground frame, then θ

and φ are calculated as

θ = sin−1

(
riz
ri

)
(3.9)

φ = tan−1

(
riy
rix

)
(3.10)
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Figure 3.1: The sensor is fixed on the ground station which defines a non inertial
frame that spins with the earth. Reprinted with permission from [5].

where ri =
√
rix

2 + riy
2 + riz

2.

A zero mean Gaussian measurement noise with 3.9 arcsec standard deviation is

assumed. The FOV of the ground station is limited by 75 degrees on either side

in the azimuthal direction and by 90 degrees on either side in the polar direction.

An illustration of the space object-ground station system is presented in Figure 3.1.

Once the space object is inside the FOV of the sensor, measurements are registered

with a preset probability of detection Pd. It must be noted here that the Pd is

a state independent factor employed solely for the purpose of ensuring that the

measurements are not recorded at all instants and that they come in at random even

when the object is within the FOV.

3.2 Assumptions

Before proceeding further we state two key assumptions:

Assumption 1. We shall assume that the filtered state PDF of the object while

inside the FOV can be well approximated by a unimodal PDF.

This may not be a bad assumption given that frequent disambiguating measure-

ments are recorded when the space object is within the FOV of the sensor.
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The orbital perturbations that influence the dynamics of space objects are well

known. Consequently, accurate computational models that can simulate the time

evolution of space objects are available. Employing an accurate model helps to min-

imize the variations due to differences between modeled and actual dynamics. We

also assume that high precision models that limit the statistical variability in the

time evolution of the space object are available. Based on these observations we

make the following assumption.

Assumption 2. We assume that the magnitude of process noise affecting the dy-

namics of the space object is minimal. The process noise terms are sampled as

acceleration terms drawn from a zero mean Gaussian PDF with covariance 10−18I3.

3.3 The Unscented Kalman-Particle Hybrid Filter

In this section we discuss the UKF-PF hybrid filtering approach to space object

tracking. The hybrid filtering approach presented here is formulated on the ba-

sic premise that a carefully chosen combination of multiple approximation schemes

may accord a higher overall estimation performance than any one particular scheme,

owing to the high specificity of individual schemes’ performance to the estimation

scenario under study. In particular, the UKF-PF hybrid filter proposes to employ a

particle approximation of the state PDF when the space object is outside the FOV

of sensors and to switch to a unimodal approximation when the object is inside the

observation range. The approximate unimodal PDF is characterized by a mean and

covariance. The rationale behind this particular selection of approximation methods

is discussed below.

When the space object is outside the observation range, the state PDF undergoes

extensive nonlinearity induced distortion. In the absence of measurements, particles

from the PDF at time t+1, i.e., p(Xt+1|Zt), may be obtained by merely propagating
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the ensemble at time t through the dynamic model as this is equivalent to choosing

q(Xt+1|Xt) = p(Xt+1|Xt). This is a key advantage of the particle approximation

as the Dirac delta kernels are allowed to freely evolve with time without enforcing

any restrictive assumptions on the nature of state PDF. Moreover, by increasing the

number of particles, the approximation may by refined to any degree of accuracy.

Additionally, particle based methods do not require any auxiliary optimization or

entropy calculations to incorporate the effects of distortions. This makes the particle

approach well suited for keeping track of the evolution of state PDF when the object

is outside the observation range. Moreover, as no measurement update is performed

outside the FOV, the sample weights remain constant. Hence, the particle based

estimator can be employed outside the FOV without facing the prospect of particle

depletion and the associated curse of dimensionality. As a result, a tracking scheme

that employs a particle approximation only during the flight of the object outside

the FOV can use a much smaller number of particles in comparison to a full PF

implementation.

Availability of frequent measurements during the flight of the object inside the

FOV ensures that the growth and distortion of uncertainty between consecutive mea-

surements will be limited. The hybrid filter employs a unimodal Gaussian density to

approximate the state PDF during this stage. The expectation integrals involved in

the calculation of mean and covariance of the propagated state can be evaluated us-

ing the unscented transform (UT). These are then used to fit a Gaussian PDF for the

propagated PDF. The measurement update step in a standard UKF is free from re-

sampling procedures that are customary to sequential Monte Carlo methods. As the

propagated PDF and measurement random variable are assumed to be Gaussian, the

UKF employs a Kalman measurement update to compute the mean and covariance

of the posterior PDF. The UKF measurement update resembles the linear minimum
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variance update that appears in the Kalman Filter. The Kalman gain Kk that is

used to update the estimate is computed as Kk = CXZC
−1
ZZ . The covariance CZZ

and cross covariance CXZ can also be computed using UT. Additionally, the standard

UT uses only 2n + 1 sample points for evaluating the integrals in an n-dimensional

estimation problem. Hence it is computationally efficient. The sequencing of filters

that underlies the UKF-PF hybrid estimator is illustrated in Figure 3.2.

Figure 3.2: The hybrid approach attempts to harness the merits of both PF and
UKF. Reprinted with permission from [6].

In practice, when the estimated position of the object exits the FOV of the

sensor, we sample a set of equally weighted particles from the unimodal Gaussian

state PDF. Subsequently, they are propagated forward in time while maintaining

the individual particle weights w(X i) constant till the reentry of the object into

FOV. The hybrid filter switches from the particle set to the unimodal UKF at the

re-entry of the object into the sensor’s FOV, which is marked by the reappearance of

measurements. During this transition, a unimodal density has to be retrieved from

the ensemble of particles while incorporating the additional information obtained
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from the newly recorded measurement. During the operation of the hybrid filter, a

measurement update is performed on the particles solely at this PF-UKF transition

stage. It needs to be emphasized that as the state space is six dimensional and

observations are sparse, the estimator my face a significant risk of particle depletion

at this stage. The new measurement information may be incorporated into the state

PDF in a number of ways, for e.g. by performing a direct particle measurement

update on the ensemble [24]. Alternatively, the posterior mean and covariance may

be determined by refining the prior mean and covariance through a Kalman update

step [9]. In this study, we have considered three approaches for transitioning from PF

to UKF. In hybrid filter 1, the PF-UKF transition is accomplished through a particle

measurement update. In hybrid filters 2 and 3, the posterior statistics are computed

via a Kalman update. However, the filters 2 and 3 adopt different approaches to

computing the Kalman gain. The three transition designs are discussed in detail

below.

Hybrid Filter 1

Once the object re-enters the FOV and the first measurement is registered, all N

particles are assigned weights based on their respective likelihoods derived from the

Figure 3.3: Ensemble of particles before (red) and after (blue) resampling. Reprinted
with permission from [5].
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measurement model. The weight assigned to each particle X i
tr at any instant tr may

be computed as

w(X i
tr) =

p(ztr |X i
tr)∑N

j=1 p(ztr |X
j
tr)
, (3.11)

where ztr is the measurement recorded at that instant. The mean (µX,tr) and covari-

ance (CX,tr) of this weighted sample may be computed as

µX,tr =
N∑
i=1

w(X i
tr)X

i
tr , (3.12)

CX,tr =
N∑
i=1

w(X i
tr)(X

i
tr − µXtr )(X

i
tr − µXtr )

T

1− ΣN
j=1w(Xj

tr)
2

. (3.13)

The µXtr and CXtr described in equations (3.12) and (3.13) are then used to initialize

the approximate unimodal PDF required for the subsequent UKF based estimation.

Figure 3.3 shows the particle distribution in the x-y plane during the transi-

tion from PF to UKF. Once the importance weights are updated with measurement

likelihoods, the contribution from several particles to the posterior PDF p(Xtr |Ztr)

diminishes due to their getting negligible weights. The disparity in weights is re-

vealed when the particle ensemble is resampled. Particles with negligible weights

are discarded during resampling. The updated state distribution composed of the

retained particles is given in Figure 3.3. Prior to resampling the propagated set of

particles (in red) are seen to lie roughly spread along the orbit (green line). As the

underlying true state lies next to the edge of the FOV (black line), particles that

are distributed close to it get higher weights. These particles (blue) are retained

after resampling. The particle measurement update may expose the filter to the

risk of weight depletion and covariance collapse, particularly when the sample size is

small as a sizable fraction of particles may be presented with negligible likelihoods.

Evaluating the measurement likelihoods can be avoided if the measurement update
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is performed using a Kalman update step.

Hybrid Filter 2

Let te be the time at which the space object exits the observation range and tr > te

be its time of re-entry. Then the ensemble of particles obtained at time tr prior to

the measurement update is essentially a sample drawn from the propagated state

distribution p(Xtr |Zte). Let this ensemble be denoted by Atr = {X1
tr , X

2
tr , . . . , X

N
tr }

where N represents the total number of particles. Then the mean and covariance of

the PDF p(Xtr |Zte) may be approximated as

E(Xtr |Zte) ≈ µ̂A,tr , (3.14)

cov(Xtr |Zte) ≈ ĈA,tr .

Here µ̂A,tr and ĈA,tr are respectively the sample mean and sample covariance of Atr .

It is then possible to obtain an approximate mean and covariance of the posterior

PDF p(Xtr |Ztr) by performing a Kalman measurement update on µ̂A,tr and ĈA,tr .

The posterior state estimate obtained in this manner may then be appropriated for

the subsequent UKF based estimation. The detailed steps involved in computing the
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posterior mean µX,tr and covariance CX,tr are given below:

µ̂A,tr =
1

N

N∑
l=1

X l
tr

ĈA,tr =
1

N − 1

N∑
l=1

(
X l
tr − µ̂A,tr

) (
X l
tr − µ̂A,tr

)T
zltr = g(X l

tr) l = 1, . . . , N

ẑA,tr =
1

N

N∑
l=1

zltr (3.15)

ĈZZ =
1

N − 1

N∑
l=1

(
zltr − ẑA,tr

) (
zltr − ẑA,tr

)T
+R

ĈXZ =
1

N − 1

N∑
l=1

(
X l
tr − µ̂A,tr

) (
zltr − ẑA,tr

)T
Kk = ĈXZĈ

−1
ZZ

µX,tr = µ̂A,tr +Kk (ztr − ẑA,tr)

CX,tr = ĈA,tr −KkĈZZKk
T

The Kalman measurement update enables the EnKF to keep the number of parti-

cles small even in high dimensional estimation problems. The estimation procedure

followed by the hybrid filter 2 while outside the FOV and during the PF to UKF

transition is similar to that of an EnKF [30, 31] i.e., using an ensemble of particles

to perform uncertainty propagation and a Kalman measurement update for data as-

similation. However, unlike hybrid filter 2, the EnKF performs the Kalman update

on individual particles to obtain samples from the posterior PDF directly. Given

an ensemble of states ψ = [X1, X2, · · · , Xn], corresponding measurement vectors

φ = [h(X1), h(X2), · · · , h(Xn)] and a recorded measurement y, the ensemble Kalman
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update is given by

ψ̂ = ψ +Kk(Y − φ), (3.16)

where Y is the matrix of perturbed observations.

Y = [y1, · · · , yn], yi = y + νi (3.17)

νi ∼ N (0, R).

The posterior ensemble ψ̂ is then used for propagation in the next time step. In

contrast, the transition equations described in hybrid filter 2 computes the posterior

mean and covariance directly from the statistics of the propagated state variable. An

important advantage of this hybrid update is that it allows the number of particles

to be varied during the filtering process. This is not possible in a standard EnKF in

which the size of the ensemble is fixed at the beginning of the simulation.

Hybrid Filter 3

The PF to UKF transition in hybrid filter 3 is also accomplished through a

Kalman measurement update. However, unlike hybrid filter 2, it uses the UT to

compute the Kalman gain and perform the mean and covariance update. To start

with, it uses the ensemble averaged mean µ̂A,tr and covariance ĈA,tr of the state

vector to compute sigma points. Then the sigma points are used to compute the

terms ẑ, ĈZZ and ĈXZ with UT. The Kalman gain is computed using these matrices

as Kk = ĈXZĈ
−1
ZZ . The transition is completed by evaluating the expressions for

µX,tr and CX,tr in equations 3.15 with these terms.
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3.3.1 Effect of Transition Design

The following simulation was conducted to study the effect of different transition

schemes on the posterior uncertainty estimate. A set of 1000 particles is sampled from

an initial Gaussian PDF. The initial uncertainty in position is set to 1 km and that

in velocity is set to 10 m/s along each direction. The particles are then propagated

forward through 100 time steps with ∆t = 1s. At this point, the first measurement z

is registered and the moments of the posterior random variable are computed using

the three different transition schemes. The 3-sigma ellipses of the posterior marginal

distribution in X-Y coordinates computed using the three PF-UKF transition designs

are presented in Figure 3.4a. The posterior covariance computed by propagating the

initial Gaussian PDF with a UKF is also included for comparison. The covariance

computed using hybrid filter 1 is seen to be the smallest among the four. This hap-

pens when the measurement likelihood drops considerably over short distances as a

result of which a large section of the particles acquire negligible weights. The contri-

bution of these particles to the posterior covariance estimate also reduces on account

of their diminished weights. While it is true that one can employ a relatively small

number of particles for estimation outside the FOV, as there are no measurements,

relying on the particle measurement update during PF to UKF transition seems to

once again bring about the curse of dimensionality. This indicates that the feasibility

of a UKF-PF hybrid filter that uses a small number of particles without the risk of

depletion as conceived in section 3.3 depends on the PF to UKF transition design.

Transition design 1 employs the particle measurement update and is prone to un-

derestimating the posterior covariance unless a sufficiently large particle ensemble is

used.

The risk of covariance collapse is averted when the transition is performed
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Figure 3.4: Effect of transition design on the estimated uncertainty (CXt) in posterior
PDF. Reprinted with permission from [6].

through a Kalman update on the ensemble. As Figure 3.4a indicates, the posterior

covariance estimates given by transition designs 2 and 3 are much larger in compar-

ison to that given by design 1. Transition designs 2 and 3 are not subject to weight

depletion as they do not rely on measurement likelihoods to perform the update. In

this case, the covariance estimated by the UKF is seen to be similar in size to that

estimated by hybrid filters 2 and 3. However, on raising the initial uncertainty in

velocity to 1km/s and increasing the simulation time to 500 time steps, the uncer-

tainty estimated using the UKF is seen to be distinctly smaller in comparison to

hybrid filters 2 and 3. This is shown in Figure 3.4b. The hybrid filter 1 is observed

to undergo complete covariance collapse in this case. Hence, it is not included in

Figure 3.4b. It clearly appears that, by transitioning from PF to UKF through a

Kalman update, the problem of particle depletion and subsequent covariance collpase

can be avoided. A general algorithm for implementing the UKF-PF hybrid filter is

presented in algorithm 1.
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Algorithm 1 UKF-PF Hybrid filter for space object tracking

S1 : PDF in functional form (inside FOV), S2 : PDF as ensemble (outside FOV),

C(X) : Boundary of FOV, Pd : Probability of detection.

Initialize: P (X) = P0(X), S = S0

At tk

1: if S = S1 then

2: if C(Xk) <= 0 then

3: Use UKF

4: SET S = S1

5: else

6: SAMPLE FROM P(X)

7: USE PF

8: SET S = S2

9: end if

10: else

11: if C(Xk) <= 0 and η > η0 then

12: EXECUTE PF-UKF TRANSITION

13: COMPUTE P(X)

14: SET S = S1

15: end if

16: else

17: USE PF

18: SET S = S2

19: end if
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3.4 Numerical Simulations

In this section, the UKF-PF hybrid filtering framework is applied to two test case

problems of space objects in low earth orbits (LEO). The three hybrid filter variants

are simulated along with standard implementations of UKF and PF to compare

the estimation performance. The estimation results are assessed for accuracy and

consistency.

The accuracy of the estimator is evaluated in terms of the root mean squared

error (RMSE) in position estimates. The RMSE in position estimate at time t may

be calculated as

RMSEposition =

√√√√ 1

NMo

NMo∑
i=1

3∑
j=1

(x′j,t,i −Xj,t,i)2. (3.18)

Here NMo represents the number of Monte Carlo runs over which the RMSE is

computed. The terms x′j,t,i and Xj,t,i represent the actual and estimated position

coordinates of the object at time t in the direction j during the ith Monte Carlo run.

Smaller RMSE values represent more accurate estimates.

The normalized estimation error squared (NEES) test is employed to evaluate

the consistency of estimates [32]. The NEES test is performed by computing the

normalized residual βt,i, which is defined as

βt,i = (x′t,i −Xt,i)
TCX,t,i

−1(x′t,i −Xt,i). (3.19)

Here x′t,i represents the actual state occupied by the object at time t in the ith

Monte Carlo run. If Xt,i ∈ Rn is distributed according to a Gaussian PDF, then

βt,i is a chi-square random variable with expected value n. To assess the consistency

of the hybrid filter, the average NEES test statistic computed over multiple Monte
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Carlo runs is considered. The average NEES test statistic for the estimates at time

t computed over NMo simulations is given by

βt =
1

NMo

NMo∑
i=1

βt,i. (3.20)

When the state vector is a six dimensional Gaussian random variable, the sum

NMoβt can be shown to be distributed according to a χ2 density with 6NMo de-

grees of freedom. Consequently, the consistency of the estimator may be tested by

examining whether βt falls within probable bounds computed from the correspond-

ing χ2 distribution. When the average NEES is computed over 50 Monte Carlo

runs, a 99.5 percent probability upper bound for the random variable βt is found to

Ub0.995 = 7.3369. If βt assumes a value above 7.3369, then the covariance estimates

are inconsistent with the estimation errors, i.e., it is likely that the covariances CX,t,i

are underestimated. In other words, the estimates are optimistic.

Case 1: In this test case, the estimated initial state of the object is set at

X0 =

[
7800 0 0 0 6.8443 cos(π/4) 6.8443 sin(π/4)

]T
, (3.21)

where the lengths and speeds are in km and km/s respectively. This is a 45◦ inclined

LEO with a period of 6080 s and eccentricity of 0.0833. The uncertainty in the initial

state estimate is characterized by a standard deviation of 1 km in position estimates

and 1 m/s in velocity estimates. The probability of detection is set at 0.9. The

filters are employed to estimate the state of the space object for a total duration of

24 hours. In hybrid filter simulations, the number of particles used during the se-

quential Monte Carlo update is set at 500. A sequential importance resampling(SIR)

filter is used as the standard PF implementation [24]. In order to maintain uniform

computational costs, the SIR is also implemented with 500 particles.
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(a) RMSEposition

(b) NEES Plot 1

(c) NEES Plot 2

Figure 3.5: Monte Carlo averaged tracking results for LEO object test case 1.
Reprinted with permission from [6].

The simulations for test case 1 are repeated over 50 Monte Carlo runs and the

averaged values for NEES and RMSE are computed. The estimation results for the
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hybrid filters and the UKF for test case 1, are plotted in Figure 3.5. In Figure 3.5a

the RMSE in position for each filter are plotted against time. As the objects are

initialized inside the FOV, the uncertainty in position estimates are observed to di-

minish sharply in the beginning.

Once the object moves out of the FOV, measurements become unavailable, er-

rors accumulate and the amount of uncertainty increases steadily as signified by the

upswing in the RMSEposition plots. However, after reentry into the FOV, more in-

formation is added with each recorded measurement and the magnitude of RMSE

drops again. This pattern repeats over the many subsequent FOV entries and exits.

All four filters follow this trend and showcase similar performance, as seen in Fig-

ure 3.5a. For the three hybrid filters and the UKF, the error in position estimates

during the last four hours of the simulated time are seen to be of the order of 100m.

Figure 3.5b shows the results of NEES test for hybrid filter 1 and the UKF for

test case 1. A horizontal line indicating y = Ub0.995 has been included for reference.

It is seen that the estimates generated by hybrid filter 1 and UKF are inconsistent

for a very long time. Comparing the NEES plots of hybrid filter 1 and UKF with

their corresponding RMSE plots reveals the following. In the case of UKF, once the

object exits the FOV, the estimation error and the value of NEES test statistic are

both seen to grow. The NEES test statistic is seen to overstep the Ub0.995 line during

this stage. This indicates that when the object is outside the FOV, the covariance

estimated by the UKF does not grow fast enough to ensure that the estimates remain

consistent. However, the value of UKF NEES test statistic is seen to drop once the

measurements start to reappear. In contrast, the hybrid filter 1 estimates are seen

to remain consistent throughout the flight of the Object outside the FOV until the

first re-entry. The NEES plot of hybrid filter 1 crosses the Ub0.995 only when the

measurements reappear and the PF to UKF transition is triggered. As mentioned
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before, hybrid filter 1 relies on the particle measurement update which is prone to

underestimating the posterior uncertainty. As a result, the NEES test statistic is

seen to spike during the transition. The NEES test results for the hybrid filters 2

and 3 are plotted in Figure 3.5c. The results show that estimates provided by hybrid

filters 2 and 3 remain consistent during most of the simulated time.

Figure 3.6: Consistency of filtered estimates in test case 1. Reprinted with permission
from [6].

The performance of the filters in NEES test may be compared using the fraction

of the total simulated time period during which each filter generated consistent esti-

mates. The fraction of times during which the hybrid filters and the UKF provided

estimates that lie within the 99.5 percent bounds in test case 1 are plotted in Fig-

ure 3.6. It is seen that estimates provided by hybrid filter 2 and 3 are consistent

during 99.84 percent and 99.69 percent of the simulated time in test case 1. Esti-

mates provided by the hybrid filter 1 are seen to be consistent during 7.28 percent of

the simulated time. The consistency fraction for the UKF in test case 1 is found to

be 3.69 percent. This indicates that UKF and hybrid filter 1 are prone to underes-

timating the posterior covariance, even though the estimation errors committed by
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all four filters are similar.

When it was employed with 500 particles to estimate the test case 1, the covari-

ance of the SIR filtered is observed to collapse within a few time steps. The small

process noise and accurate measurements result in loss of diversity of the ensemble

at each resampling step. Consequently, the sample covariance becomes negligible in

a few time steps when the actual estimation errors are significant. As a result, the

value of βt for the SIR filter is found to quickly blow up. It may well be possible to

perform estimation of a six dimensional nonlinear system using an SIR filter when

implemented with a much larger number of particles. However increasing the number

of particles to prevent weight depletion will also increase the computational cost. It

is notable that the hybrid filters 2 and 3 offer reliable performance in this six dimen-

sional estimation problem while requiring only a relatively small number of particles.

Case 2: In this case, the estimated initial state of the object is set to

X0 =

[
6800 0 0 0 7.5989 cos(π/3) 7.5989 sin(π/3)

]T
. (3.22)

This is a 60o inclined low earth orbit with a time period of 5580.5 s. The initial

uncertainty in position is increased to 3 km along each direction and that in velocity

is raised to 1 km/s. The probability of detection is reduced to 0.4. As mentioned

before, for space objects, the growth in uncertainty is remarkably sensitive to the

initial uncertainty in velocity. When the uncertainty is larger and state PDF is

more diffuse, the accumulation of errors due to linearization also becomes much more

severe. The nonlinearity induced distortion of state PDF is also larger in such a case.

Case 2 is used to test the performance of the hybrid filters under such conditions.

The simulation was conducted for a period of 24 hrs. The results, averaged over 50
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(a) RMSEposition

(b) NEES Plot 1

(c) NEES Plot 2

Figure 3.7: Monte Carlo averaged tracking results for LEO object test case 2.
Reprinted with permission from [6].

Monte Carlo runs, are given in Figure 3.7. The estimation results for hybrid filter 1

in test case 2 are not presented as it was observed to undergo covariance collapse due

to significant particle depletion. The SIR filter is also observed to undergo covariance

collapse in test case 2.
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The RMSEposition plots given in Figure 3.7a indicate that for all three filters,

the errors in position estimates quickly drop in the beginning since measurements

are recorded. Once the object exits the FOV, the errors start to grow. The errors

shrink again when the object reenters the FOV of the sensor and a new batch of

measurements become available.

From Figure 3.7a it can be observed that the estimation errors committed by

UKF in test case 2 are seen to be much worse than that by hybrid filters 2 and 3 .

For hybrid filters 2 and 3, the errors in position estimates during the final 4 hours of

the simulated time are seen to be of the order of 10−1 Km. For UKF, this number is

seen to be of the order of 100 Km. The NEES test results for the UKF estimates in

test case 2 are plotted in Figure 3.7b. The results indicate that the UKF estimates

are inconsistent during most of the simulated time. By comparing Figure 3.7b with

Figure 3.7a, it can be observed that the value of UKF NEES test static grows as

the estimation error increases. Once the Ub0.995 is overstepped, the UKF estimates

stay inconsistent for the entire length of the remaining simulation time, in spite of

recording several additional measurements. The NEES test results for hybrid filters

2 and 3 are plotted in Figure 3.7c. The hybrid filters 2 and 3 are seen to produce

consistent estimates during 98.41 and 98.49 percent of the times respectively. In

contrast, the UKF estimates are consistent during only 2.74 percent of the total

simulation time. The fraction of the simulated time during which each filter offered

consistent estimates is plotted in Figure 3.8.

Our results in this chapter indicate how the unimodal Gaussian filters such as

the EKF and UKF can prove to be inadequate in representing the state PDF in

the presence significant nonlinearity. We also found that while the particle filter

does not enforce restrictive assumptions on the nature of PDF, its implementation

becomes computationally expensive as the dimensionality of the state space increases.
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Figure 3.8: Consistency of filtered estimates in test case 2. Reprinted with permission
from [6].

Based on these observations, a general multimodal nonlinear filter named Particle

Gaussian Mixture-I (PGM-I) Filter has been proposed by the authors. The PGM-I

filter employs a particle approximation for propagation and a Kalman update of the

type employed in hybrid filter 2 or 3 for measurement update. Additionally, it does

not require the assumption 2 enforced on process noise. The PGM filtering algorithm

is developed in detail in the next chapter.
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4. PARTICLE GAUSSIAN MIXTURE FILTERS -I*

In this chapter, we propose a particle Gaussian mixture-I (PGM-I) filter [2, 1]

for nonlinear estimation. The PGM-I filter design is an extension of the UKF-PF

hybrid filter that has been proposed for space object tracking [5] in the previous 

chapter. The PGM-I filter is conceived to keep track of the nonlinear uncertainty 

propagation, without performing any additional optimization or splitting operations 

during the propagation step. For ease of treatment and clarity of exposition, we shall 

not consider the measurement update aspect of the GMM filtering problem in this 

chapter, which will be treated in chapter 5. We make the following assumption for 

the remainder of this chapter.

Assumption 3. We shall assume a Gaussian mixture representation for the pre-

dicted and posterior filtered densities. Further, we assume that given a predicted

mixture component at time n, G(x;µ−i (n), P−i (n)), the update Eq. 1.13 after an ob-

servation zn is approximated arbitrarily well by the Least Squares/ Kalman update

equations. 1.17-1.18.

4.1 The Particle Gaussian Mixture (PGM) Filter

In this section, we first present the PGM filter. The basic assumption underlying

the PGM algorithm is that the predicted prior and posterior filter densities can be

∗Parts of this chapter were reprinted with permission from [1, 2].
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represented using a GMM. In particular, let:

π−n (x) =

M−(n)∑
i=1

ω−i (n)G−i (x;µ−i (n), P−i (n)), (4.1)

πn(x) =

M(n)∑
i=1

ωi(n)Gi(x;µi(n), Pi(n)). (4.2)

In general, M−(n) and M(n) need not be the same, however, owing to Assumption 3,

they are assumed to be equal for the purposes of this chapter. For instance, given a

linear measurement function, this is true. The PGM filtering algorithm is composed

of three basic steps that are described below.

1) Sampling: The PGM filter assumes the availability of the Markov transition

kernel pn(x|x′) and an efficient means of sampling from it so that one can easily

draw samples of the next state x given that the current state is x′. The first step in

Algorithm 2 PGM Algorithm

Given π0(x0) =
∑M(0)

i=1 ωi(0)Gi(x0;µi(0), Pi(0)), transition density kernel pn(x|x′), n
= 1.

1. Sample Np particles X(i) from from πn−1 and the transition kernel pn(x|x′) as
follows:

(a) Sample X(i)′ from πn−1(.).

(b) Sample X(i) from p(.|X(i)′).

2. Use a clustering algorithm C to cluster the set of particles {X(i)} into
M−(n) Gaussian clusters with weights, mean and covariance given by
{w−i (n), µ−i (n), P−i (n)}.

3. Update the mixture weights and the mixture means and covariances to
{ωi(n), µi(n), Pi(n)}, given the observation zn, utilizing the Kalman update
equations 1.17, 1.18.

4. n = n+1, go to Step 1.
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the PGM algorithm is the use of the transition kernel to generate a set of samples

at the next time step (which is the same as in a Particle filter). In practice, we first

draw an ensemble Sn of Np states {x1
n, · · · , xin, · · · , x

Np
n } from the GMM πn(x) and

Np independent samples of the process noise term w(n) from its density PW (w) to

get Swn = {w1
n, · · · , win, · · · , w

Np
n }. Let

xi−n+1 = f(xin) + win. (4.3)

2) Clustering: Then, we use a clustering algorithm C to partition the set of points

into M−(n) different clusters whose means and covariances can be evaluated using

sample averaging. Clustering is a field of Machine learning termed as Unsupervised

Learning [33, 34]. A brief description of clustering is provided in Appendix A. In the

experimental results presented in this chapter, we use the simple k-means clustering

algorithm [35], which is computationally very inexpensive while still being able to

give good results for well separated clusters. The k-means clustering is a popular

approach to partitioning wherein the data set is grouped into different clusters so

that the sum of squares of within-group distances is minimized, i.e, the data set S is

partitioned into M clusters G∗M = {S1, · · · , SM} such that

G∗L = argmin
GL

M∑
i=1

∑
xj∈Si

‖xi − µi‖2. (4.4)

Here GM denotes any partition of the set S into M clusters and µi represents the

mean of the elements of the ith cluster in that partition. Once the vectors xi are

assigned into different clusters, an M mode GMM describing the set S may be derived
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as follows.

ni =
N∑
j=1

1(xj ∈ Si), wi =
ni
N
, (4.5)

µi =
1

ni

∑
xj∈Si

xj, Ci =

∑
xj∈Si

(xj − µi)(xj − µi)T

ni − 1
.

Here 1(.) represents the indicator function.

3) Measurement update: Incorporate the measurement information by updating

the means and covariances of all M modes individually using a least squares/ Kalman

measurement update. Also update the mixture weights using the mode likelihoods

li(n) as in equation 1.12. In the present work we have considered two different

approaches to computing the covariance terms
(
Pi,ZX(n + 1), Pi,ZZ(n + 1)

)
and the

expectations
(
Ei
(
h(X)

))
required for performing the Kalman update.

(a) Update 1(PGM1-UT): In this approach, we compute the statistics of the pos-

terior random variable with the unscented transform using a set of of 2d + 1

sigma points that are distributed symmetrically. The covariance terms and the

expectations required for computing the Kalman gain and posterior statistics

are then computed as the weighted sample averages from the sigma points.

(b) Update 2 (PGM1): In this approach, the covariances and cross covariances re-

quired for computing the gain matrix are evaluated directly from the particles.

Let S−1
j,n+1 = {x1−

j,n+1, · · · , xi−j,n+1, · · · , x
Nj−
j,n+1} denote the set of particles that

form the j − th cluster. Then the mean and covariance terms required for up-

dating the cluster j are assigned the corresponding sample averages computed

from S−1
j,n+1. The statistics of the measurement random variable are computed

from the sample Y −1
j,n+1 = {h(x1−

j,n+1), · · · , h(xi−j,n+1), · · · , h(xNj−j,n+1)}.
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Recursive implementation of the prediction, clustering and update steps as described

here constitutes the PGM filter.

4.1.1 Analysis of the PGM Filter

In the following, we analyze the PGM filter. We show that under the assumption

of a perfect clustering scheme C, the PGM filter density converges in probability to

the true filter density.

Let Fzn(πn−1) = πn denote the true filter density at time n given that the filter

density at time n − 1 is πn−1 and the observation at time n is zn. Further, let

F̂zn(πn−1) denote the filter density approximated by the PGM filter. We make the

following exponential forgetting assumption on the true filter.

Assumption 4. We assume that there exists C <∞ and ρ < 1 such that:

||Fzn(Fzn−1(..(Fz1(π0))..))− Fzn(Fzn−1(..(Fz1(π′0))..))|| (4.6)

≤ Cρn||π0 − π′0||,

for any measurement sequence {z1, z2, · · · zn}, any π0, π
′
0, and where ||.|| denotes the

L1 norm.

Similarly let F̂zn(F̂zn−1(· · · (F̂z0(π0)) · · · )) denote the filtered density approximated

by the PGM filter given the measurement sequence {z1, z2, · · · zn} and the initial den-

sity π0.

Assumption 5. Let Prob(||F̂zn(π̂n−1)−Fzn(π̂n−1)|| > ε) < δ, for all n. Further, we

assume that Prob(||F̂zn(π̂n−1) − Fzn(π̂n−1)|| > M) = 0, for all n, for some M < ∞

(the error in a one step approximation of the filter density is almost surely uniformly

bounded over all time).

42



Lemma 1. Let ||F̂zn(π̂n−1) − Fzn(π̂n−1)|| ≤ ε, for all n. Under Assumption 4, it

follows that ||π̂n − πn|| ≤ (C+1)ε
1−ρ .

Proof. We have:

π̂n − πn = F̂zn(F̂zn−1(..(F̂z1(π0))..))

− Fzn(Fzn−1(...(Fz1(π0))..)),

= [F̂n(F̂n−1(..(F̂1(π0))..))− Fn(F̂n−1(..(F̂1(π0))..))]︸ ︷︷ ︸
∆n

+ [Fn(F̂n−1(..(F̂1(π0))..))− Fn(Fn−1(F̂n−2(..(F̂1(π0))..)))]︸ ︷︷ ︸
∆n−1

+ · · ·+ [Fn(Fn−1(....(F̂1(π0))...))− Fn(..(F1(π0))..)]︸ ︷︷ ︸
∆1

. (4.7)

Note that the different terms on the RHS above are:

∆n = F̂n(π̂n−1)− Fn(π̂n−1),

∆n−1 = Fn(F̂n−1(π̂n−2))− Fn(Fn−1(π̂n−2)), ....

∆1 = Fn(..(F2(F̂1(π0)))..)− Fn(..(F2(F1(π0)))..). (4.8)

Using Assumption 4 and the fact that ||F̂zn(π̂n−1) − Fzn(π̂n−1)|| ≤ ε, for all n, it

follows that:

||∆i|| ≤ Cρn−iε,

and thus,

||π̂n − πn|| ≤
n−1∑
i=1

Cρn−iε+ ε ≤ (C + 1)ε

1− ρ
. (4.9)
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The above result also holds for initial conditions in the infinite past, i.e., at n = −∞.

In the following, we assume that the initial condition was in the infinite past.

Lemma 2. Let Assumptions 4 and 5 hold. Given any δ, ν > 0, there exists an

N̄ <∞, such that:

Prob(||π̂n − πn|| >
(1 + ν)(1 + C)ε

1− ρ
) ≤ N̄δ, (4.10)

where N̄ = n− n′, and n′ is such that
∑n′

i=−∞Cρ
n−i ≤ f , and f = ν(C+1)ε

M(1−ρ)
.

Proof. Let en = ||π̂n − πn||, and let εk = ||F̂zk(π̂k−1) − Fzk( ˆπk−1)||. It follows that

en ≤
∑n

k=−∞Cρ
n−kεk. Choose n′ such that

∑n′

i=−∞Cρ
n−i ≤ f , where f = ν(C+1)ε

M(1−ρ)
.

Then:

en =
n∑

k=n′

Cρn−kεk︸ ︷︷ ︸
ēn

+
n′∑

k=−∞

Cρn−kεk︸ ︷︷ ︸
∆∗n

. (4.11)

From Assumption 5, it follows that Prob(||∆∗n|| > fM) = 0, and thus,

Prob(||∆n|| >
ν(C + 1)ε

1− ρ
) = 0. (4.12)

Similarly, from Lemma 1, it follows that:

Prob(ēn >
(C + 1)ε

1− ρ
) ≤ (n− n′)δ ≡ N̄δ. (4.13)

Using the equations 4.12 and 4.13, it follows that Prob(en >
(1+ν)(C+1)ε

1−ρ ) ≤ N̄δ.

The two results above establish that if the sampling error at each step in the

filter is small enough, and under the condition of exponential forgetting of initial
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conditions, the true filter density can be approximated arbitrarily closely with arbi-

trary high confidence. In the following, we establish that the sampling error at each

step in the PGM filtering process can be arbitrarily small and thus, it follows from

the two results above that the PGM filter can approximate the true filter density

with arbitrarily high accuracy and arbitrarily high confidence. First,we define the

following:

P (π̂n−1) ≡ π̂−n =

M−(n)∑
i=1

ω̂−i (n)Gi(x; µ̂−i (n), P̂−i (n)), (4.14)

P̂ (π̂n−1) ≡ ˆ̂π−n =

M−(n)∑
i=1

ˆ̂ω−i (n)G(x; ˆ̂µ−i (n),
ˆ̂
P−i (n)), (4.15)

Fzn(π̂n−1) =

M(n)∑
i=1

ω̂i(n)G(x; µ̂i(n), P̂i(n)), (4.16)

F̂zn(π̂n−1) =

M(n)∑
i=1

ˆ̂ωi(n)G(x; ˆ̂µi(n),
ˆ̂
Pi(n)). (4.17)

The above represent the true and the approximate PGM predicted and filtered den-

sities at time n given the approximate density π̂n−1 at time n − 1. We have the

following result:

Lemma 3. Given the GMM representation of the prior PDF above, and a perfect

Clustering algorithm C, given any ε′ > 0, andy δ′ > 0, there exists an Nε′,δ′(n) <∞

such that: if the number of samples used to approximate the predicted PDF at time

n is greater than Nε′,δ′(n) then:

Prob(| ˆ̂ω−i (n)− ω̂−i (n)| > ε′) < δ′, (4.18)

Prob(|| ˆ̂µ−i (n)− µ̂−i (n)||2 > ε′) < δ′, (4.19)

Prob(|| ˆ̂P−i (n)− P̂−i (n)|| > ε′) < δ′, (4.20)
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for all i.

Proof. Given a random variable (r.v) X, and a function f(X) such that E(f(X)) =

f̄ , and V ar(f(X)) = σ2
f , let f̂ = 1

N

∑N
i=1 f(Xi), where Xi are samples of the r.v. X.

For large enough N , it follows from the Central Limit Theorem [36] that:

P (|f̂ − f̄ | > ε) < 1−
∫ ε

−ε

√
N√

2πσf
e
−x

2N

2σ2
f dx. (4.21)

Under the assumption of a perfect clustering scheme, the mixture weights ω̂−i (n) may

be assumed to form the event probabilities of a multinomial random variable. It is

then straightforward from the central limit theorem (CLT) to find an Nε′,δ′(ωi) such

that equation 4.18 is satisfied.

For a Gaussian random vector X ∈ Rn with independent components {x1, · · ·xn}

and E{x2
i } = 1, it can be shown that

P{
∣∣∣‖X‖2 −

√
d
∣∣∣ ≥ t} ≤ 2e

−ct2
k4 ,∀t ≥ 0. (4.22)

Here c is a positive constant and k = maxi ‖xi‖ψ2
where ‖xi‖ψ2

= inf{t;E{e(
xi
t

)2} ≤

2} [37]. If ˆ̂µ−i (n) is determined as the sample mean of points assigned to cluster Ci,

then from equation 4.22 we have

P{
∣∣∣∥∥∥(P̂−i (n)

−1
2

√
Nj)(ˆ̂µ−i (n)− µ̂−i (n))

∥∥∥
2
−
√
d
∣∣∣ ≥ t} ≤ 2e

−ct2
k4 (4.23)

where Nj is the number of points assigned to cluster j. This can be manipulated to

show that

P {
∥∥∥( ˆ̂µ−i (n)− µ̂−i (n)

)∥∥∥
2
≥ t+

√
d∥∥∥(P̂−i (n)

)−1
2

∥∥∥
2

√
Nj

} ≤ 2e
−ct2
k4 , (4.24)
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Using equation 4.24 and by setting

t+
√
d∥∥∥(P̂−i (n))

−1
2

∥∥∥
2

√
Nj

< ε′, (4.25)

2e
−ct2
k4 < δ′, (4.26)

it is possible to choose an Nj so that equation 4.19 is satisfied. The minimum value

of Nj that satisfies the above set of equations is chosen as Nε′,δ′(µj).

Let
ˆ̂
P−i (n) be the sample average estimate of ith modal covariance. Then it can

be shown that

P{

∥∥∥ ˆ̂
P−i (n)− P̂−i (n)

∥∥∥∥∥∥P̂−i (n)
∥∥∥ ≥ ck2(

√
d+ u

Nj

+
d+ u

Nj

)} ≤ 2e−u, (4.27)

where k is a constant greater than or equal to one and c ≥ 0[37]. Here ‖.‖ represents

the spectral norm of the covariance matrix. Hence, by picking an Nj such that

ck2(

√
d+ u

Nj

+
d+ u

Nj

)
∥∥∥(P̂−i (n)

∥∥∥ < ε′, (4.28)

2e−u < δ′, (4.29)

the condition given in equation 4.20 can be satisfied. LetNε′,δ′(Cj) be the minimum

Nj that satisfies this condition. Pick Nε′,δ′(j) = max
(
Nε′,δ′(ωj),

Nε′,δ′ (µj)

ω̂−j
,
Nε′,δ′ (Pj)

ω̂−j

)
.

Such Nε′,δ′(j) can be found for all clusters Cj and given that we choose Nε′,δ′ as:

Nε′,δ′ = max
j
Nε′,δ′(j), , (4.30)

it is guaranteed that all the elements of the mean vector µ̂−(n) and the covariance
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matrix P̂−(n) can be estimated to an accuracy of ε′ with confidence of at least 1−δ′,

which completes the proof of the result.

It may be shown that under Assumption 3 that the Kalman update is an arbi-

trarily accurate approximation of the true update, the error incurred in estimating

the posterior mean and covariance µ̂i(n), P̂i(n) is at most K(n)ε′, for some time

varying K(n) <∞ which depends on the posterior mean and covariance, given that

the predicted prior means and covariances of the clusters of the GMM have been

approximated to an accuracy of ε′. This can be summarized in the following result:

Lemma 4. Given any ε′, δ′ > 0, choose Nε′,δ′(n) according Eq. 4.30. If the number

of samples used in the PGM filter to approximate the predicted prior PDF at time n

is greater than Nε′,δ′(n) then, there exists k(n) <∞ s.t:

Prob(| ˆ̂ωi(n)− ω̂i(n)| > K(n)ε′) < δ′, (4.31)

Prob(
∥∥∥ ˆ̂µi(n)− µ̂i(n)

∥∥∥ > K(n)ε′) < δ′, (4.32)

Prob(
∥∥∥ ˆ̂
Pi(n)− P̂i(n)

∥∥∥ > K(n)ε′) < δ′, (4.33)

for all i.

Next, we find a bound on the L1 error between the estimated and true filtered

densities given the error between the parameters of the GMM representing the true

and the approximate filtered densities.

Lemma 5. Let | ˆ̂ωi(n)− ω̂i(n)| < ε′,
∥∥∥ ˆ̂µi(n)− µ̂i(n)

∥∥∥ < ε′, and
∥∥∥ ˆ̂
Pi(n)− P̂i(n)

∥∥∥ < ε

for all i. Then , given that the state of the system x ∈ <d, there exists C(n) < ∞

such that ||ˆ̂πn − π̂n|| < C(n)dε′.

Proof. We show the result for the case of a simple one component Gaussian with an
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error in the covariance, it can be generalized to the GMM in a relatively straightfor-

ward fashion but at the expense of a very tedious derivation which we forego here

for clarity. We also suppress the explicit dependence on time n in the following for

notational convenience.

ˆ̂π(x)− π̂(x) =
1

(2π)d/2| ˆ̂P |1/2
e−

1
2

(x−µ)T
ˆ̂
P−1(x−µ)−

1

(2π)d/2|P̂ |1/2
e−

1
2

(x−µ)T P̂−1(x−µ),

≈ 1

(2π)d/2|P̂ |1/2
e−

1
2

(x−µ)T P̂−1(x−µ)

×1

2
(x− µ)T (P̂−1∆P̂−1)(x− µ), (4.34)

where
ˆ̂
P = P̂ + ∆ and since

e−
1
2

(x−µ)T (P̂+∆)
−1

(x−µ) ≈ e−
1
2

(x−µ)T P̂−1(x−µ)e−
1
2

(x−µ)T P̂−1∆P̂−1(x−µ), (4.35)

which in turn implies equation 4.34. This in turn implies that:

||ˆ̂π − π̂|| ≈ 1

(2π)d/2|P̂ |1/2
×
∫
e−

1
2

(x−µ)T P̂−1(x−µ) 1

2
(x− µ)T P̂−1∆P̂−1(x− µ)dx,

≤ C(P̂ )ε′

(2π)d/2|P̂ |1/2
×
∫
e−

1
2

(x−µ)T P̂−1(x−µ) 1

2
(x− µ)T P̂−1(x− µ)dx,

(4.36)

since there exists C(P̂ ) <∞ such that

1

2
(x− µ)T P̂−1∆P̂−1(x− µ) ≤ C(P̂ )ε′

1

2
(x− µ)T P̂−1(x− µ) (4.37)
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owing to the fact that ||∆|| < ε′.

Now, let Y = P̂−1/2(X − µ). Then, it follows that:

||ˆ̂π − π̂|| ≤ C(P̂ )ε′
1

(2π)d/2

∫
e−1/2yT yyTydy = C(P̂ )ε′d. (4.38)

The last step in the above equation follows from noting that Y ′Y is a chi-squared

random variable of degree of freedom d and thus, its expected value is d. This

establishes our result. In general for a GMM, the constant C(n) would depend on

the means and covariances of all the GMM components and their weights.

Lemma 4 and 7 immediately lead us to the following corollary.

Corollary 1. Let ε′(n) be the desired accuracy in estimating the parameters of the

GMM representing Fzn(π̂n−1), i.e., the true filtered density given observation zn and

the PGM posterior PDF at the previous time π̂n−1. Let δ′(n) be the desired confidence

of the estimate. If ε′(n) and δ′(n) are chosen such that:

C(n)K(n)ε′(n)d = ε, (4.39)

δ′(n) =
δ

N
, (4.40)

and the corresponding number of samples Nε′(n),δ′(n)(n) be chosen according to equa-

tion 4.30, then it follows that ||Prob||F̂zn(π̂n−1)− Fzn(π̂n−1)|| > ε) ≤ δ
N

.

Proof. Recall that π̂n = Fzn(π̂n−1), and ˆ̂πn = F̂zn(π̂n−1). Then, from Lemma 7 we

have that ||π̂n− ˆ̂πn|| ≤ C(n)K(n)dε′(n) if |θ̂i(n)− ˆ̂
θi(n)| < ε′(n) for all i, where θ̂i(n)

represents the true parameters underlying the GMM representation of π̂n and
ˆ̂
θi(n)
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represents their PGM approximation. Hence:

Prob(||π̂n − ˆ̂πn|| > C(n)K(n)dε′(n)) < δ′(n), (4.41)

which owing to the definition of ε′(n) and δ′(n) leads us to the desired result.

Hence, using Corollary 1 and Lemma 2, it follows that if the number of samples

used to approximate the parameters of the predicted GMM PDF at time n is greater

than the Nε′(n),δ′(n), then it follows that Prob(||ˆ̂πn − π̂n|| > (1+ν)Cε
1−ρ ) ≤ δ, for all n

for any arbitrarily small ε, δ, ν > 0. However, in order for Assumption 5 to be valid,

the sample averages
ˆ̂
θn have to be almost surely bounded. Here

ˆ̂
θn represents any

parameter that is computed from the sample and used to specify the PDF such as

the component weights, means or covariances. To show this, due to the Strong Law

of Large Numbers, it is also true that
ˆ̂
θNn → θ̂n as N → ∞, where

ˆ̂
θNn represent the

estimate of the parameters after N samples. Given the sample size is large enough,

the estimate
ˆ̂
θNn is arbitrarily close to the true parameters θ̂n almost surely, and

thus, since the true parameters are bounded, so are the estimates. This may be

summarized in the following result.

Proposition 1. Let Assumptions 3 and 4 hold. Given a perfect clustering algo-

rithm C, and any ε, δ, ν > 0, at every time step n, choose the required accuracy

of the approximation ε′(n) from equation 4.39, the required confidence δ′(n) from

equation 4.40, and the corresponding minimum number of samples Nε′(n),δ′(n) from

equation 4.30, then:

Prob(||ˆ̂πn − π̂n|| >
(1 + ν)Cε

1− ρ
) ≤ δ. (4.42)

Several remarks are in order here.
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Remark 1. The above result establishes the convergence in probability of the approx-

imate PGM filter density to the true filtered density uniformly over all time under

the assumptions of exponential forgetting of the initial conditions and the adequacy

of the Kalman update to approximate the true Bayesian update in the filtering equa-

tions. In the absence of the exponential forgetting condition, the convergence result

can be obtained only for a finite number of time steps, the development being almost

identical. In the absence of Assumption 3, the adequacy of the Kalman update, the

result still holds except that there is a new error incurred in sampling the posterior

PDF, which will be covered in chapter 5.

Remark 2. The analysis above shows that the number of samples required at any

time step to ensure the accuracy of the filter depends on the current predicted and

posterior PDFs, and thus, in general, have to be time varying. This is a fact that is

typically ignored in other mixture filters such as the PF and the GMF.

Remark 3. The Curse of Dimensionality: The number of samples required to

estimate the mixture weights does not depend on the dimension of the state space.

Additionally, equations 4.25, 4.28 indicate that the number of samples required to

estimate the component means and covariances increase only as O(d). From the

above analysis, equation 4.30, and Lemma 4, it can be concluded that the number

of samples required to estimate the parameters of the predicted and posterior PDFs

accurately increases only linearly with the dimension of the state space, and thus,

is free from the ”Curse of Dimensionality”. However, we have to be more careful

regarding the functional L1 error in the PGM density: equation 4.39 shows that

the accuracy parameter required at every time step is inversely proportional to the

dimension of the state space since ε′(n) = ε
C(n)K(n)d

, and thus, in order to attain the

same accuracy in terms of the functional error of the filtered density, equation 4.21
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shows that the number of samples have to increase as O(d2) where d is the dimension

of the problem. Further, it should also be noted that the computation of the sample

averages required by the PGM filter grows as O(d2).

Remark 4. Compressive Assumption: The assumption of a finite Gaussian

Mixture, is, in our opinion, a compressive argument. We restrict the set of param-

eters describing the predicted random variable to a finite number that are estimated

using sample averages of the predicted random variable. The variance of these ran-

dom samples is always bounded because of the finiteness assumption, and thus, the

number of samples required to estimate the parameters is independent of the dimen-

sion of the problem. In general, if we were to find the moments of a random variable

from its samples, we need to find all the moments via their sample averages. The

variance of the samples of these higher order moments are, in general, not bounded,

thereby requiring an infinite number of samples to estimate the PDF.

4.1.2 Relationship to other Nonlinear Filters

In this section, we compare and contrast the PGM filter with other nonlinear

filters, in particular the PF, the EnKF [26, 31] and some of the GMF in detail .

The prediction stage of the PF is the same as the PGM except that the PF does not

get a GMM from the set of predicted particles, and directly uses the Bayesian update

on the individual particles, i.e, weights every particle with its likelihood p(zn/Xi).

In the update step lies the computational trouble inherent to the PF, also known

as the “particle depletion problem”: as the number of dimensions increase, it gets

increasingly hard to sample particles with high likelihood, in fact the number of

particles goes up exponentially with the number of dimensions thereby subjecting

the PF to the curse of dimensionality. Consider the simple one dimensional example

shown in Figure 4.1. In this case, a set of 400 particles are sampled from the prior
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PDF π(x) = G(x, 11, 0.3). The measurement likelihood function is assumed to be

lz(x) = G(x, 15, 0.1). Since the two PDFs are widely separated, nearly all the weight

is allocated to a single particle as observed in the histogram of normalized weights in

Figure 4.1. Please see the references [25, 38, 39] for more rigorous insight. In contrast,

the PGM uses the Kalman update for the GMM components and thereby does not

suffer from the particle depletion problem. Moreover, as shown in the previous

section, the number of samples required by the PGM increases only quadratically

with the dimension of the problem. In essence, the Kalman update can be thought

of as an automatic method to control/ move the predicted particles to the correct

regions of the state space given the observation. In fact, this is the philosophy

used in the EnKF[30, 26] that perturbs each of the predicted particles using the

measurement to obtain a perturbed ensemble of points that actually samples the

posterior density. However, the EnKF always assumes a unimodal Gaussian for its

predicted and posterior filter densities. At a more minor level, in PGM, we actually

do the mean and covariance update of the components using the Kalman update

equation rather than perturbing the ensemble of predicted particles[31]. Using the

particle based Kalman Filtering method such as the EnKF, we see that at least

the calculation of the mean and covariance is independent of the dimension of the

state space, and this is precisely the reason why the EnKF is used regularly for the

filtering of PDEs such as those arising in meteorology and geophysics [40] where even

the EKF or UKF are intractable.

The earliest GMFs were a bank of parallel EKFs but the number of modes in the

GM was always fixed through both the prediction and the update steps [19]. This,

as has been noted in Section II, can be quite restrictive as it only considers multi-

modality arising from initial conditions and never from the prediction and update

steps. Other GMFs have more sophisticated methods for updating the weights of the
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Figure 4.1: Particle Depletion

GMM using the Fokker-Planck equation [20] but keeps the number of modes fixed

nonetheless. Recent GMF algorithms have also focused on time varying number of

modes and used various heuristics to decide when to split a particular Gaussian into

multiple components [21]. The problem of covariance splitting during propagation

can be avoided given that the mixand covariances are sufficiently small. The blob

filter of [22] is a Gaussian mixture filter that tries to circumvent the problem of

nonlinearity induced distortion by enforcing an LMI based upper bound on mixand

covariances. It uses a novel resampling algorithm to reapproximate the propagated

PDF with a GMM so that the bound on the individual mixand covariances is satisfied.

It uses EKF for performing the propagation and measurement update steps.

Unlike most of the Gaussian mixture filters discussed here, the PGM filter not

the use the typical Kalman filtering propagation methods such as in the EKF/ UKF

to propagate and split the PDF. It uses a particle ensemble of the predicted random

variable along with a clustering algorithm to conveniently find the number as well

as the mean and covariances of the component clusters. In particular, we feel that

the PGM harnesses the strength of the PF, the particle prediction step, along with

the strength of the Kalman update in GMFs, using clustering algorithms, to develop

a technique that is free from the weaknesses of either technique. The GSPF is
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also a Gaussian mixture filter that relies on particle based propagation. However,

there exist significant differences between the prediction and update algorithms of

GSPF and the PGM filter. The GSPF relies on an importance sampling based

approach to perform the measurement update. Let the predictive distribution be

modeled as the weighted Gaussian mixture {ωi, µi, Ci, i = 1 · · ·G}. In order to

update the ith mixture component, the GSPF samples a set of particles from an

importance function πi(x). The particles are then assigned weights based on the

ratio between the posterior density and the importance density function. This is

similar to the importance sampling based Bayesian update in particle filters. The

PGM filter on the other hand updates the components of the predictive density using

a Kalman measurement update. The departure from the importance sampling based

measurement update as used in particle filters and GSPF to the linearized Kalman

update is an important aspect of the PGM filter algorithm. Additionally, let the prior

density be modeled as a weighted Gaussian mixture Pn(X) =
∑G

i=1 ωiN (x, µi, Ci).

Then, for i = 1 · · ·G, the GSPF samples a set of M points xjni, {j = 1 · · ·M} from

the Gaussian component N (x, µi, Ci). These are then propagated using the dynamic

model to obtain xj(n+1)i, {j = 1 · · ·M}. The mean and covariance of the ith component

of the predictive distribution is obtained then by evaluating the mean and covariance

of xj(n+1)i. The number of mixture components and mixing weights are kept kept fixed

between prior and predictive distributions. Hence the GSPF is essentially a “parallel

bank” of Gaussian particle filters. This is not the case with the PGM filters. The

PGM filter samples a set of particles directly from the full prior distribution. After

propagation, the particles are clustered to obtain the weights, means and covariances

that parameterize the mixture model representing the predictive distribution. It also

allows the number of components to vary between prior and predictive distributions.
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4.2 Implementation

In this section, we discuss certain steps involved in the practical implementation

of the PGM filter in detail.

Modified k-means clustering: The k-means algorithm requires the total number

of clusters to be specified externally. To work around this limitation, we have imple-

mented a strategy which only requires the upper bound M−
max(n+ 1) as the external

input instead of M−(n+ 1). We define the likelihood agreement measure (Lmes)[21]

as the measure of fitness of the parametric model θa in describing the dataset S. Let

θa,Mbe an M-component mixture model indexed by a and arrived at from k−means

clustering. Then Lmes(θa,M) may be computed as

Lmes(θa,M) =

Np∑
i=1

πθa(x
i−
n+1) (4.43)

where πθa(x) is the mixture PDF derived from the parametric model θa,M . Let θa∗,M∗

be the optimal parametric model with M−
n+1 = M∗ components that maximizes the

Lmex given the bound M−
max(n + 1). Then, the proposed strategy for clustering is

presented in the following algorithm. The most common implementation of the k-

means clustering approach is the Lloyd’s algorithm [35]. Lloyd’s algorithm finds a

local minimum to the sum of squares of within-group distances appearing in equa-

tion 4.4. The time complexity of the Lloyd’s algorithm is known to be O(NpMdi)

where Np is the number of particles to be clustered, d the dimensionality of the state

space, M the number of clusters and i is the number of iterations [41]. Implementing

the naive clustering strategy as described here will result in a quadratic time com-

plexity in M−
max(n+ 1).

Merging: Depending on the clustering scheme, dynamics and measurement models,
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Algorithm 3 Clustering Strategy

Input: S−1
n+1 = {x1−

n+1, · · · , xi−n+1, · · · , x
Np−
n+1 },M−

max(n+ 1)
Output: θa∗,M∗, M∗ ≤M−

max(n+ 1)
1: M ←M−

max(n+ 1)
2: θa∗,M∗ ← θa,M−max(n+1)

3: L∗mes ← Lmes(θa,M−max)
4: while M > 1 do
5: M ←M − 1
6: Compute θa,M using k-means
7: if Lmes(θa,M) ≥ L∗mes then
8: θa∗,M∗ ← θa,M
9: L∗mes ← Lmes(θa,M)

10: end if
11: end while

one may observe several closely distributed mixture modes in the posterior PDF. The

components that are located sufficiently close may be merged to obtain a GMM with

well separated modes. A similar situation may arise when the clustering scheme

assigns a complex model to describe the data due to overfitting. To identify the

right modes to be merged, we define the following normalized error metric [42] as a

measure of similarity between modes i and j.

D(i, j) =

∫
(Gi(x, µi, Pi)− Gj(x, µj, Pj))2dx∫
Gi(x, µi,Σi)2dx+

∫
Gj(x, µj,Σj)2dx

(4.44)

Clearly, D(i, j) = 0 when the components i, j are identical. It also has an upper

bound at 1. Mixture modes that are closely spaced, can be merged whenever the

value of normalized error metric falls below a predetermined tolerance (tol). In the

present study, we have chosen this tolerance to be tol = 0.01. Let i1, · · · , ik be the

indices of the mixture modes that are to be merged. Then the mixture parameters
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of the new Gaussian component obtained after merging is given by

ωi =
k∑
l=1

ωil , µi =

∑k
l=1 ωilµil
ωi

(4.45)

Pi =

∑k
l=1 ωil(Pil + (µil − µi)(µil − µi)T )

ωi
.

4.3 Numerical Examples

In this section, the particle Gaussian mixture filter is applied to three test case

problems to evaluate the filtering performance. Other nonlinear filters such as the

UKF, PF and the Gaussian mixture ’blob’ filter are also simulated for compari-

son. For the PF, a sequential importance resampling (SIR) design is considered.

The estimation results are assessed for accuracy, consistency and informativeness.

A description of the metrics used to compare the filter performance in each of the

aforementioned categories is provided below.

1) Accuracy: A Monte Carlo averaged root mean squared error (Erms(t)) is consid-

ered for evaluating the accuracy of the estimates. The value of Erms(t) is computed

over a set of NMo Monte Carlo runs as

Erms(t) =

√√√√ 1

NMo

NMo∑
j=1

‖X̂j(t)− µ̂j(t)‖2
2. (4.46)

Here, X̂j(t) and µ̂j(t) represent the actual and estimated states at the time instant

t during the jth Monte Carlo run. The time averaged error(Erms) can be computed
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from Erms(t) as

Erms =
1

T

T∑
t=1

Erms(t). (4.47)

2) Consistency: The consistency of the filtered PDF is examined using the normal-

ized estimation error squared (NEES) test. For a unimodal state PDF, the NEES

test is evaluated using the χ2 test statistic (βj,t) given by

βj,t = (X̂j(t)− µ̂j(t))T (P̂ j(t))−1(X̂j(t)− µ̂j(t)). (4.48)

The term P̂ j(t) in the above expression represents the covariance of the unimodal

filtered PDF at time t during jth Monte Carlo run. The Monte Carlo averaged NEES

test (βt) is computed from this expression as

βt =
1

NMo

NMo∑
j=1

βj,t. (4.49)

The NEES test as presented here is not suitable for evaluating the consistency of

a multimodal PDF. Let the filtered PDF at time t = n be given by

πn(x) =
Mn∑
i=1

ωiGi(x;µi, Pi). (4.50)

When the mixture modes are well separated, the total probability that the r.v repre-

sented by the GMM belongs to any one of the mixture modes is given by its mixture

weight. In defining a GMM describing the state of the dynamical system, the filter

hypothesizes the mixture weights, the component means and their covariances. A

novel two step procedure for evaluating the consistency of the GMM PDF is devel-
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oped as part of the present work. Let the random vector V1 be defined as

V1 = [11
c(x) · · ·1ic(x) · · ·1Mn

c (x)]T , (4.51)

where 1ic(x) represents the indicator function which equals 1 when the state belongs

to the ith mixture component and zero otherwise. Then assuming that the mixture

modes are well separated, it can be deduced that

E(V1) = [ω1 · · ·ωi · · ·ωMn ]T . (4.52)

It should be observed that the merging procedure described in the previous section

helps to keep the modes well separated as it coalesces the components that are closely

spaced. Define

εv =V1 − [ω1 · · ·ωi · · ·ωMn ]T , (4.53)

ε2v =εTv εv. (4.54)

Here the value of V1 is evaluated over a single instant, i.e,
∑Mn

i=1 1
i
c(x) = 1. Then, it

can be shown that

E(ε2v) =
Mn∑
i=1

ωi(1− ωi), (4.55)

E(ε2v − E(ε2v))
2 =

Mn∑
i=1

ωi(1− ωi)((1− ωi)3 + ω3
i ) (4.56)

+
∑
k

∑
j

j 6=k

ωjωk(ωj + ωk − 3ωjωk)− (E(ε2v))
2.

Let V j
1

(t) be the above defined indicator vector computed at time t during jth
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Monte Carlo run. At each instant, the state vector is assumed to belong to the

component that maximizes the likelihood given the truth. That is

1
i
c(X̂

j(t)) =


1, i = arg maxGi(X̂j(t), µi, Pi)

0, otherwise

(4.57)

Let the sum Swt be defined as

Swt =

NMo∑
i=1

εjv(t)
2 − E(εjv(t)

2)√
NMoE(εjv(t)2 − E(εjv(t)2))2

(4.58)

The expectations involved in this sum are computed using the mixture weights ωji (t)

at time t during the run j. As NMo becomes large, the sum Swt converges in distri-

bution to a standard Gaussian random variable, Swt
d−→ G(x, 0, 1). Hence probability

based bounds on the value of Swt can be computed from a standard normal distri-

bution. Indeed, the first step in the two step procedure for testing consistency of

GMM PDFs involves evaluating Swt to determine whether it falls within the desired

bounds. In the second step, a NEES test statistic is computed from the GMM ex-

cept that the mean and covariance of the most likely mode is used to evaluate the

χ2 random variable,i.e.,

βj,t = (X̂j(t)− µ̂ji (t))T (P̂ j
i (t))−1(X̂j(t)− µ̂ji (t)), (4.59)

i = arg maxN(X̂j(t), µji (t), P
j
i (t))

The χ2 test statistic obtained from the above expression may then be averaged over

several Monte Carlo runs to perform the NEES test. This completes the two step

consistency check for GMM PDFs.
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3) Informativeness: Two separate metrics are considered for evaluating the in-

formativeness of estimates in the present work namely the averaged likelihood of

the truth (L(t)) and volume of 2 − sigma uncertainty region (V σ2). The averaged

likelihood of the truth over NMo Monte Carlo runs may be computed as

L(t) =
1

NMo

NMo∑
j=1

πjt (X̂
j(t)). (4.60)

Here πjt represent the conditional state PDF at time t in the jth Monte Carlo run.

The time averaged likelihood is computed from the above expression as

L̂ =
1

T

T∑
t=1

L(t). (4.61)

When the state PDF is in the ensemble form, the likelihood is computed using a

unimodal Gaussian PDF characterized by the sample mean and covariance of the

collection of states. For a well separated GMM PDF, the value of V σ2 can be

computed as

V jσ2(t) =
Mt∑
i=1

|2Σi|. (4.62)

where Mt is the number of modes. Here |.| represents the determinant of the enclosed

square matrix. The expression for the unimodal case can be derived by settingMt = 1

in the above equation. We compute the Monte Carlo averaged 2− σ volume as

V σ2(t) =

NMo∑
j=1

V jσ2(t). (4.63)
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We compute the corresponding time averaged value V̂ σ2 as

V̂ σ2 =
1

T

T∑
i=1

V σ2(t). (4.64)

4.3.1 Example 1

In this problem, we consider the estimation of the one dimensional discrete time

nonlinear dynamic system given by

xk+1 =
xk
2

+
25xk

(1 + x2
k)

+ 8 cos(1.2k) + νk. (4.65)

A measurement model aiding the estimation of the system is specified as

zk =
x2
k

20
+ nk, (4.66)

The process noise term νk and measurement noise term nk are assumed to be

independent zero mean Gaussian random variables with covariances Q = 10 and

R = 1 respectively. This example or its variants have been studied in several pub-

lications before[24, 23]. Two variants of the PGM filter, i.e, PGM1-UT and PGM1,

an SIR filter, blob filter and a UKF are simulated to estimate the test case 1 system

for a duration of 52 time steps over 50 Monte Carlo runs. The initial state of the

system is assumed to be distributed as P0(x) = N (0, 2). Measurements are recorded

at every other instant. The SIR and the PGM filters are implemented with a set of

50 particles. The upper bound on the number of mixture components Mmax is set

to be 3. For blob filter, 50 Gaussian components were used with a covariance upper

bound Pmax = 10−6. The parameter values used in the implementation of the UKF

may be found in Table 4.1.
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Table 4.1: UKF Parameter Values for PGM-I, test case 1. Reprinted with permission
from[1, 2].

UKF parameters
α β λ

1.3 1.5 0.2

The values of Erms(t) plotted in Figure 4.2a indicate good tracking performance

by the PGM filters. The PGM filters, the PF and the blob filter are seen to offer

comparable tracking performance. The Monte Carlo averaged NEES results plotted

in Figure 4.2b show that the UKF and PF frequently oversteps the upper bound

which marks inconsistent estimates. Furthermore, βt computed using the PF esti-

mates are found to frequently exhibit peaks several orders of magnitude larger than

the 99% upper bound, indicating covariance collapse. For the PGM filters, the com-

ponent weights are also tested for consistency. For the PGM1-UT, the value of Swt

is found to stay within the 99 percent bounds during 80.38% of the simulated time.

For PGM1, this number was found to be 73%. The averaged likelihood L(t) and the

volume V2σ plotted in Figures 4.2c and 4.2d show that only the blob Filter provides

more informative estimates than the PGM-1 and PGM-1 UT.

The time averaged values of RMSE Erms, likelihood L̂, and the 2σ volume for

each filter are listed in Table 4.2. Also included is the fraction (βc%) of the time

instants during which the computed averaged NEES result stayed within the 99

percent limits,i.e.,

βc% =

∑T
t=1 1Ub0.99(βt)

T
(4.67)

where 1Ub0.99(βt) is the indicator function which equals 1 when βt < Ub0.99 and

zero otherwise. The results presented in Table 4.2 clearly show that the PGM filter

implementations offer accurate, consistent and informative estimates.
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(a) Erms(t)

(b) βt

(c) L(t)

(d) V2σ

Figure 4.2: PGM-I estimation results for bimodal one dimensional nonlinear model.
Reprinted with permission from [1].

4.3.2 Example 2

In this example, the PGM filters are employed in the estimation of a 3-dimensional

Lorenz 63 model for atmospheric convection. The noise perturbed dynamics of the
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Table 4.2: Time averaged RMSE Erms, likelihood L̂, and the 2σ volume for PGM-I,
test case 1. Reprinted with permission from [1].

Example 1: Results

Erms βt,c(%) L̂ V̂ σ2

PGM1-UT 6.4513 78.85 0.1209 62.1753
PGM1 6.2859 84.62 0.1253 60.3453

PF 6.5488 46.15 0.1063 79.8123
UKF 8.3279 36.54 0.0488 103.8405

Blob Filter 6.5243 46.15 0.1827 0.0001

Lorenz 63 system is described the the following set of equations,

ẋ1 = α(−x1 + x2), α = 10 (4.68)

ẋ2 = βx1 − x2 − x1x3, β = 28

ẋ3 = −γx3 + x1x2 + Γ(t), γ = 8/3

A scalar nonlinear measurement model(zk) is considered which is given by

zk =
√
x1(t)2 + x2(t)2 + x3(t)2 + νk. (4.69)

The process and measurement noise covariances are both set be equal to 1. The

initial state of the system is characterized by the bimodal PDF

p0(x) =0.9G(x, [−0.2,−0.2, 8]T ,
√

0.35I3×3)+ (4.70)

0.1G(x, [0.2, 0.2, 8]T ,
√

0.35I3×3)

The state of the system is updated at a time step ∆t = 0.01s. The measurements

are recorded at the interval of ten time steps. This example has been considered

previously in [20].
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(a) Erms(t)

(b) NEES(βt)

(c) L(t)

(d) V2σ

Figure 4.3: PGM-I estimation results for Lorenz 63 model. Reprinted with permis-
sion from [1].

The PGM1 filter, PGM1-UT filter, the PF, the blob filter and a conventional

Gaussian mixture UKF [19] are employed in the estimation of the Lorenz63 system.

The PGM filters and the SIR filter are implemented with 300 particles and Mmax is

set be 2. The UKF is implemented using the parameters listed in Table 4.1. The
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blob filter is implemented by re-approximating the initial PDF using 300 Gaussians

with a maximum covariance Pmax = 0.0005× I3.

The values of Erms(t) computed over 50 runs and plotted in Figure 4.3a show

that estimation errors for PGM1 and PGM1-UT are the smallest among the four

filters. The Monte Carlo averaged NEES results are plotted in Figure 4.3b. It is

observed that the NEES test statistic βt for the PF, the blob filter and the mixture

UKF overstep the y = Ub0.99 line early in the simulation. For the three bi-modal

filters PGM1-UT, PGM1 and mixture UKF, the computed value of Swt is found

to stay within the 99% bounds during 94.12, 96.08 and 89.22 percent of the times

considered.

Table 4.3: Time averaged RMSE Erms, likelihood L̂, and the 2σ volume for PGM-I,
test case 2. Reprinted with permission from [1].

Example 2: Results

Erms βt,c(%) L̂ V̂ σ2(×104)

PGM1-UT 14.3886 97.06 0.0038 8.644

PGM1 14.1148 97.06 0.0045 1.046

PF 15.5425 11.76 0.0088 0.6737

GMUKF 15.3528 13.73 0.0019 9.3291

Blob Filter 17.9477 9.80 0.0070 1.09× 10−11

The averaged likelihoods(L(t)) and V σ2 volumes plotted in Figures 4.3c, 4.3d

show that the PF has the highest average likelihood whereas the Blob filter has

the smallest V σ2 volume. However, as the NEES results of the PF and the blob

filter are seen to stay above the 102 for around 85% of the time. The the higher

likelihoods and the small V σ2 of the PF should be understood as a consequence of
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its covariance collapse. The consistency fractions(βc%) and the time averaged values

of other performance metrics for each filter are listed in Table 4.3. The results clearly

indicate that the PGM filters are more accurate and consistent than the PF, mixture

UKF and blob filter.

4.3.3 Example 3

In this test case, the PGM filters are employed in the estimation of a Lorenz96

system. The noise perturbed dynamics of the Lorenz96 system is given by

ẋi = xi−1(xi+1 − xi−2)− xi + F + Γ(t), (4.71)

where i = 1, 2, · · · , 40 [43]. The state variables are assumed to be cyclical so that

x0 = x40, x−1 = x39, x41 = x1 . The term F represents a constant external forcing. In

the present work, we set F = 8 at which the system is chaotic. The covariance of the

zero mean Gaussian white noise is assumed to be Q = 10−2. A linear measurement

model is employed in the estimation of the Lorenz96 system and it is defined as,

zk =HXk + νk, Hi,j =


1, j = 2i− 1

0, otherwise.

where H ∈ R20×40. The measurement noise is assumed to be a zero mean Gaussian

random vector with a covariance R = 10−2I20×20 where Ii,j = δi,j. The initial state

PDF is given by

p0(x) =G(x, µ0, P0), (4.72)
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where µ0 = F

[
1 · · · 1 · · · 1

]T
, µ0 ∈ R40×1 and P0 = 10−3I40×40. The state of the

system is updated at ∆t = 0.05 time units and measurements are recorded at the

interval of 1 time unit. The performance of the PGM-1 filters is compared to that

of an EnKF[31], an SIR filter and a blob filter. The PGM-1 filters and the EnKF

were equipped with a set of 2000 particles. The value of Mmax is kept at 2. The

SIR filter was implemented with 2000 particles. The blob filter was employed with

2000 Gaussians each having a maximum covariance Pmax = 10−4 × I40. The filters

were used to estimate the state of the system for a duration of 200 time steps over

50 Monte Carlo runs. The PF and the blob filter were found to undergo covariance

collapse after the first measurement was recorded. This was seen to be the case even

after using 4000 particles for the PF and using 4000 Gaussians with a maximum

covariance of I40 for the blob filter. From the Erms(t) plots in Figure 4.4a, it can

be observed that the tracking performance of the PGM filters and the EnKF are

comparable. The Monte Carlo averaged NEES test statistic βt plotted in Figure 4.4b.

show that the EnKF and the PGM1 filter offers comparable performance. The value

of Swt was found to stay within the 99% bounds during 60% of the time for both

PGM1-UT and PGM1. The plots of log(L(t)) and V σ2 given in Figures 4.4c, 4.4d

show that, in comparison to the EnKF, the PGM filters performs better in terms of

the v2σ volume, whereas the EnkF estimates have the highest averaged likelihoods.

The time averaged values of the performance metrics are listed in Table 4.4 along

with the consistency fractions. The performances of the EnKF and the PGM filters

are seen to be comparable. It may be observed that the EnKF is quite similar to

a unimodal PGM Filter as they both rely on particle uncertainty propagation and

Kalman measurement update.

Our results in this chapter indicate that the PGM-I filter is capable of handling
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(a) Erms(t)

(b) NEES(βt)

(c) log(L(t))

(d) log(V2σ)

Figure 4.4: PGM-I estimation results for Lorenz96 system. Reprinted with permis-
sion from [1].

the general multimodal nonlinear filtering problems. The Monte Carlo uncertainty

propagation method can handle the nonlinearity induced distortions and the splitting

and merging of state PDF components during propagation step. However, since
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Table 4.4: Time averaged RMSE Erms, likelihood L̂, and the 2σ volume for PGM-I,
test case 3. Reprinted with permission from [1].

Example 3: Results

Erms βt,c(%) ˆlogL ˆlogV σ2

PGM1-UT 18.0069 80.69 89.6553 152.8588
PGM1 18.0452 70.30 89.6227 152.7732
EnKF 18.1055 81.19 89.8193 152.8034

it relies on Kalman measurement update to obtain the posterior PDF, it cannot

capture the splitting and merging of PDF components during measurement update.

The design of a PGM filtering scheme that incorporates splitting of mixture modes

during the measurement update is discussed in the next chapter.
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5. PARTICLE GAUSSIAN MIXTURE FILTERS -II*

In chapter 4, we proposed a particle Gaussian mixture (PGM) filter for nonlinear 

estimation. The PGM-I filter uses the transition kernel of the state Markov chain to 

sample from the propagated prior. A Gaussian mixture representation of the propa-

gated prior density is constructed by clustering the samples. The PGM-I algorithm 

incorporates the measurement data by updating individual mixture modes using the 

Kalman measurement update. The Kalman measurement update is inexact when 

the measurement function is nonlinear and leads to the restrictive assumption that 

the number of modes remain fixed during the measurement update. In this chapter, 

we introduce an alternate PGM-II filter that employs Markov Chain Monte Carlo

(MCMC) sampling to perform the measurement update [4, 3]. The measurement

update step in the Gaussian mixture filtering algorithm is discussed in section 5.1. A 

brief review of MCMC methods is given in section 5.2, following which the PGM-II 

filtering algorithm is introduced in section 5.3.

5.1 Gaussian Mixture Filtering: Measurement Update

In the measurement update step, the propagated PDF πn−(x) is updated with the 

new measurement zn according to the Bayes rule to obtain the posterior PDF πn(x).

πn(x) =
p(zn/x)π−n (x)∫
p(zn/x′)π−n (x′)dx′

, (5.1)

Let us assume that the propagated prior PDF π−n (x) can be approximated by a

∗Parts of this chapter were reprinted with permission from [3, 4].
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weighted sum of Gaussian PDFs.

π−n (x) =

M−(n)∑
i=1

ω−i (n)G−i (x;µ−i (n), P−i (n)) (5.2)

When the GMM representation of π−n (x) is substituted in equations 1.3, 5.1, we

get

πn(x) =

∑M−(n)
i=1 ω−i (n)p(zn/x)G−i (x;µ−i (n), P−i (n))∑M−(n)

i=1 ω−i (n)
∫
p(zn/x′)G−i (x′;µ−i (n), P−i (n))dx′

. (5.3)

Let li(n) be the likelihood that the measurement zn came from the ith mixture

component.

li(n) ≡
∫
p(zn/x

′)π−i,n(x′)dx′. (5.4)

The expression for the posterior PDF given in equation 5.3 can be rewritten as

follows.

πn(x) =

M−(n)∑
i=1

w−i (n)li(n)∑
j w
−
j (n)lj(n)︸ ︷︷ ︸
wi(n)

p(zn/x)π−i,n(x)

li(n)︸ ︷︷ ︸
πi,n(x)

. (5.5)

This shows that the posterior PDF πn(x) can be represented as a mixture model

{(ωi(n), πi,n(x))}, i ∈ {1, · · · ,M−(n)} where,

ωi(n) =
w−i (n)li(n)∑
j w
−
j (n)lj(n)

, (5.6)

πi,n(x) =
p(zn/x)π−i,n(x)

li(n)
. (5.7)

This mixture model has M−(n) components and the mixands πi,n(x) are not guar-
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anteed to be Gaussian when the measurement function is nonlinear. The Kalman

measurement update used in PGM-I filter obtains unimodal Gaussian approxima-

tions of individual mixands πi,n(x) by linearizing the measurement model. The result

is an M−(n) component GMM approximation of the posterior PDF. However, when

the measurement function is highly nonlinear or ambiguous, a single Gaussian com-

ponent from the predicted prior can give rise to multiple posterior modes.

5.2 Markov Chain Monte Carlo

The MCMC methods are a class of algorithms that are used to generate samples

from probability distributions that are not amenable to direct sampling [44]. In

the present chapter we consider the Metropolis Hastings algorithm which relies on

a proposal distribution to generate the samples [45, 46]. A sequence of candidate

points are drawn from the proposal distribution. The candidate points are then

retained or discarded based on an acceptance probability computed from the target

distribution. Interestingly, computing the acceptance probability requires only a

function that is proportional to the target distribution. This is very useful in cases

where computing the normalization constant for the target distribution is difficult.

Formally, let P (X) be the target distribution from which the samples are to be

generated. Let Q(X i|X i−1) be the proposal distribution. Then the MCMC algorithm

proceeds as follows. Let X t−1 be the sampled state at t − 1. Then generate X t∗ ∼

Q(X|X t−1). The candidate state X t∗ is then chosen or not based on the acceptance

probability α. The acceptance probability is computed as

α = min{1, Q(X t−1|X t∗)P (X t∗)

Q(X t∗|X t−1)P (X t−1)
} (5.8)
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When the proposal distribution is symmetric, i.e., Q(X t−1|X t∗) = Q(X t∗|X t−1), the

above expression simplifies to

α = min{1, P (X t∗)

P (X t−1)
} (5.9)

Gaussian proposal densities of the form Q(X t∗|X t−1) = N (X,X t−1,Σ) are sym-

metric. It can be shown that the sampling rule given above is constructed so that

the target distribution P (X) is the equilibrium distribution of the resulting Markov

chain. This implies that the initial samples may not be distributed according to

P (X). As a result, all points sampled during an initial burn-in period Tbr are dis-

carded.

In theory, the MH algorithm is capable of generating samples from complex multi-

modal distributions. However, generating a representative sample from a multimodal

distribution may require a long burn-in period and a large sample size. Consider the

case when the target distribution is multimodal with well separated modes. Assume

that the proposal distribution is Gaussian N (X,X t−1,Σ) as is often the case. If Σ is

too small compared to the modal covariances, then the probability that the chain will

jump from one target mode to another will be quite low over a finite time period. On

the other hand, choosing a large Σ will result in too many jumps to regions that are

of no interest. This is a major shortcoming of the MH algorithm in sampling from

multimodal posterior distributions. Parallellizable MCMC algorithms that split the

state space into partitions and allow asynchronous sampling from individual parti-

tion elements have been proposed recently [47]. In this work, we propose a similar

approach to sample from multimodal posterior PDFs. As mentioned before, the MH

algorithm generates a Markov Chain whose steady state distribution will be the tar-

get PDF P (X). Hence the samples drawn by MH over a finite time are not from
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the exact target distribution. Perfect sampling algorithms termed coupling from the

past (CFTP), that can draw samples from the exact target distribution have also

garnered significant attention recently [48].

5.3 PGM-II Filter

In this section we present a step by step description of the proposed PGM-II filter

and an associated convergence result.

5.3.1 The PGM-II algorithm

The PGM-II filter relies on a Gaussian mixture representation of the state PDF.

However, unlike the PGM-I filter, it is not essential for the operation of PGM-II

algorithm that we obtain a functional representation of the posterior PDF.

Assumption 6. The predicted prior PDF and the filtered PDF can be represented

as a GMM.

Given an ensemble of states Sn−1 = {x1
n−1 · · ·xNn−1} from the prior PDF at time

n−1, the PGM-II Filtering algorithm is composed of the three basic steps described

below.

1. Prediction: During the prediction step, the PGM-II filter generates an ensemble

S−n from the predicted prior π−n (x) using samples drawn from the prior PDF πn−1(x),

i.e., the ensemble Sn−1, and the Markov transition kernel P (x′/x). A pictorial rep-

resentation of the prediction is given as the first step in Figure 5.1.

2. Clustering : A functional representation of π−n (x) in the form of a GMM is

recovered from the ensemble S−n using a clustering scheme C [33, 34]. The output of

the clustering scheme is composed of the mixture weights ω−i (n), means µ−i (n) and

covariances P−i (n). The ellipsoids obtained at the end of clustering step in Figure 5.1
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Figure 5.1: PGM-II Filter-Prediction and Update. Reprinted with permission from
[3, 4].

represent the Gaussian mixture components. In particular,

π−n (x) =

M−(n)∑
i=1

ω−i (n)Gi(x;µ−i (n), P−i (n)) (5.10)

3. Measurement update: The PGM-II filter relies on a parallellized MCMC

method to perform the measurement update. The parallellized MCMC update is

broken down into the following four steps.

(a) Sample from the ith posterior mixture component πi,n(x) (equation 5.7) using

MCMC to obtain the ith posterior component ensemble Ai.
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(b) Cluster the ith posterior component sample Ai to obtain a functional repre-

sentation for the component PDF πi,n(x) . r mixture component weight wi(n)

(equation 5.6).

(c) Evaluate the ith posterior mixture component weight wi(n) (Eq. 5.6).

(d) Sample from the mixture model {wi, πi,n(x)} to obtain a full posterior ensemble

Sn.

The four step update process is described in more detail below.

Let pn(zn/x) be the measurement likelihood. Then the posterior distribution is

proportional to the product of the predicted prior and the likelihood pn(zn/x).i.e,

πn(x) ∝ pn(zn/x)π−n (x). (5.11)

When the predicted prior is represented by a GMM, the posterior is given by equa-

tion 5.3 We rewrite the posterior PDF in its mixture form as obtained in equation 5.5:

πn(x) =

M−(n)∑
i=1

wi(n)πi,n(x). (5.12)

Furthermore, from equation 5.7,

πi,n(x) ∝ pn(zn/x)π−i,n(x). (5.13)

In step 3a of the measurement update, the PGM-II filter generates ensembles Ai from

the mixture components πi,n(x), i ∈ {1, 2, · · ·M−(n)} using MCMC since pn(zn/x)

is given and π−i,n(x) is known from the clustering step. From a computational stand-

point, it is much more appealing to perform MCMC sampling on the individual

mixture components πi,n(x) as opposed to the full posterior PDF πn(x). This com-
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pletes step 3a. Due to the random walk behavior of MCMC, consecutive samples

from Ai will be correlated. To remove correlations, we propose clustering the sam-

ples and obtaining a functional representation for the underlying component PDF

πi,n(x). Notice that the mixture representation of πi,n(x) will be parameterized by

expectations of various functions of the component random variable. The ergodicity

of the chain will ensure that sample averages computed from MCMC samples during

clustering will converge to these expectations, in spite of the correlations. Once a

mixture representation for πi,n(x) is constructed, we can obtain independent samples

from it by direct sampling. The clustering of Ai to obtain functional representation

of πi,n(x) completes the step 3b of measurement update.

Notice that in equation 5.12, each component PDF πi,n(x) has a mixing proba-

bility wi(n) associated with it. Step 3c consists of obtaining these weights. However,

to compute the mixture weights, we need to evaluate the modal likelihoods li(n),

given by the integral in equation 5.4. Evaluating this integral is non trivial when the

measurement function is nonlinear. So an approximation is used in the computation

of wi(n). The calculation of approximate modal likelihoods is discussed in detail in

section 5.4.

From the component PDFs πi,n(x) in step 3b and the weights wi(n) in step 3c, we

can obtain a mixture representation of the posterior PDF as given in equation 5.12.

Given the mixture representation, a sample X from the full posterior PDF πn(x) can

be obtained via the two step approach given below.

(i) Choose a component by sampling k from {1, 2, · · · ,M−(n)} with probability

wk(n).

(ii) Draw a sample X from the component PDF πk,n(x).

This is the sampling process given in step 3d which completes the measurement
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update step. This is also the last step in Figure 5.1, at the end of which we obtain

an ensemble Sn from the full posterior, which is then propagated till the next step

and the process repeats.

Algorithm 4 gives a pseudo code description of the PGM-II filter. More details on

how the MCMC method is implemented to generate the ensembles Ai is presented

in section 5.4

Algorithm 4 PGM-II Algorithm

Given initial PDF π0(x) =
∑M(0)

i=1 ωi(0)Gi(x;µi(0), Pi(0)), transition density kernel
pn(x′/x), n = 1.

(a) Sample N particles X(i) from πn−1 and the transition kernel pn(x′/x) as follows:

i. Sample X(i) from πn−1(.).

ii. Sample X ′(i) from p(./X(i)).

(b) Use a Clustering Algorithm C to cluster the set of particles {X ′(i)} into
M−(n) Gaussian clusters with weights, mean and covariance given by
{w−i (n), µ−i (n), P−i (n)}.

(c) Use MCMC to sample from the component posteriors πi,n(x) to generate the
ensembles Ai

(d) Compute the mixture weights wi(n) by evaluating the sequence of modal like-
lihoods li(n) using equations 5.4, 5.6

(e) Sample N particles from the weighted collection of ensembles {(wi(n), An,i)}
(f) n = n+1, go to Step 1.

5.3.2 Analysis of the PGM-II algorithm

In the following, we prove that the PGM-II filter density converges in probability

to the true filter density under certain assumptions.

We showed in the previous chapter and in [49] that under the condition of expo-

nential forgetting of initial conditions, the true filter density can be approximated
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arbitrarily well with arbitrarily high confidence given that the sampling error in each

step is small. We establish a similar result in the following.

Define:

P (π̂n−1) ≡ π̂−n =

M−(n)∑
i=1

ω̂−i (n)Gi(x; µ̂−i (n), P̂−i (n)), (5.14)

P̂ (π̂n−1) ≡ ˆ̂π−n =

M−(n)∑
i=1

ˆ̂ω−i (n)G(x; ˆ̂µ−i (n),
ˆ̂
P−i (n)), (5.15)

Fzn(π̂n−1) =

M(n)∑
i=1

ω̂i(n)G(x; µ̂i(n), P̂i(n)), (5.16)

F̂zn(π̂n−1) =

M(n)∑
i=1

ˆ̂ωi(n)G(x; ˆ̂µi(n),
ˆ̂
Pi(n)). (5.17)

The above represent the true and the approximate PGM predicted and filtered

densities at time n given the approximate density π̂n−1 at time n− 1. We have the

following result:

Lemma 6. Given the GMM representation of the prior PDF above, and a perfect

Clustering algorithm C, given any ε′ > 0, and δ′ > 0, there exists an Nε′,δ′(n) < ∞

such that: if the number of samples used to approximate the predicted PDF at time

n is greater than Nε′,δ′(n) then:

Prob(| ˆ̂ω−i (n)− ω̂−i (n)| > ε′) < δ′, (5.18)

Prob(| ˆ̂µj−i (n)− µ̂j−i (n)| > ε′) < δ′, (5.19)

Prob(| ˆ̂P jk−
i (n)− P̂ jk−

i (n)| > ε′) < δ′, (5.20)

for all i, j, k, where µ̂j−i represents the jth element of the mean vector µ̂−i and P̂ jk−
i

represents the (j, k)th element of the covariance matrix P̂−i .
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Lemma 7. Let | ˆ̂ω−i (n) − ω̂−i (n)| < ε′, | ˆ̂µj−i (n) − µ̂j−i (n)| < ε′, and | ˆ̂P jk−
i (n) −

P̂ jk−
i (n)| < ε for all i, j, k. Then , given that the state of the system x ∈ <d, there

exists C−(n) <∞ such that ||ˆ̂π−n − π̂−n || < C−(n)dε′.

Lemma 6 and 7 are proved in [49].

Lemma 8. Let, ||ˆ̂π−n − π̂−n || < ε−, then given the posterior ˆ̂π∗n = Fzn(π̂n−1), there

exists k(n) <∞ s.t: ||ˆ̂π∗n − π̂n|| < k(n)ε−.

Proof. Let

P1 =

∫
pn(zn/x

′)π̂−n (x′)dx′, (5.21)

P2 =

∫
pn(zn/x

′)ˆ̂π−n (x′)dx′. (5.22)

Then

||ˆ̂π∗n − π̂n|| =
∫
|( π̂
−
n (x′)

P1

−
ˆ̂π−n (x′)

P2

)pn(zn/x
′)|dx′

=

∫
|( π̂
−
n (x′)− ˆ̂π−n (x′) + ˆ̂π−n (x′)

P1

−
ˆ̂π−n (x′)

P2

)pn(zn/x
′)|dx′

≤
∫
|P2 − P1

P1P2

|ˆ̂π−n (x′)pn(zn/x
′)dx′+∫

|π̂−n (x′)− ˆ̂π−n (x′)|pn(zn/x
′)

P1

dx′

= |P2 − P1

P1

|+ max
x′

pn(zn/x
′)δ−

P1

=
|
∫

(π̂−n (x′)− ˆ̂π−n (x′))pn(zn/x
′)dx′|

P1

+ max
x′

pn(zn/x
′)ε−

P1

≤ 2 max
x′

pn(zn/x
′)ε−

P1

(5.23)

Choosing k(n) = 2 maxx′
pn(zn/x′)

P1
completes the proof.

Let ˆ̂π∗n be the exact posterior evaluated from the propagated PDF ˆ̂π−n . The filtered
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PDF ˆ̂πn is a GMM representation of ˆ̂π∗n. By Lemma 6, there exists an upperbound on

the number of samples N∗
ε′ ,δ′

such that the mixture parameters of ˆ̂π∗n are estimated

with an accuracy of ε
′

with a confidence 1 − δ
′

if the MCMC draws these many

samples. Let the number of particles used in PGM-II filter be N = max(Nε′ ,δ′ , N
∗
ε′ ,δ′

).

Therefore:

||π̂n − ˆ̂πn|| = ||π̂n − ˆ̂π∗n + ˆ̂π∗n − ˆ̂πn||, (5.24)

≤ ||π̂n − ˆ̂π∗n||+ ||ˆ̂π∗n − ˆ̂πn|| (5.25)

From Lemma 6, 7 and 8, we have

Prob(||π̂n − ˆ̂π∗n|| > k(n)C−(n)dε′) < δ′ (5.26)

From Lemma 6 and 7, we also have

Prob(||ˆ̂π∗n − ˆ̂πn||) > C(n)dε
′
) < δ

′
(5.27)

Clearly,

Prob
(
||π̂n − ˆ̂πn|| >

(
k(n)C−(n) + C(n)

)
dε
′
)
< 2δ′ (5.28)

Hence, by choosing ε′ such that ε =
(
k(n)C−(n)+C(n)

)
dε
′
, and δ′ such that δ = 2δ′,

and N = max(Nε′ ,δ′ , N
∗
ε′,δ′), we get

Prob(||π̂n − ˆ̂πn|| > ε) < δ. (5.29)

This proves that if the number of samples used to approximate the predicted and

posterior GMM parameters are more than N , then the sampling error stays within
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the desired bounds with confidence 1 − δ. Assuming that the underlying Markov

chain has the exponential forgetting property, this suffices to show the convergence

in probability of the PGM-II density to the true filter density as proved by Lemma

2 in chapter 4.

5.3.3 Relationship With Other Nonlinear Filters

As mentioned earlier, the PGM-II filter inherits its particle based approach to

uncertainty propagation from the PGM-I filter. This is a feature shared also by se-

quential importance resampling (SIR) type particle filters. Given the process model

of the system, samples from the propagated PDF can be obtained in a straightfor-

ward fashion using the underlying Markov transition kernel. Furthermore the particle

uncertainty propagation does not require any linearizing approximations on the pro-

cess model or the state PDF. This stands in contrast with mixture filters such as the

Gaussian mixture EKF/UKF [19]. These filters were proposed to incorporate the

multimodality of the state PDF by using a bank of parallel nonlinear Kalman filters.

The Gaussian mixture EKF/UKF linearizes the process model separately within the

support of each mixture mode. As a result, these filters could not incorporate the

splitting and coalescing of individual Gaussian components resulting from nonlinear

uncertainty propagation. Several approaches have been proposed in recent years to

overcome the shortcomings of the Gaussian mixture EKF/UKF. The Gaussian mix-

ture ’blob’ filter, that has been proposed recently, attempts to circumvent the effects

of nonlinear uncertainty propagation by enforcing LMI based upper bounds on the

component covariances [22]. The adaptive Gaussian sum filter linearizes the process

model but attempts to minimize the approximation errors by adjusting the mixture

weights during the propagation stage [20]. Adaptive entropy-based Gaussian-mixture

information synthesis (AEGIS) is another approach that splits mixture modes based

86



on entropy considerations [21]. These approaches require frequent optimization or

entropy calculations to perform the weight adjustment/splitting calculations. Fur-

thermore, they rely on linearized models between the weight adjustments/component

splits. The PGM-II filter inherits the relatively inexpensive particle based propaga-

tion algorithm used in PGM-I filters. It obtains the GMM parameters of the propa-

gated PDF using a clustering algorithm. As a result, it can compute the number of

mixture modes online during the estimation based on the distribution of the samples

in state space.

Unlike the PGM filters, the PF does not obtain a Gaussian mixture representa-

tion of the state PDF. Instead, it relies on importance sampling to obtain particles

from the posterior PDF. In basic implementations such as the SIR, the importance

density is the same as the propagated prior. The particles drawn from the impor-

tance density are assigned weights to account for the disparity with true posterior.

The main drawback of the PF is the increasing difficulty to sample particles from

regions of high likelihood as the number of dimensions is increased. This problem is

known as particle depletion. The number of particles required to prevent depletion

increases exponentially with the dimensions of state space. Hence the PF is prone to

the curse of dimensionality [25]. Several approaches have been proposed to reduce

the risk of particle depletion. Filters such as the unscented particle filter attempt

to obtain better importance densities so that particles are sampled from the right

regions of the state space[50]. Homotopy methods are another class of approaches

that attempt to create a flow of the density that results in the posterior PDF by

solving a partial differential equation [51]. A mixture filter equivalent of particle

filters that rely on Gaussian kernels in the place of particles has been proposed re-

cently. This approach known as blob filter samples Gaussian kernels from the prior

PDF like particles [22]. The finite covariance of the Gaussian kernels make them less
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prone to the problem of depletion. The blob filter uses an EKF approximation for

propagation and uses a combination of local linearization and resampling to perform

the measurement update. It is hence a Gaussian mixture filter with relatively large

number of components, each having a small covariance.

The PGM-I filter is free from the problem of particle depletion since it relies on

a Kalman measurement update of the Gaussian mixture propagated PDF. However,

the linearization involved in Kalman measurement update cannot incorporate the

splitting and coalescing of the mixture components during the update step. The

PGM-II filter is proposed to incorporate these features of multimodal nonlinear fil-

tering by replacing the Kalman measurement update with a parallelized MCMC

algorithm. Apart from the Gaussian mixture representation of the propagated PDF,

it does not make any restrictive assumptions on the state space description or the

nature of uncertainties. The parallelized MCMC approach adopted in PGM-II is

specifically designed to sample from multimodal posterior PDFs.

5.4 Implementation

In this section, we discuss certain aspects concerning the implementation of the

PGM-II filter in greater detail. To sample from the posterior PDF πn(x) using

MCMC, we need a function that is at least proportional to it. It can be seen from

equation 5.11 that constructing such a function is straightforward once we have a

functional form for the predicted prior π−n (x). The PGM-II filter relies on a GMM

representation of the predicted prior obtained by clustering the predicted ensemble.

Hence it is important that the clustering scheme is able to provide a GMM that

closely models the true distribution of the predicted ensemble. In the present work,

we have used an approach that relies on k-means clustering algorithm to obtain the

GMM parameters. The simple k-means clustering algorithm requires the number
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of mixture components to be input externally. To overcome this limitation, we

have developed a clustering scheme which determines the optimal number of clusters

given an upper bound on this number. This clustering scheme relies on the likelihood

agreement measure (LAM) to arrive at the optimal number of mixture modes [21].

Let Sa,L = {ωa,i, µa,i, Pa,i} be an L component GMM. Then the LAM of the model

Sa,L in describing the data set A = {xk} is computed as

LAMSa,L =
N∑
k=1

L∑
i=1

ωa,iG−i (xk;µa,i, Pa,i) (5.30)

The modified K-means clustering algorithm that was described in the previous chap-

ter is employed in PGM-II filter as well.

Once a GMM representing the predicted prior PDF is obtained (equation 5.3),

we have a functional form for the propagated PDF. Then if the posterior PDF is

given by equation 5.12, we have

πi,n(x) ∝ G−i (x;µ−i (n), P−i (n))p(zn/x). (5.31)

This provides a known function that is proportional to the component posterior

πi,n(x) which can be used with an MCMC algorithm to draw samples from πi,n(x).

The proposal distribution Qi(X
i|X i−1) obtains the candidate samples for the MCMC

algorithm. In the present work we have used Gaussian proposals of with the func-

tional form G(X i, X i−1, KpΣ), where Kp is a positive constant. The covariance Σ

can be chosen as the component covariance of the predicted prior P−i (n). Covariance

of the approximate posterior obtained by updating π−n (x) with EKF/UKF can be

another option. Choosing a proposal covariance that is too large or too small can

delay the convergence of the Markov chain. The first candidate point X0 for starting
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the MCMC simulation can be sampled from the approximate component posterior

obtained by updating π−n (x) with EKF/UKF. The mean of this approximate com-

ponent posterior can also be used as X0.

There are several ways in which the modal likelihood li(n) (equation 5.4) can be

approximated,

1. Importance Sampling: Consider the measurement PDF PZ(z) given by

PZ(z) =

∫
pn(z/x′)G−i (x;µ−i (n), P−i (n))dx′. (5.32)

The integral in equation 5.32 can be estimated using the importance sampling tech-

nique as follows. A set of particles {xk} are drawn from an importance density

Q(X) from which direct sampling is possible. Then an estimator for li(n) can be

constructed as

li(n) ≈ 1

M

M∑
k=1

pn(z/xk)G−i (xk;µ
−
i (n), P−i (n))

Q(xk)
(5.33)

In order for the above estimator to be accurate, the importance density must have

certain characteristics such as Q(xk) > 0 whenever the product of the densities

pn(z/xk) and G−i (xk;µ
−
i (n), P−i (n)) is nonzero. The choice of the importance density

Q(X) has to be exercised carefully and a good choice is a density that is proportional

to pn(z/xk)G−i (xk;µ
−
i (n), P−i (n)). However, directly sampling from such a density

may not be feasible. Instead we choose a density that closely resembles the product

and readily available such as

(a) Component density from the predicted prior: In this case

Q(X) = G−i (x;µ−i (n), P−i (n)), (5.34)
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as sampling from a Gaussian density is straightforward. Consequently, the expression

5.33 for the estimator reduces to

li(n) ≈ 1

M

M∑
k=1

pn(z/xk) (5.35)

(b) Component density from the approximate posterior: We have

πi,n(x) ∝ pn(z/xk)G−i (xk;µ
−
i (n), P−i (n)). (5.36)

The posterior πi,n(x) can be approximated by a Gaussian PDF by performing a

EKF/UKF measurement update on G−i (xk;µ
−
i (n), P−i (n)). This approximate poste-

rior can be chosen as the importance density Q(x).

2. From the MCMC samples: As mentioned previously, the PGM-II filter gen-

erates an ensemble Ai from the posterior mixture component πi,n(x) using MCMC

sampling. Let η(x) be a proper PDF. Then

∫
Rn
η(x)dx = 1 (5.37)

Multiplying the integrand in the numerator and denominator by πi,n(x) and substi-

tuting from equation 5.7

∫
Rn

η(x)πi,n(x)li(n)

pn(z/xk)G−i (xk;µ
−
i (n), P−i (n))

dx = 1

⇒
∫
Rn

η(x)πi,n(x)

pn(z/xk)G−i (xk;µ
−
i (n), P−i (n))

dx =
1

li(n)
(5.38)

Since Ai are samples from πi,n(x), an importance sampling approximation to the
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above integral can be arrived at as:

1

li(n)
≈

Ni,n∑
i=1

η(xi)

pn(z/xi)G−i (xi;µ
−
i (n), P−i (n))

. (5.39)

Hence an estimate of li(n) can be computed by evaluating the sum given in equa-

tion 5.39 using the MCMC samples and taking the reciprocal [52]. The density η(x)

can be chosen as the approximate posterior obtained through EKF/UKF update.

Another option is to use a Gaussian PDF parameterized by the mean and covariance

of the MCMC samples. In the present work, we have adopted the MCMC approach

to compute li(n).

5.5 Numerical Examples

In this section, we employ the PGM-II Filter in the estimation of two test case

systems to study the filtering performance. The results are compared with that of

other nonlinear filters such as UKF, PF, PGM-I filter and blob filter. A basic se-

quential importance resampling (SIR) implementation of the PF is considered. The

PGM-I variant which uses the unscented transform to perform the measurement up-

date, i.e., the PGM-I(UT) filter, is used in this comparison study [2]. The estimation

results are compared for their accuracy, consistency and informativeness. The accu-

racy of estimates is evaluated in terms of a Monte Carlo averaged root mean squared

error (Erms(t)).The value of Erms(t) is computed as

Erms(t) =

√√√√ 1

NMo

NMo∑
j=1

‖xj,t − µj,t‖2
2, (5.40)

where xj,t and µj,t represent the actual and estimated states at the time instant t

during the jth Monte Carlo run. Also evaluated is the time averaged error (Erms)
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given by

Erms =
1

T

T∑
t=1

Erms(t). (5.41)

The NEES test is employed to evaluate the consistency of the filtered PDF. The

NEES test statistic (βj,t) for a unimodal Gaussian PDF is given by

βj,t = (xj,t − µj,t)TP−1j,t (xj,t − µj,t), (5.42)

where Pj,t represents the covariance of the filtered PDF at time t during jth

Monte Carlo run. The Monte Carlo averaged NEES test(βt) is computed from this

expression as

βt =
1

NMo

NMo∑
j=1

βj,t. (5.43)

When x ∈ Rn is distributed normally, the statistic given by NMoβt is distributed

according to a χ2 distribution with nNMo degrees of freedom. This allows us to test

for the consistency of the estimates by checking whether the value of the test statistic

falls within probable bounds of the corresponding χ2 random variable.

The informativeness of estimates is tested by comparing the volume of state

space that contains a fixed fraction of the total probability. When the state PDF is

Gaussian, the fraction of probability fp contained in an n − sigma(n ∈ Z+) ellipse

is only a function of the dimension d of the state space, i.e., fp = fp(n, d). In this

work, we compare the informativeness of the estimates in terms of the volume of

state space V σ2 that contains the fraction fp = fp(2, d) of total probability. When

the state PDF is represented by a GMM, this volume can be computed as the sum

of the 2− sigma volumes of individual mixture modes,i.e.,

V σ2 =
L∑
i=1

|2Σi|. (5.44)
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5.5.1 Example 1

In test case 1, we consider a variant of the well known one-dimensional estimation

problem [23, 24]

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos[1.2(k − 1)] + wk−1. (5.45)

In the absence of noise and the cosine forcing term, the process model has three

equilibrium points at x = ±7, 0. However, only the nonzero equilibrium points are

stable. We define a multimodal measurement function

zk = 4 sin(8xk) + νk. (5.46)

Clearly, one can find several roots for the equation g(xk) = zk given any measurement

zk. The coefficient of xk, taken as 8 in this example, can be adjusted to increase the

multimodality of the measurement model. The process and measurement noises are

assumed to be independent zero mean Gaussian random variables with covariances

Q=6, R=0.1 respectively. Measurements are recorded at every other instant. The

evolution of the multimodal filtered PDF is presented in Figure 5.2.

The estimation is performed for a duration of 50 time steps and repeated over

50 Monte Carlo runs. The PF is implemented as an SIR with 80 particles. The

UKF parameters are listed in Table 5.1. The PGM-II filter and the PGM-I filter are

Table 5.1: UKF Parameter Values for PGM-II, test case 1. Reprinted with permission
from [3, 4].

UKF parameters
α β κ

1.3 1.5 0.2
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(a) k=0 (b) k=10

(c) k=25 (d) k=30

(e) k=40 (f) k=50

Figure 5.2: Evolution of state PDF with time

employed with 80 particles and a maximum number of 6 mixture components. For

the blob filter, 80 Gaussians with a maximum covariance of of 10−4 was used in the

estimation process.

The Monte Carlo averaged RMSE results (Erms) are plotted in Fig. 5.3a. The

PGM-II filter, blob filter and the PF are seen to outperform the UKF by a large

margin. The tracking performance of PGM-II filter is also found to be somewhat
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(a) Monte Carlo averaged root mean squared error (Erms(t))

(b) Monte Carlo averaged NEES test statistic(βt)

(c) Average volume of 2− σ ellipse (V2σ(t))

Figure 5.3: PGM-II estimation results for one dimensional multimodal system.
Reprinted with permission from [3, 4].

better than that of PGM-I filter. The time averaged tracking error Erms given in

Table 4.2 underlines this observation. The results of NEES test plotted in Fig.

5.3b show that the UKF estimates overstep the 99.99% upper bound Ub0.9999 during

the entire duration of the simulation after t = 1. The PGM-II filter and the blob
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filter are seen to offer more consistent estimates that lie within the 99.99% upper

bound. The total fraction of the simulated time (βc%) during which each filter offered

consistent estimates according to the Ub0.9999 can be computed. The values of βc%

for all three filters are also listed in Table 4.2. The results indicate that the PGM-II

filter outperforms the blob filter, PF, PGM-I filter and the UKF. Finally, the Monte

Carlo averaged 2− σ volumes for each of the three filters are plotted in Figure 5.3c.

The time averaged values of the 2−σ volumes are listed in Table 5.2. The blob filter

is seen to have the smallest time averaged 2− σ volumes.

5.5.2 Example 2

In this example, we evaluate the performance of PGM-II filter in the so called

“Blind tricyclist” problem proposed in [15]. As the name suggests, the Blind tricyclist

problem involves the estimation of the state of a blind tricyclist steering across an

amusement park. The blind tricyclist is given the speed and steering angle time

histories as inputs so that he can navigate across the park. However, his initial

position coordinates (X1, X2) and heading angle (X3) are unknown to him. To assist

the navigation, measurements are recorded, but only intermittently and they consist

of the relative bearing angle between the tricyclists heading and the location of two

friends who are riding merry-go-rounds. The blind tricyclist can distinguish between

Table 5.2: Time averaged RMSE Erms, likelihood L̂, and the 2σ volume for PGM-II,
test case 1. Reprinted with permission from [3, 4].

Case 1 Results
RMSEpos %cases above 99.99%Ub V2σ

PGM-II 9.1066 25 71.8883
PGM-I(UT) 10.0047 92.31 64.3722

UKF 15.9752 98.08 63.4955
PF 9.2925 59.62 131.5503

Blob Filter 9.2737 34.62 0.0137
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the measurements coming from the two friends. However he only knows the centers

and radii of the merry-go-rounds with certainty. The initial rotation angles (X4, X5)

and the fixed rotation rates (X6, X7) of the two merry-go-rounds are unknown. The

objective of the blind tricyclist problem is to estimate the quantities X1, · · · , X7 at

all times. Hence it is a seven dimensional nonlinear estimation problem that involves

both static and dynamic parameters. The equations governing the evolution of the

state variables can be found in [15]. Figure 5.4 shows a realization of the truth

trajectory of the blind tricyclist on the ground along with two merry-go-rounds.

Figure 5.4: Zero process noise ground trajectory of the blind tricyclist and the loca-
tion of merry-go-rounds

The relative bearing angle measurement between the blind tricyclist and the first
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merry-go-round at the instant k is given by

ψ1,k =atan2({(y1 + ρ1 sin(X4)−X2 − br sin(X3)), (5.47)

(x1 + ρ1 cos(X4)−X1 − br cos(X3))} −X3 + νk.

Here, (x1, y1) represents the center of the first merry-go-round, ρ1 represents its

radius and br represents the distance between the point below the blind tricyclists

head and the midpoint of the two rear wheels. From this, it is clear that multiple sets

of the quadruple (X1, X2, X3, X4) can result in same value for the measurement ψ1,k

even in the absence of the Gaussian noise νk. The state PDF in the blind tricyclist

problem is highly multimodal due to this measurement ambiguity. Figure 5.5 shows

the marginal distribution of the position coordinates (X1, X2) at different time steps,

evaluated using a blob filter simulation. The initial uncertainty is assumed to be a

unimodal Gaussian as seen in Figure 5.5a. By the end of the tenth time step, the

unimodal state PDF is seen to have split into several modes distributed over a large

area. As time progresses, the mixture weights also evolve and only a few of these

modes survive. Plotted in Figure 5.5c is the distribution of states at the time step

k = 120. The states are seen to be distributed between two major clusters. However

at k = 230, we see four different clusters. Thus not only is the blind tricyclist problem

multimodal, but the number of modes is seen to vary widely between different time

steps. Additionally, new modes are seen to be created during the measurement

update step. This affects the applicability of filters with Kalman type correction as

the number of components remain intact during the update even in mixture Kalman

implementations. The noise parameters used in simulating the blind tricylist problem

are given in [15].
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(a) k=0 (b) k=10

(c) k=120 (d) k=230

Figure 5.5: Marginal distribution of X1, X2

Table 5.3: UKF Parameter Values for PGM-II, test case 2. Reprinted with permission
from [3, 4].

UKF parameters

α β κ

0.01 2 0

The PGM-II filter, the UKF, the PF and the blob filter are employed in the

estimation of the blind tricyclist problem. The PGM-I and PGM-II filters are imple-

mented with 8000 particles where as 10000 particles were used in the SIR type PF

implementation. The values of the parameters α, β, χ used in the UKF implemen-

tation are listed in Table 5.3. The blob filter was implemented using 7000 Gaussian

PDFs with the LMI upper bound on the mixture covariances chosen from [22]. For
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the MCMC step, the length of the burn-in time is set to be 800. The sampling

covariance was chosen as 0.05 × P−i (n) where P−i (n) represents the ith propagated

prior covariance given by the clustering algorithm. The maximum number of mix-

ture components used during the clustering step is chosen to be three. However,

in order for the filter to not assign disproportionate confidence in any single mode,

the diagonal elements of the clustered prior covariance matrices are never allowed

to fall below a certain lower bound. This helps to prevent the loss of diversity. It

also makes the estimates less accurate. When the diagonal elements do fall below

this threshold, they are updated artificially. The lower bounds used on the diagonal

elements of the prior covariance are summed up in the vector Vlb below.

Vlb =

[
280 280 0.4 9.9 9.9 0.02 0.02

]T
× 10−2 (5.48)

The marginal PDF in X1, X2 estimated using PGM-II filter at different time

steps is plotted in Figure 5.6. The true state X1, X2 is also shown for reference.

The mixture modes are seen to undergo splitting and merging during the course of

estimation.

The accuracy and informativeness of the estimation results are analyzed using

RMSE and Vσ2 as in test case 1. However, the NEES test is performed as described

in [15], i.e, by computing the fraction of the total number of Monte Carlo runs that

produced NEES test statistic that falls within the 99.99% upper bound of a seven

dimensional chi squared random variable. This upper bound is computed to be equal

to Ub = 29.8775. The RMSE results obtained from 50 Monte Carlo runs of the blind

tricyclist problem are plotted in Figure 5.7.

The results show that by the end of the estimation process, the blob filter offers

the most accurate estimates followed by the PGM-II filter. The terminal RMSE
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(a) k=0 (b) k=20

(c) k=55 (d) k=100

(e) k=180 (f) k=270

Figure 5.6: Evolution of the marginal distribution of X1, X2 estimated using PGM-II
filter

position error, terminal % of cases where the NEES results are above 99.99% and

the time averaged 2 sigma ellipse volume Vσ2 are provided in Table 5.4. The NEES

result plotted in Figure 5.7b show that the blob filter offers the most consistent results

among the three filters. The terminal NEES results presented in Table 5.4 show that

the blob filter provided consistent terminal estimates in 96% of the simualtions. This

was followed by the PGM-II filter and the UKF. The UKF is seen to provide more
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(a) Root mean squared position error

(b) NEES Results

(c) Logarithm of the Monte Carlo averaged 2σ ellipse volumes

Figure 5.7: PGM-II estimation results for Blind tricyclist problem. Reprinted with
permission from [3, 4].

consistent estimates than the PGM-II during some window of the simulated time.

However it must be observed that the UKF covariances are seen to be nearly 4 orders

of magnitude larger than the PGM-II on average. The value of Vσ2 for the PF is

seen to be smallest However, this result must be analyzed in conjunction with the

fact that the PF results are almost always inconsistent.

The blob filter is seen to outperform the PGM-II filter in the estimation of the
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Table 5.4: Time averaged RMSE Erms, likelihood L̂, and the 2σ volume for PGM-II,
test case 2. Reprinted with permission from [3, 4].

Case 2 :Terminal Results

RMSEpos %cases above 99.99%Ub l̂og(V2σ)
PGM-II 2.8257 22 -21.8973

PGM-I(UT) 4.5577 68 -46.4367
UKF 9.0014 70 -45.2474
PF 9.2239 100 -359.4890

Blob Filter 0.6999 4 -48.2278

blind tricyclist problem. This indicates certain important limitations associated with

the implementation of PGM-II filter. In theory, the MCMC based measurement up-

date is capable of sampling from any posterior probability distribution. It is also

well suited for sampling in large dimensions in comparison to other approaches such

as the importance sampling. However, when the target distribution is extremely

multimodal as in the blind tricyclist problem, the Markov chain is prone to being

trapped in one of the modes. This can diminish the ability of the MCMC based

approaches to sufficiently explore the state space in a reasonable amount of time.

The parallelized approach presented in this work was meant to alleviate this prob-

lem. The results indicate that this aspect of the problem requires further study.

Increasing the number of clusters is one possible solution. However, when imple-

mented sequentially, each new cluster results in an increased cost of at least one full

burn-in time. Furthermore, the mixture models obtained from the samples may not

accurately represent the component densities as the perfect clustering assumption

may not hold in practice. It must be observed that while the LMI based ’blob’ fil-

tering approach has several advantages over the conventional Gaussian sum filters

[19], the number of Gaussians used may still need to be increased exponentially with

the dimension of the state space in order to cover the volume of a single Gaussian

during re-approximation.
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Table 5.5: Computation time per filtering run.

Computation Time (s)
UKF PF Blob Filter PGM-II

0.2630 49.3090 64.0793 565.2952

We also looked at the computation time required by each filter to complete the

estimation of the blind tricyclist problem. The computation time per filtering run as

returned by the timeit() function from matlab on a 3.2 GHz PC running Windows is

presented in Table 5.5. The PGM-II filter is seen to require the most computational

resources. This is partly due to the large number of samples the MCMC based

measurement update requires to explore the state space when the PDF is extremely

multimodal.

5.6 Discussion

In this chapter, we developed a PGM-II filter for the general multimodal nonlin-

ear filtering problem Our results demonstrate that the PGM-II filter is capable of

handling the nonlinear/non-Gaussian measurement update. Having developed the

PGM filters, we now intend to test their performance against other filters that have

been proposed to address the general nonlinear filtering problem. The results of

these experiments and the related discussion can be found in the next chapter.
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6. TESTS AND EXTENSIONS

6.1 Benchmark Performance Tests

In this section, we extensively test and compare the estimation performance of

PGM filters with other nonlinear filters. We consider a selection of problems that

have been used to evaluate the performance of other general purpose filters in recent

literature. We intend to investigate the relationship between the estimation perfor-

mance of the PGM filters and dimensionality. We shall also consider the effect of the

number of particles on PGM filtering performance.

6.1.1 Coupled Multi-Target Tracking Model

In this example, we consider the coupled multi-target tracking model problem

described in [53]. This model describes the dynamics of a group of targets that

execute coupled nonlinear motion on a 2D surface. The complete set of equations

describing the system are given below (equations 6.1-6.14). The state vector of

each target consists of its x, y position and corresponding velocity coordinates. As

a result, in the n-target test case, the dimensionality (d) of the problem becomes

4n. Note that the dynamics of the targets are coupled through the terms Πi
xk
,Πi

yk
.

The strength of this coupling depends on the parameters κ1, κ2, κ3. When all three

coupling parameters are set to zero, the system will reduce to n independently moving

targets. Hence the effective dimensionality of the system depends highly on the values
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of κ1, κ2, κ3.

xik+1 = xik + ẋik∆t+
1

2
axk+1

∆t2 (6.1)

yik+1 = yik + ẏik∆t+
1

2
ayk+1

∆t2 (6.2)

ẋik+1 = ẋik + Πi
xk

∆t+ axk+1
∆t (6.3)

ẏik+1 = ẏik + Πi
yk

∆t+ ayk+1
∆t (6.4)

Π1
xk

=
1

N − 1

N∑
i=2

( κ1√
(x1

k − xik)2 + (y1
k − yik)2 + δ

)v2
t

rt
cos (

vt
rt
k) (6.5)

Π1
yk

=
1

N − 1

N∑
i=2

( κ1√
(x1

k − xik)2 + (y1
k − yik)2 + δ

)v2
t

rt
sin (

vt
rt
k) (6.6)

Πi
xk

= κ2(x1
k − xik)− κ3ẋ

i
k (6.7)

Πi
yk

= κ2(y1
k − yik)− κ3ẏ

i
k (6.8)

rik+1 =
√

(x1
k)

2 + (y1
k)

2 + νirk+1
(6.9)

θik+1 = arctan
yik
xik+1

+ νiθk+1
(6.10)

p(zk+1|xk+1) = p(rk+1|xk+1)p(θk+1|xk+1)

=
1

(2πβ2)
N
2 |Rr|

1
2

exp {−1

2
(rk+1 − r̃k+1)TR−1

r (rk+1 − r̃k+1)} (6.11)

×
N∏
i=1

exp
{
− 1

β

(
θ

(i)
k+1 − arctan (

y
(i)
k+1

x
(i)
k+1

)
)}

(6.12)

r̃k+1 =

[√
(x1

k)
2 + (y1

k)
2
√

(x2
k+1)2 + (y2

k+1)2 · · ·
√

(xNk+1)2 + (yNk+1)2

]
(6.13)

Rr =



σ2
r σ2

rx · · · σ2
rx

σ2
rx σ2

r · · · σ2
rx

...
...

...
...

σ2
rx σ2

rx · · · σ2
r


(6.14)

Estimation of the coupled multi-target system is to be performed using the range
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and bearing measurement model described in equations 6.9 and 6.10. The process

model and the range measurements are assumed to be perturbed by Gaussian noise

terms. A positive correlation is assumed to exist among range noise terms. However,

for bearing measurements we assume a non-Gaussian exponential measurement noise

as given in equation 6.11. Note that, in order to perform the PGM-1 update, one

needs the distribution parameters such as µY , PY Y etc of the measurement random

variable. So incorporating non-zero mean, non-Gaussian measurement noise terms

require a modification of the standard PGM-1 Kalman update. The standard PGM-

1 update uses noiseless measurements to compute the mean µY and covariance PY Y

of measurements. The measurement noise covariance R is then added afterwards to

PY Y . In this example, we used noise perturbed measurements directly to compute

the statistics of the measurements.

In [53], the authors evaluate the performance of a new log homotopy based

particle flow filter on the coupled multi-target tracking model in terms of a non-

dimensionalized RMSE metric εd. Let M be the total number of simulations, n be

the total number of targets. Let (xi,mk , yi,mk ), (x̂i,mk , ŷi,mk ) be the estimated and true

position coordinates of the ith target at kth time step during mth Monte Carlo run.

Then the non-dimensionalized RMSE metric εd is given by

εd =

√√√√ 1

M

M∑
m=1

[ 2

n

n∑
i=1

((
xi,mk − x̂

i,m
k

)2
+
(
yi,mk − ŷ

i,m
k

)2
)]
. (6.15)

In this experiment, we evaluate the performance of the PGM filters in terms of εd as

the number of targets and the level coupling is adjusted.

Coupling : From the equations, it can be seen that the coupling between the

dynamics of different targets depends on parameters κ1, κ2, κ3.
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(a) Uncoupled Model (κ1 = 0, κ2 = 0,
κ3 = 0)

(b) Weakly coupled Model (κ1 = 100,
κ2 = 0.005, κ3 = 0.005)

(c) Strongly coupled Model(κ1 = 8000,
κ2 = 0.05, κ3 = 0.1)

Figure 6.1: Comparison of the estimation performances of PGM-I and PGM-II filters
for uncoupled and coupled models.

We investigate the estimation performance of the PGM filters in three differ-

ent scenarios corresponding to three different combinations of coupling parameters.

These are (1) Uncoupled model (Figure 6.1a) (2) Weakly coupled model (Figure 6.1b)
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and (3) Strongly coupled model (Figure 6.1c) [53]. We set the number of targets to

four and run the PGM filters to track the targets for 100 steps. We evaluate the PGM

estimation errors for each of the three different coupling scenarios. In each case, the

experiment is repeated 50 times and the average error is plotted for comparison. We

use 6000 particles in our simulations.

The results plotted in Figures 6.1a, 6.1b, 6.1c show that, for a given number of

particles, the estimation performance deteriorates when the coupling is increased. A

similar effect is observed in all the filters that are studied in [53]. This is expected as

the targets can be estimated separately and independently when they are uncoupled.

In that scenario, we can track the states n targets at a given level of accuracy

while using only as many number of points as necessary to track the state of a

single target. With coupling however, the relationship between different components

of the state vector becomes stronger as the dynamics of the targets become more

intertwined. This results in an increased computational demand to achieve a given

level of estimation accuracy. Among the several log homotopy based particle flow

filters that are considered in [53], a non-zero diffusion constrained flow-Daum Huang

filter(NZDCF-DHF) is found to offer the best tracking performance. In the uncoupled

scenario, both PGM-1 and PGM-II filters outperform the NZCDF-DHF filter with

the PGM-II filter outperforming it by a considerable margin. The PGM filters are

both found to perform better than a bootstrap particle filter that uses 2.5 × 105

particles as well. The performance of PGM-1 and NZCDH-DHF are more matched

in the weakly coupled scenario. PGM-1 filter is also outperformed by the boot strap

filter in this case. However, PGM-II filter still maintains a considerable margin

in its performance in comparison to other filters. As the coupling is made strong,

NZCDH-DHF performance is found to become better than that of PGM-1 Filter.

However, PGM-II filter remains considerably more accurate than all other filters.
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The terminal error of PGM-II filter in the strongly coupled scenario is found to be

near 1000 where as it is found to fall between 4000 and 8000 for the NZCHF- CDF.

Note that log homotopy filters use the exact Bayesian update equations to derive

the differential equations governing the particle flow. This may be the reason for

the slower deterioration of their performance in comparison to PGM-1 filter as the

system becomes more coupled and nonlinear. Overall, the PGM-II filter is found to

outperform every other filter in all cases considered.

Number of Targets : In this experiment, we study the effect of increasing the

number of targets on PGM filtering performance. The PGM filters are implemented

with 6000 particles and the tests are conducted starting with a minimum of two

targets (d = 8). The estimation was performed over 100 time steps and repeated

over 50 Monte Carlo runs. The results are plotted in Figure 6.2a, 6.2b. For the PGM1

filter, increasing the dimensions from 8 to 16 did not produce a major increase in

RMSE. However, raising the dimensions further to 24 resulted in an appreciable

difference in estimation error. For PGM-II filter, the variation in error was found to

be minor from d = 8 to d = 24. However, increasing the dimensions further to 32

resulted in significant increase in estimation error. Clearly both filters demonstrate

a clear dimension dependence when it comes to estimation performance. The more

accurate measurement update step in PGM-II filter allows it to use a smaller number

of particles and achieve more accurate results than PGM-1. The large jump in PGM-

II error may be due to the MCMC requiring a much larger number of samples to

explore the 32 dimensional state space.
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(a) PGM-I filter (b) PGM-I filter

Figure 6.2: Growth in Monte Carlo averaged estimation error with increasing dimen-
sions for PGM-I and PGM-II filters.

6.1.2 Generalized Bimodal System Model

In this case, we consider a generalization of the standard one dimensional bimodal

estimation problem [23]. The system considered herein, obtained by coupling several

one dimensional bimodal nonlinear systems, is found in [54]. The unperturbed system

dynamics is given by

xk+1 =0.5xk + 8 cos 1.2(k − 1)

+


2.5

xc+1
k−1

1+(xck−1)2 , ifc = 1

2.5
xc+1
k−1

1+(xc−1
k−1)2 , if1 < c < d

2.5
xck−1

1+(xc−1
k−1)2 , ifc = d

(6.16)

Note that this model allows us to freely choose d. An additive multi-modal process

noise vk ∼
∑3

i=1
1
3
N (µi1d×1, σ

2
vId×d) with µ1 = −1, µ2 = 0,µ3 = 1 and σv = 0.5 is
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assumed. Measurements are recorded as

yk =
(xck)

2

20
+ ωk (6.17)

with ωk ∼
∑3

i=1
1
3
N (δi1d×1, σ

2
ωId×d) with δ1 = −3, δ2 = 0, δ3 = 3 and σω = 0.1.

Note that both the unperturbed process/measurement models and the random noise

terms contribute to the multimodality in this problem. We study the changes in

the estimation performance of the PGM filters as the number of dimensions is in-

creased from d = 2 to d = 10. The estimation performance is evaluated in terms

of RMSE, the NEES test metric, Avg.likelihood and Avg.2-σ volume of state PDF.

Once again, we have a system that has non-Gaussian measurement noise. An M

component Gaussian mixture measurement noise model will split the product term

in the Bayesian update into M separate terms. In the context of PGM filtering, this

will result in a straightforward generalization of PGM-1 filters that involves M sep-

arate Kalman measurement updates. A non-Gaussian measurement noise can also

be incorporated by sampling the measurement noise terms as we did in the previous

example. Doing this is equivalent to obtaining a unimodal Gaussian approximation

of the measurement noise random variable via matching of the first two moments.

In order to test the performance of our existing PGM-1 filter design, we shall ap-

proximate the 3 component measurement noise model with a single Gaussian noise

model through the moment matching approach. We compare the performance of the

PGM filters with that the of the UKF and PF. The estimation results obtained from

this experiment are given in Appendix B.1. At d = 2, the PF is seen to perform

slightly better than PGM-II in terms of accuracy as at 8000, the number samples

used is sufficiently high for a 2-dimensional estimation problem. However, as the

dimensions increase, both the accuracy and consistency of PF estimates is observed
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to decline while the PGM-II filter is seen to offer the most accurate results. It also

dominates in terms of average likelihoods. Interestingly, filters that use the Kalman

measurement update are seen to offer more consistent results than those that rely

on sampling. In particular,the PGM-1 filters are seen to offer the most consistent

estimates in all experiments. Additionally, PGM-II results are found to be signifi-

(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ Volume

Figure 6.3: Time averaged performance metrics for the bi-modal system model.
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cantly more consistent than that of the PF. These trends become clearer in the time

averaged performance metrics that are plotted in Figure 6.3.

6.1.3 Re-entry Problem

In this experiment, we estimate the state of a vehicle that enters the earth’s

atmosphere from space. This five dimensional problem was previously used to test

the performance of feedback particle filter (FPF) [55] and UKF [13]. Like the blind

tricyclist problem, it involves the estimation of both dynamic (x1 − x4) and static

(x5) parameters. The vehicle is assumed to be subject to gravity and drag force in

addition to random perturbations. The equations of motion for this system are given

below

ẋ1 = x3 (6.18)

ẋ2 = x4 (6.19)

ẋ3 = Dx3 +Gx1 + ω1 (6.20)

ẋ4 = Dx4 +Gx2 + ω2 (6.21)

ẋ5 = ω3 (6.22)

D = bexp(
r0 − r
h0

)ν (6.23)

b = b0exp(x5) (6.24)

r =
√
x2

1 + x2
2 (6.25)

v =
√
x2

3 + x2
4 (6.26)

G = − µ
r3

(6.27)

r0 = 6374, b0 = −0.59783 (6.28)

h0 = 13.406, µ = 398601.2 (6.29)
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The random perturbations {wi}3
i=1 are modeled as Gaussian white noise processes

with zero mean and power spectral density

Q =


2.4064× 10−4 0 0

0 2.4064× 10−4 0

0 0 0

 (6.30)

Note that the static parameter is perturbed by the noise term ω5. In order to

enhance the estimation of the static parameter, [55] recommends setting a variance

of 10−5 for w3. A range and bearing measurement model is assumed,

r
θ

 =

√x2
1 + x2

2

arctan x2

x1

+ ν (6.31)

The system is simulated for a duration of 200 s with the integration time step set

at dt = 0.01s. The initial state distribution is assumed to be Gaussian with mean

µ0 =

[
6500.4 349.14 −1.8093 −6.7967 0.6932

]
(6.32)

and covariance

P0 = diag(

[
10−6 10−6 10−6 10−6 0

]
. (6.33)

Measurements are recorded at the interval of 50 time steps. The measurement noise

term is assumed to be Gaussian distributed with zero mean and covariance

R = diag(

[
10−6 (0.01π

180
)2

]
). (6.34)

In order to investigate the relationship between estimation performance and the
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(a) x1 (b) x3

(c) x5

Figure 6.4: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 10

number of particles used (Np), we conduct the experiment atNp = 10,50,100,500,1000

and 5000. For each value of Np, the experiment is repeated 50 times and the Monte

Carlo averaged RMSE is computed. The Monte Carlo averaged RMSE for the states

x1, x2 and x5, for the cases when Np = 10 and Np = 5000 are plotted in Figures 6.4

and 6.5. The results for Np = 50, 100, 500, 1000 are provided in Appendix B.2.
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(a) x1 (b) x3

(c) x5

Figure 6.5: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 5000

The results indicate that when the sample size is small, the PGM-1 filter out-

performs the PGM-II filter when it comes to estimation accuracy in all three state

variables. However, the performance of the latter improves substantially as the num-

ber of particles is increased. At around Np = 1000, PGM-II can be observed to catch

up with PGM-1 Filter as the RMSE plots for the former start to coincide with the
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latter. The improvement in performance is summarized in Figure 6.6, in which we

have plotted the RMSE against the number of particles, after performing a further

averaging over time.

(a) x1 (b) x2

(c) x3

Figure 6.6: Time Averaged RMSE in x1, x3 and x5 for the Re-entry problem

We notice a precipitous drop in the averaged RMSE for PGM-II filter around
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Np = 500 and for PGM-1 filter for Np = 100. The averaged error is seen to stabilize

after Np = 500 as increasing the numbers further up to 5000 does not produce

substantial reduction in estimation error. The time averaged RMSE for both filters

at Np = 10 and Np = 5000 are listed in Table 6.1.

Table 6.1: Time averaged RMSE for PGM-I and PGM-II for the re-entry problem

Np=10 Np=5000

|∆x1| |∆x3| |∆x5| |∆x1| |∆x3| |∆x5|

PGM1 0.0998 0.0120 0.6862 0.0050 0.0101 0.1202

PGM-II 1.2307 0.0766 1.5067 0.0051 0.0101 0.1282

Comparing the time averaged results for the PGM filters with the filters in [55],

we find that PGM-1 filter outperforms the FPF at Np = 10. However, the FPF

is seen to perform better than PGM-II filter at Np =10. This is expected as the

MCMC method requires a much larger number of samples to capture the statistics

of the state of this five dimensional system. However, as the number of samples is

increased to Np = 5000 the performance of the PGM-II filter is seen to be at par

with that of PGM-1 filter. The performance of the FPF is also found to be similar

to that of the PGM filters at Np = 5000.

The results obtained from this section and from previous chapters indicate that

despite their relative simplicity, the PGM filters can offer estimation performance

that is at par with some of the latest such as the Blob filter, log homotopy based

particle flow filters and the feedback particle filter. The performance of the PGM

filters is found to be affected by the dimensionality and nonlinearity of the process and
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measurement models. The Kalman measurement update used in PGM-1 filter is seen

to offer highly consistent estimates even in large dimensions. Our results indicate

that when the measurement model is highly nonlinear or when the measurement

noise is non-Gaussian, PGM-II filter will offer superior estimation performance in

comparison to the PGM-1 filter. However a generalization of the PGM-I filter that

can handle Gaussian mixture measurement noise models can be obtained to improve

the performance when measurement noise is multimodal. Additionally, when the

computational resources are severely constrained and the number of samples that

can be used are limited, it may be advisable to choose the PGM-I filter over PGM-

II.

6.2 Augmented PGM-I Filter

In chapter 5, we proposed the PGM-II filter to handle the nonlinearity of the

measurement function and non-Gaussianity of measurement likelihood in the filtering

problem. The MCMC method used in the PGM-II update can, in theory, obtain

samples from any probability density function. However, in practice, performing

an MCMC update is significantly more expensive than the Kalman measurement

update from a computational standpoint. In this section, we propose a modification

of the PGM-I filter, namely the augmented PGM-I filter, that can better handle

measurement nonlinearity and non-Gaussianity albeit being cheaper than the PGM-

II filter.

First we shall describe the motivation behind the development of the augmented

filter. We know that the exact Bayesian measurement update equation for computing

the posterior PDF of state variable Xk conditioned on measurement Zk = z is

P (Xk|z) =
P (Xk, Zk = z)

P (z)
. (6.35)

121



The above relationship indicates that, given a functional representation of the joint

PDF P (Xk, Zk), the posterior PDF can be computed by substituting the recorded

measurement z into P (Xk, Zk) followed by normalization. However, in general, we

may not have access to a functional/parametric representation of P (Xk, Zk). But,

given the prior PDF P (Xk) and the measurement model

Zk = h(Xk) + νk, (6.36)

one can obtain samples from the joint PDF P (Xk, Zk) as follows

• Step 1: Sample x1...xn from state PDF P(x)

• Step 2: Sample measurements z1...zn by substituting state samples in the mea-

surement function h(x) and adding sampled measurement noise terms νk

The ordered pairs (xi, zi) thus obtained are distributed according to the joint PDF.

Given a large enough sample, we can obtain an approximate functional representation

of P (Xk, Zk) using an appropriate density estimation algorithm.

Let

P (Xk, Zk) =
n∑
1

ωiPi(Xk, Zk). (6.37)

In particular, we shall assume that the component PDFs Pi(Xk, Zk) can be accurately

represented by a Gaussian PDF resulting in

P (Xk, Zk) =
n∑
1

ωiN ([Xk, Zk]
′, µi,Σi). (6.38)

Since Pi(Xk, Zk) is multivariate Gaussian PDF, the component posteriors Pi(Xk|Zk =

z) obtained after Bayesian update will remain Gaussian. Note that this property will

hold regardless of the nonlinearity of measurement function h(x) and non-Gaussianity
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of measurement noise νk. The component mean µi and covariance Σi appearing in

equation 6.38 can be expanded as

µi =

[
µi,x µi,z

]′
(6.39)

Σi =

Σi,xx Σi,xz

Σi,zx Σi,zz

 . (6.40)

The posterior component mean and covariance can be then computed as

µi,x|z = µi,x + Σi,xzΣ
−1
i,zz(z − µi,z), (6.41)

Σi,xx|z = Σi,xx − Σi,xzΣ
−1
i,zzΣi,zx. (6.42)

Indeed, the standard Kalman update equations are a special case of the equa-

tions 6.41, 6.42 when Zk is a linear function of Xk and νk is Gaussian distributed.

The full posterior PDF can be expressed in terms of the component posteriors as

P (Xk|z) =

∑n
1 ωiPi(z)Pi(Xk|z)

P (z)
. (6.43)

The term Pi(Z) in the numerator can be calculated directly by marginalizing the

component prior Pi(Xk, z) and the constant term in denominator can be obtained as

the normalizing constant. This completes the augmented PGM-I update.

In developing the augmented filter, we only assume that the joint PDF can

be represented as a Gaussian mixture model. As long as this assumption is sat-

isfied, and a density estimation algorithm that can accurately recover the joint PDF

P (Xk, Zk) is available, we will be able to use the augmented PGM-I filter to handle

nonlinearity/non-Gaussianity associated with measurement update. Since we have
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relaxed the standard PGM-I assumption on Kalman update, the performance of

the new filter will be only a function of the performance of the density estimation

algorithm used. From the experiments in chapter 6, we discovered that a general-

ization of the PGM-I filter that incorporates Gaussian mixture measurement noise

model can be derived to incorporate non-Gaussian measurement noise. However,

this development can be foregone since we can use the augmented PGM-I filter for

non-Gaussian noise models as long as it is straightforward to sample from.

We demonstrate the effectiveness of the augmented filter with a simple example.

Figure 6.7: Optimal prior density estimate for PGM-I

Let x ∼ N (0, 6). Let h(x) = |x|. We wish to find the posterior PDF of x given that

a measurement z = 5 is recorded. The ideal density estimator for PGM-I filter, as
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shown in Figure 6.7, will identify the unimodal Gaussian prior and attempt to per-

form Kalman measurement update over it, resulting in a unimodal posterior PDF.

However since |x| = 5 has two roots, the true posterior will have two modes. On

the other hand, the augmented filter, when used to perform measurement update

will identify multiple components as shown in Figure 6.8. Not only does clustering

help to identify the distribution of prior PDF, but given the augmented data, it

can also help towards proper linearization of the measurement function by splitting

the domain. Note that augmentation is also useful when the measurement noise is

non-Gaussian and multimodal.

Figure 6.8: Optimal prior density estimate for augmented PGM-I.
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6.3 Density Estimation

Density estimation of the propagated PDF has a central role in PGM filtering.

In fact, the theoretical guarantees we derived in chapters 4 and 5 were obtained

assuming the availability of a perfect density estimator. In chapter 6, we derived

an augmented PGM-I filter, which can handle measurement nonlinearity and non-

Gaussianity, whose performance is mainly the function of the density estimation

algorithm. Clearly the performance of the density estimation algorithm is of great

significance to PGM filtering performance. In this chapter, we will explore some

aspects of density estimation problem in relation to PGM filtering.

6.4 Number of Modes

Several density estimation algorithms rely on a mixture model representation

of the PDF. Some of the most widely used algorithms such as K-means and E-M

algorithms require the number of mixture modes to be specified as an input. In this

section we shall investigate how the number of mixture modes used influence the

PGM estimation performance. We shall consider two examples that are taken from

[56].

1. Quadratic, Univariate Model: In this example, we use the PGM filters

to estimate the state of a one dimensional system. Starting with the initial

PDF, we perform a single propagation step followed by a measurement update

step. The resulting filtered posterior PDF is then compared with theoretically

obtained posterior PDF. The parameters for this example problem are listed

below.

Parameters:

• Initial distribution: Gaussian with µ = 0, P = 20.
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• Markov transition PDF: f(x) = x,Q = 20.

• Likelihood Function : h(x) = x2

20
, R = 50.

• Observation: y = 30.

We use the PGM-1 Filter, augmented PGM-I filter and PGM-II filter to esti-

mate the state of this dynamical system. We use the k-means basde clustering

algorithm we developed in chapter 4 to estimate the propagated prior density.

The results obtained by filtering this system as the parameter Nmax is increased

from 1 to 8 are plotted in Figure 6.9.

Figure 6.9: Estimated density, Quadratic Univariate Model

2. Cubic, Univariate Model: Like the quadratic system of previous exam-

ple, we perform a single propagation step followed by a measurement update
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step. The parameters for the cubic univariate system model are listed below.

Parameters:

• Initial distribution: Gaussian with µ = 0, P = 20.

• Markov transition PDF: f(x) = x,Q = 20.

• Likelihood Function : h(x) = x3

120
, R = 50.

• Observation: y = 20.

Figure 6.10: Estimated density, Cubic Univariate Model

The filtered posterior PDFs for the cubic univariate model are plotted along

with the theoretical posterior PDF in Figure 6.10. Note that, the PGM-II

filter only obtains samples from the posterior PDF. What we have plotted as

the PGM-II curve in Figures 6.9 and 6.10 is the kernel density estimate ob-

tained from the PGM-II posterior samples. The results indicate that as Nmax
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increases, the filtered posterior PDF obtained by the PGM-I filter and aug-

mented PGM-I filter start to resemble more and more like the true posteior

PDF. In fact, as we increase the maximum number of components, the aug-

mented PGM-I filter catches up with the true posterior PDF faster than the

original PGM-I filter. However, the differences start to disappear as the total

number of modes used becomes much larger than the actual number of poste-

rior modes. The performance improvement of PGM-I filters with the increase

in Nmax is an interesting observation. Clearly the prior PDF in both experi-

ments is unimodal and given the linear dynamics, the ideal density estimator

should only be able to identify a single propagated prior component. However,

as we have seen from our results, using more components than the ideal can

improve PGM-I filtering performance. This happens because the total error in

the filtered posterior PDF is a function of both the density estimation error

and the linearization error in measurement update. When the total number of

components increase beyond the ideal, the density estimation error increases.

However, the resultant splitting of the domain of the measurement function

will result in a reduction of linearization errors. In PGM-I filters, the gain in

accuracy due to latter compensates for the error made in density estimation.

The augmented PGM-I filter is able to perform better than the PGM-I filter at

lower Nmax as the former has access to measurement nonlinearity information.

Note that the PGM-II filter does not experience a gain in accuracy with Nmax

since it does not rely on linearizations to perform measurement updates. Hence

not only does splitting the domain not improve its performance, the errors in-

curred in estimating the propagated prior can make the posterior estimates

worse.
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6.5 Kernel Density Estimators

Density estimation algorithms such as k-means and E-M algorithm assume the

PDF of the random variable belongs to some family of distributions. For e.g., in

our simulations, we often assumed that the PDF of the propagated random variable

is actually a Gaussian mixture. Assuming an underlying structure for the PDF al-

lows us to represent it in terms of a set of a parameters whose size does not grow

with the sample size. Indeed, it is only with strong assumptions on the structure

of the unknown PDF can we reduce the search space for the estimator to the fi-

nite dimensional parametric space. However, these assumptions result in estimation

errors as the actual underlying PDF need not belong to the assumed class of distri-

butions. Non-parametric density estimators are a class of algorithms that estimate

the PDF without assuming any underlying structure. Histograms, Kernel density

estimators(KDE) etc are some of the most commonly used non-parametric estima-

tion techniques. Where as histograms are discontinuous at bin boundaries, the KDE

offers a continuous non parametric estimator of the PDF. Formally, given a collec-

tion of random samples xi distributed according to the true density p(x), the KDE

estimator is computed as

p̂(x) =
1

n

n∑
i=1

1

h
K(

x− xi
h

). (6.44)

Here the kernel K is a non negative continuous function that is assumed to inte-

grate to the width parameter h. Gaussian, Epanechnikov, Quartic etc are some of

the commonly used kernel functions. We can obtain a KDE based PGM filter by

replacing the k-means based GMM estimation step with kernel density estimation.

We designed a variant of the PGM-II filter that uses an Epanechnikov KDE of the

propagated prior density. The value of Epanechnikov kernel function at a point u on
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the real line can be evaluated as

K(u) =
3

4
(1− u2), |u| ≤ 1. (6.45)

When the total number of samples n is high, evaluating p̂(x) can be very expensive.

In order to keep the computational cost under control, we run a nearest neighbour

algorithm at x and identify the k nearest neighbours from the set of random samples

xi. We approximate p̂(x) with a local KDE made up of the k nearest neighbours of

the point x. We tested the performance of the KDE based PGM-II filter against the

GMM based PGM-II filter in the Cubic univariate model. However, instead of the

univariate Gaussian distribution, we used Γ(x, 2, 2) as the initial distribution. The

window size for the Epanechnikov kernel is set to be 0.0009 and the number of nearest

neighbours is kept at 30. As seen in Figure 6.11, the KDE based PGM-II filter is

Figure 6.11: Estimated density, Cubic Univariate Model using a KDE based PGM-II
Filter
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found to perform better than the GMM based filter. However, its performance is

found to be sensitive to window size selection.

KDE based approaches are in general more flexible in comparison to parametric

density estimators. However, they are known to have slow convergence towards the

true density. In fact, a KDE based PGM-II variant was found to diverge in the

blind tricyclist problem. Clearly, the choice between parametric and non parametric

algorithms has to be exercised based on the nature of the application and available

computational resources. The PGM filter design is flexible in that it allows the user

to freely choose the density estimation algorithms in this manner. PGM-II filter in

particular does not enforce any constraints on the family of distributions or Kernels

that can be used to model the PDF.
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7. DISTRIBUTED PGM-I FILTER

Decentralized estimation of dynamical systems is an important engineering prob-

lems with numerous applications in robotics and control[57]. It involves the estima-

tion of the state of a dynamical system using information collected by a network of

several sensors/agents without the help of a central node. The network is assumed

to allow bidirectional communication between all agents that are connected (Fig-

ure 7.1). The knowledge about the system is updated across the network via multi

sensor data fusion.

Figure 7.1: Decentralized estimation of the dynamical system X(t) by 4 agents
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The information sharing between the agents can take place in several ways. The

network connectivity can be used to exchange

1. Measurement models and recorded observations

2. Likelihood functions

3. Individually obtained posterior PDFs

In this chapter, we shall focus on the first option, i.e, the transmission of measure-

ment models and observations across the network. In the most general estimation

scenario, the measurement models used by an agent is a nonlinear function of X(t)

that may not have a compact parametric representation. This means that the agent

may need to transmit the full nonlinear function along with the value of the mea-

surement. The cost of communicating this information is usually high. As discussed

in chapter 4, several nonlinear filters such as the PGM-I filter linearizes the nonlinear

measurement function as it enables them to obtain the posterior PDF using the sim-

ple Kalman measurement update. This has special significance in the decentralized

estimation scenario as linearizing the measurement function will also help to keep

the cost of communication manageable. In this section, we will discuss a preliminary

development towards the design of a decentralized PGM-I filter.

For ease of exposition, we shall consider a scenario that involves only two agents.

Let A1 and A2 be two agents observing a random dynamical system. Let X(t) repre-

sent the state of the dynamical system at time t. Assume that the agents are capable

of estimating the state X(t) by generating independent observations z1 and z2 and

by sharing information between them when connected. Note that even though the

development herein is for the two agents scenario, it can be generalized to the n-agent

estimation problem in a straightforward fashion. Consider the scenario where the
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prior PDFs of the two agents are represented as Gaussian mixture models.

P1(x) =

n1∑
1

θ1,iN (µ1,i,Σ1,i) (7.1)

P2(x) =

n2∑
1

θ2,iN (µ2,i,Σ2,i) (7.2)

Note that we have not included time indices in the above as only a one step measure-

ment update is considered here. To simplify the problem further, we shall assume

that the agents are connected prior to the measurements arrival so that P1(x) =

P2(x) = P (x) and n1 = n2 = n, θ1,i = θ2,i = θi, µ1,i = µ2,i = µi,Σ1,i = Σ2,i = Σi.

Then, given the two observations, the posterior PDF of this system is given by

P (x|z1, z2) =
P (x)P (z1|x)P (z2|x)∫
P (ζ)P (z1|ζ)P (z2|ζ)dζ

=

∑n
1 θiN (µi,Σi)P (z1|x)P (z2|x)∫ ∑n
1 θjN (µj,Σj)P (z1|ζ)P (z2|ζ)dζ

(7.3)

Let

li(y) =

∫
N (µi,Σi)P (z1|ζ)P (z2|ζ)dζ (7.4)

Then one can multiply and divide the ith term in the numerator by li to obtain

P (x|z1, z2) =
n∑
i=1

θili(y)N (µi,Σi)P (z1|x)P (z2|x)

li(y)
∑n

j=1

∫
θjN (µj,Σj)P (z1|ζ)P (z2|ζ)dζ

(7.5)

Note that the term N (µi,Σi)P (z1|x)P (z2|x)
li(y)

represents the component posterior obtained

from the Bayesian update of the mixture mode N (µi,Σi). We will use Pi(x|z1, z2)

to denote this PDF. Then we see that the full posterior can be represented as

P (x|z1, z2) =

∑n
1 θili(y)Pi(x|z1, z2)∑n

1 θjlj(y)
(7.6)
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This is a mixture representation of the posterior PDF where the components are

given by P+
i (x) = Pi(x|z1, z2) and the weights are given by

θ+
i =

θili(y)∑n
1 θjlj(y)

(7.7)

7.1 Obtaining the component posterior PDF

When the measurement model is linearized and the measurement noise assumed is

Gaussian, the component posterior Pi(x|z1, z2) can obtained using the usual Kalman

update. Given the above structure, it is straightforward to obtain a distributed

analog to the measurement update. Observe that the measurement update can be

broken down into a Bayesian update of a continuous density (to obtain Pi(x|z1, z2)

from Pi(x) ) and the Bayesian update of a discrete hidden Markov model ( to obtain

θ+
i from θi).

Let yi and Yi be defined as

yi = Σ−1
i µi, (7.8)

Yi = Σ−1
i . (7.9)

for i = 1, · · ·n. The terms yi and Yi, known as the information vector and infor-

mation matrix respectively, encode the information contained in the ith prior PDF

component. Given the measurements z1 and z2, the information vector and matrix
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for the posterior component (y+
i , Y

+
i ) can be then obtained as

y+
i = yi + δi1 + δi2, (7.10)

Y +
i = Yi + δI1 + δI2. (7.11)

The above equations represent the Kalman measurement update in the information

form. The terms δij, δIj can be calculated readily from each agent as δij = H ′jR
−1
j zj

and δIj = H ′jR
−1
j Hj. Once the posterior information vector and matrix for each

component is computed, it is straightforward to obtain the corresponding mean and

covariance. However only the agent Aj has direct access to (δij, δIj). By running

a standard consensus algorithm such as distributed averaging [58] over (δij, δIj)

across the network, all agents can perform Kalman measurement updates on all

local mixture components.

Let the nonlinear measurement functions be

z1 = h1(X) + ν1, (7.12)

z2 = h2(X) + ν2. (7.13)

At first glance, the PGM-I update equations given in chapter 4 do not appear to be in

the information form as given in equations 7.10, 7.11. However, it can be shown that

[8] the PGM-I update using z1 corresponds to linearizing the measurement function

h1(x) through a statistical linear regression and then performing the information

update. For e.g. the PGM-I UT corresponds to obtaining a linear regression approx-

imation of the nonlinear measurement function through the sigma points. Given a

single agent A1, a single measurement z1 and a prior PDF with n components, the

PGM-I filter performs n separate Kalman measurement updates. These n updates
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correspond to n different linearizations. Consequently, in the multi-agent scenario

that we consider here, we will first need to obtain the linearizations of the functions

h1, h2 over all n prior components Pi(X). Each one of these 2n linearizations will

then need to be communicated over the network. That is, the actual decentralized

PGM-I update will have the form

y+
k = yk + δik1 + δik2, (7.14)

Y +
k = Yk + δIk1 + δIk2 . (7.15)

with δikj = Hk′
j R

−1
j zj and δIkj = Hk′

j R
−1
j Hk

j , where Hk
j is the linearization of the

function hj(x) at the kth component prior Pk(x) (Figure 7.2).

Figure 7.2: Three separate linearizations of the function h1(x) corresponding to three
prior PDF components
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7.2 Obtaining the weights

Clearly, obtaining the posterior weights require evaluating the term li(y). From

Bayes theorem we have

Pi(x|z1, z2) =
Pi(x)P (z1|x)P (z2|x)

li(y)
. (7.16)

So once we have evaluated Pi(x|z1, z2) we can substitute x = xc in the above equation

to get

li(y) =
Pi(xc)P (z1|xc)P (z2|xc)

Pi(xc|z1, z2)
, (7.17)

where xc is some constant. In the linear Gaussian case, the component posterior

Pi(x|z1, z2) can be obtained at each agent by running consensus over the information

vectors and matrices. So we assume that Pi(xc) andPi(xc|z1, z2 are available to both

agents. This leaves us with the product in the numerator P (z1|xc)P (z2|xc). Agent

1 has only access to P (z1|xc) and Agent 2 only to P (z2|xc). However the product

P (z1|xc)P (z2|xc) is independent of mode i. To see this, substitute Eq.10 in Eq.8.

θ+
i =

θi
Pi(xc)P (z1|xc)P (z2|xc)

Pi(xc|z1,z2)∑n
1 θj

Pj(xc)P (z1|xc)P (z2|xc)
Pj(xc|z1,z2)

=
θi

Pi(xc)
Pi(xc|z1,z2)∑n

1 θj
Pj(xc)

Pj(xc|z1,z2)

. (7.18)

This means that once we have access to the component posterior Pj(x|z1, z2), we can

evaluate a number proportional to li(y) by merely substituting an xc in the prior and

posterior components.

We test the performance of the distributed averaging approach with the following

target tracking example. We consider a grid of 4 sensors placed at (0, 0), (0, 4), (4, 0)
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and (4, 4). The true target position and the sensor locations are visualized in Fig-

ure 7.3

Figure 7.3: Decentralized target tracking, Set up

Together they track a target that is capable of moving on the x−y plane. In this

example we consider the PGM performance in a single decentralized measurement

update. The prior PDF for the target is given by

P (x) = 0.3N (µ1,Σ1) + 0.4N (µ2,Σ2) + 0.3N (µ3,Σ3), (7.19)

where µ1 =

[
−1 1

]
, µ2 =

[
1 2

]
, µ3 =

[
2 3

]
and Σ1 = I2×2, Σ2 = 1.2I2×2,

Σ3 = 2I2×2. Each sensor records the distance between the sensor and the target
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according to

zi = ||x− ρi||2 + νi, (7.20)

where ρi is the location of the ith sensor. The measurement noise variances is Ri =

0.4 for i = 1....4. Once the measurements are recorded, the information vectors

and matrices are summed up via distributed averaging and a Kalman measurement

update is performed using equations 7.14, 7.15. The posterior PDF obtained using

decentralized PGM-I update is visualized in ensemble form in Figure 7.4. Two of

the three modes are seen to survive and the majority of the probability is found to

be located within the mode that contains the true target position.

Figure 7.4: Decentralized target tracking, Prior and Posterior PDF
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8. PARALLEL MARKOV CHAIN MONTE CARLO*

The MCMC methods are a class of Markov chain based sampling algorithms that 

are widely used to obtain samples from probability densities that are normally diffi-

cult to sample from. They obtain samples by generating a reversible Markov chain 

whose equilibrium density coincides with the target density P (X). Lets consider 

the Metropolis-Hastings algorithm, a widely used variant of MCMC, that relies on 

a proposal density Q(x|y) to generate samples from the target density P (X). Given 

the target density and the proposal density, it produces a sequence of Markov chain 

transitions, each consisting of a sampling and an accept/reject operation. Let xt−1 

be the state of the chain at t − 1, then the Metropolis-Hastings algorithm first sam-

ples a new candidate point x∗t from the proposal density Q(x|xt−1). The point x∗t 

is chosen as the next state of the Markov chain with an acceptance probability α 

where α = min{1, P (x
t

∗

−

t)
1

Q(xt

∗

−

t 

1|
t

x
−

∗t

1

) }. The sampling and acceptance operations, when

combined gives rise to a transition kernel whose steady state density equals the tar-

get PDF P (x),i.e., as t → ∞ the distribution Pt of the point Xt will converge to the 

target density P (x). This has made MCMC methods invaluable for sampling from 

distributions that are otherwise difficult to sample from.

In practice, running the simulation until steady state will not be possible. Instead 

the chain is run long enough until the distribution Pt is sufficiently close to the true 

distribution P (x). All samples obtained before a burn in time Tburn−in are discarded. 

The time taken by the Metropolis Hastings chain to ensure ||Pt(x) − P (x)|| < ε for a 

given distance measure and error bound ε will depend on both the proposal density 

Q(x) and the target PDF P (X). In this sense, a Markov chain that converges quickly 
∗Parts of this chapter were reprinted with permission from [7].

142



to the target distribution is called quickly mixing. In practice, Markov Chains mix

much more quickly when the target distribution is not multi-modal. For multi-modal

target distributions, the time taken to satisfy a given error bound can be impracti-

cally large. In the multi modal scenario, the chain will require a really large time to

explore the state space effectively since moving from one mode to another may re-

quire a large jump which happens only with a small probability. However, if we could

overcome the inherently sequential nature of the Metropolis Hastings algorithm, we

may be able to explore multiple regions of the state space simultaneously. To this

end, parallelizable MCMC methods that perform asynchronous sampling over the

state space to compute integrals [47], [59] and perform Bayesian estimation [4] have

been proposed recently. It is to be noted that there is also strong incentive to paral-

lelizing MCMC methods as serial CPU speed ups have plateaued over recent years

and the prevailing computing paradigm has shifted to parallel processing[47].

To demonstrate the effectiveness of running several Markov chains in parallel,

we conduct the following experiment. We attempt to sample from a multimodal

PDF using the Metropolis Hastings algorithm. Our target PDF P (x) is a Gaussian

mixture with four equally weighted components. The four components are placed

along the Cartesian coordinate axes at points (r, 0), (0, r), (−r, 0), (0−r) respectively.

Components 1 and 3 have their semi major axis along the X-axis. The semi-major

axis for the components 2 and 4 are placed along the Y-axis. The covariance of

component 1 is given by

C1 =

0.5 0

0 0.25

 . (8.1)

Covariances for components 2,3 and 4 are given by rotating C1 by π
2
, πand 3π

2
radians

respectively. The target PDF is represented in ensemble form in Figure 8.1.
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Figure 8.1: Four component Gaussian mixture target PDF

Now we shall use the Metropolis Hastings algorithm to sample from this PDF.

Starting from the origin, we will use a random walk with proposal covariance CQ

CQ =

1 0

0 1

 . (8.2)

We collect 4000 samples after burn in of 1000 samples. The results are shown in

Figure 8.2. We see that the chain only sampled from component 1.

Figure 8.2: Target PDF and the M-H samples;Test1
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To investigate whether this is a result of insufficient burn-in or simply insufficient

number of total samples, we increased the the burn in time to 5000 and then col-

lected 8000 samples.The experiment is repeated four times. The results are shown

in Figure 8.3.

Figure 8.3: Target PDF and the M-H samples from 4 experiments; After increasing
burn-in to 4000 and collecting 8000 samples

Despite increasing the burn in period and the total number of samples, the M-H

algorithm is found to sample from only one of the four mixture components in any

given experiment. This shows that spending more computational resources in a se-

quential manner may not produce a comparable reduction in the error ||Pt(x)−P (x)||.

Now we will conduct the same experiment by running 2 parallel chains. Each chain is
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allocated 3000 points that can be sampled after a burn in of 1000. The total number

of samples obtained in this case will be 6000 which is far less than the 13000 we used

in the previous experiment. The results are displayed in Figure 8.4. The two parallel

chains are seen to converge to two separate modes in three out of the four tests.

Figure 8.4: Target PDF and the M-H samples from 4 experiments; Running two
chains in parallel with burn-in of 1000 and collecting 3000 samples

Next we increase the number of parallel chains to four and the results are plotted

in Figure 8.5. The sampling performance is seen to have improved as three modes

were captured in three out of 4 tests. In tests with two and four parallel chains,

we observe that the number of modes captured in sampling is sometimes less than
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the number of chains. This is due to multiple M-H chains converging to the same

mixture component.

Figure 8.5: Target PDF and the M-H samples from 4 experiments; Running four
chains in parallel with burn-in of 1000 and collecting 3000 samples

Since the probability of this happening is non-zero, in practice we may need more

than M parallel chains to capture all modes of an M component Gaussian mixture.

We increase the number of parallel chains to six and find that the chains find all four

modes of the target PDF in two test cases. The results are shown in in Figure 8.6.
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Figure 8.6: Target PDF and the M-H samples from 4 experiments; Running six
chains in parallel with burn-in of 1000 and collecting 3000 samples

A pseudo code description of the complete parallel MCMC algorithm is given in

Algorithm 5. The cluster weights ωk in Algorithm 5, step 7 can be evaluated as

ωk =

∫
Sk

P (x)dx. (8.3)

Here Sk is a subset of the state space such that Ak ⊆ Sk, Sk1 ∪ Sk2 = φ for k1 6= k2.

In practice the above integral is approximated with a discrete sum evaluated using

samples from Ak. Our experiments clearly reveal that it is advisable to run multiple

parallel M-H chains than expend more computational resources sequentially when

trying to sample from a multi modal target PDF. Additionally, If each chain is only
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Algorithm 5 Parallel MCMC Algorithm

Given target PDF P (x), proposal density Q(x|xt−1), initialization density g(X),
number of modes M and number of parallel chains npar

1. for j = 1→ npar do

2. Obtain the initial sample X0
j from g(X)

3. Use MCMC to sample X
(i)
j , 0 < i ≤ N , from P (x) using the proposal density

Q(x|xt−1)

4. end for

5. Evaluate the set S of all sampled points, Φ =
npar⋃
j=1

Φj where Φj = {X0
j · · · , XN

j }

6. Use a clustering Algorithm C to separate the set Φ into M distinct clusters Ak,
k = 1 · · ·M

7. Evaluate the cluster weights ωk, k = 1 · · ·M

8. Sample N particles from the weighted collection of ensembles {(ωk, Ak)}

able to capture one mode, then we may need to run at least as many chains as there

are modes to the target PDF.

8.1 Application to Optimization

The applications of MCMC methods is not just limited to sampling. Given a

general high dimensional PDF P(X), the Markov chain constructed using the MCMC

will efficiently explore the domain of X and locate itself in regions of high probability.

This characteristic of MCMC methods can be utilized to perform optimization of a

function g(x) over the search space X. Simulated annealing (SA) is a probabilistic

optimization algorithm that uses this Markov chain construction to perform global

optimization [60]. The target density for minimizing the cost function g(x) using the

SA algorithm is constructed as P (x) = Cexp(−g(x)/T ) where C is a normalizing
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constant. The term T is a temperature parameter that, starting from sufficiently

high initial value T0, has to be gradually cooled down. The random jumps involved

in the Markov chain simulation helps the SA algorithm to escape local minima.

However, the optimization performance of the SA algorithm depends strongly on the

rate at which the cooling is administered. Furthermore, like Metropolis Hastings, it

is an inherently sequential algorithm. The parallel MCMC (p-MCMC) method can

be readily used a sanpling based optimization procedure to find the global minimum

of a function g(x) with multiple local minima. The p-MCMC optimization method

is similar to the multi-start heuristics that are widely used in global optimization

problems. It runs multiple Markov chains, each starting from a different initial state

xi(0), in parallel to explore the state space, aspiring to find the global optimum of

the objective function g(x). The target density used by the p-MCMC method is

similar to that used by the SA algorithm. However, unlike the SA algorithm, the

temperature parameter T will be kept constant through out the simulation. As a

result, the p-MCMC chains will be time homogeneous. Depending on the value of the

temperature parameter T , individual chains may converge to some optimal state in

their neighbourhood. However, given that the target function g(x) has finite number

of local optima, the probability that at least one p-MCMC chain will sample the

global optima will converge to 1 as the number of parallel chains increases. Next we

will test the performance of the p-MCMC method in a few optimization problems.

8.1.1 Fifth De Jong Function

The fifth De Jong function (DJ5) is a two dimensional optimization function with

several local minima. It is widely used to test the performance of global optimization
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algorithms[61, 62]. The DJ5 function is defined as

f(x1, x2) =

(
1

500
+

25∑
1

1

i+ (x1 − a1i)6 + (x2 − a2i)6

)−1

(8.4)

a =

−32 −16 0 16 32 −32 · · · 0 16 32

−32 −32 −32 −32 −32 −16 · · · 32 32 32

 (8.5)

The search space for finding the optima is usually limited to the square given

by xi ∈
[
−65.536, 65.536

]
, i = 1, 2. The DJ5 function is plotted in Figure 8.7.

Figure 8.7: Fifth De Jong Function

The global minima for the DJ5 optimization problem is located at (−32,−32) with

f(−32,−32) ≈ 0.998004 [62]. We will attempt to minimize this function using the
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Figure 8.8: Cooling schedule for the simulated annealing algorithm for DJ5 function
optimization

p-MCMC method and compare its performance with that of simulated annealing

algorithm. We will use 10 parallel M-H chains each sampling 3000 points after a

burn-in of 20 points. For simulated annealing we used a single M-H chain with a

cooling schedule of the form Tn = T0δ
n with δ < 1. For our simulations, we used

δ = 0.999. The cooling schedule is plotted in Figure 8.8. The M-H chain for the

simulated annealing algorithm is also allowed to sample 3000 points after a burn in

of 20 points.

The samples obtained by the two algorithms are plotted in Figure 8.9. Note

that even though the p-MCMC method obtains 10 times as many samples as the

simulated annealing algorithm, the time taken will be similar when the speed up

due to parallel processing is linear. The minima obtained by the two algorithms are

shown in Figure 8.10.

We see that the minimum obtained by the p-MCMC method is much closer

to the global minimum. The evolution of the DJ5 cost function along with the
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Figure 8.9: Samples obtained from optimizing DJ5 function with p-MCMC method
and simulated annealing

Figure 8.10: Minima of DJ5 function computed by p-MCMC method and simulated
annealing
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evolution of the Markov chains for the two algorithms is plotted in Figure 8.11.

Each parallel Markov chain is observed to quickly fall into the neighbourhood of a

minimum where it remains for the rest of the simulation. Since both p-MCMC and

simulated annealing are random algorithms, We repeated the simulation 20 times and

plotted the minima obtained by the two algorithms in Figure 8.12. The p-MCMC

method is seen to outperform the simulated annealing algorithm in majority of the

simulations. We repeated the 20 simulation test after increasing the total samples

used in the simulated annealing algorithm to 30,000. The results are plotted in

Figure 8.13. The p-MCMC method is seen to outperform the simulated annealing

even after allowing the latter to sample an equal number of total samples.

Figure 8.11: Evolution of the DJ5 cost function with the Markov chain
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Figure 8.12: Performance of p-MCMC method and simulated annealing over 20 DJ5
optimization runs

Figure 8.13: Performance of p-MCMC method and simulated annealing over 20
simulations, after increasing annealed samples to 30,000
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8.1.2 Six-hump camel back function

The six hump camel back (6HCB) function is a two dimensional function that is

widely used to test the performance of global optimization algorithms. The 6HCB

function is defined as follows.

f(x1, x2) = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x2

2

−3 ≤ x1 ≤ 3,−2 ≤ x2 ≤ x2 (8.6)

It has six local minima. Located at (−0.0898, 0.7126) and(0.0898,−0.7126) are the

two global minima at which f(x) = −1.0316 [63]. The 6HCB function is plotted in

Figure 8.14. We will use the p-MCMC method and simulated annealing algorithm to

Figure 8.14: Six-hump camel back function

minimize the 6HCB function. The p-MCMC algorithm is implemented with 10 par-
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allel M-H chains each sampling 3000 points after a burn-in of 20 points. The cooling

schedule used for the simulated annealing algorithm is plotted in Figure 8.15.

The samples obtained by the p-MCMC method and simulated annealing algo-

Figure 8.15: Cooling schedule for the simulated annealing algorithm for 6HCB func-
tion optimization

rithm are plotted in Figure 8.16. The minima computed by the two algorithms is

plotted in Figure 8.17. The two algorithms are seen to offer comparable performance.

A similar trend is observed when the experiment is repeated 20 times (Figure.8.18).
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Figure 8.16: Samples obtained from optimizing 6HCB function with p-MCMC
method and simulated annealing

Figure 8.17: Minima of 6HCB function computed by p-MCMC method and simulated
annealing
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Figure 8.18: Performance of p-MCMC method and simulated annealing over 20
6HCB optimization runs

8.1.3 Sensor Scheduling

Optimal sensor scheduling is a widely studied problem with applications in nu-

merous domains including space situational awareness (SSA). In the context of space

surveillance and tracking, the objective of sensor scheduling is to obtain a sensor

management strategy that maximizes the information gain from observing a large

number of space-based targets using a limited number of sensors. A brief mathemat-

ical description of the sensor tasking problem is given below.

Consider a multi target tracking scenario that involves a set of N objects de-

noted by O = {o1, o2, · · · , oN} . Let the state of these objects be represented by

X = {x1, x2, · · · , xN}. The dynamics of each target is assumed to be governed by a
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stochastic differential equation of the following form

ẋi = f(xi) + wi. (8.7)

Here f represents a suitably accurate orbital motion model and wi is a white noise

process. Assume a set ofM sensors, S = {s1, s2 · · · sM} , that are capable of recording

measurements of the targets O. Each sensor is assumed to be capable of recording

observations from within a limited field of vision (FOV) around its current posi-

tion/look direction. The range of possible look directions is limited by the Field of

Regard (FOR) of the sensor. Observations are recorded according to

zk(t) = Hj(xji(t)) + νj. (8.8)

Here, zk, k = 1 · · ·K, K ≤ N represent the observations recorded at time t , Hj rep-

resents the measurement function of the sensor sj and ji represents the index of the

ith object within the FOV of sensor sj. The measurement noise term νj is assumed

to be a white noise process. Let z(t) = {z1(t) · · · zk(t)} and Z(t) = {z(1), · · · z(t)}.

Then the posterior probability density function (PDF) of the state of the system

at time t is given by the conditional density P (X(t)|Z(t)). Given the observations

z(t) and the propagated prior PDF P (X(t)|Z(t − 1)), the PDF P (X(t)|Z(t)) can

be arrived at using a multi-target tracking algorithm. We shall call this PDF the

information state χ(t) of the system at time t. Clearly, the information state at t is

a function of the measurement sequence z(t). Let ∆Iz(χ(t), z(t)) represent the infor-

mation gain from updating the predicted state PDF using measurements z(t) at time

t. The one step information gain ∆Iz(χ(t), z(t)) can be quantified in terms of various

functions of the information state of the system at t, such as the information entropy,
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Fisher information, covariance etc. Note that the measurement sequence z(t) is a

random vector that in turn depends on the configuration of the sensors V (t) at time

t. Consequently, given a sensor configuration V (t) we can compute the expected

information gain as the weighted integral of ∆Iz(χ(t), z(t)) with P (z(t)|χ(t), V (t)).

Let ∆I(χ(t), V (t)) represent the expected information gain from choosing the sensor

configuration V (t) at time t. Then, the objective of the sensor scheduling problem

is to obtain the sequence of sensor configurations V (t0), V (t1) · · · that maximize the

net information gain from the system. The resulting optimization problem, in its

most general form, is to be solved over an infinite horizon, with the reward function

given by

J(χ(0)) =
∞∑
t=0

∆I(χ(t), V (t)). (8.9)

Obtaining the optimal configuration sequence V (t0)∗, V (t1)∗ · · · that maximizes the

infinite horizon reward in equation 8.9 over all possible sequence of information

states is extremely difficult. Here, we consider the optimal scheduling problem for

the single sensor multi-target tracking scenario. For each target, we represent the

one step information gain ∆Izk(χS(k)(t), zk(t)) in terms of the incremental change

in the determinant of the inverse of it’s covariance matrix. Inverse of the covari-

ance of a random vector is also known as its information matrix. Here S(k) is a

function that maps the index k the measurement zk to the index i of the target

xi from which it originated. If CS(k)(t
−) is the covariance of the PDF of target

S(k) before measurement zk and CS(k)(t) the covariance after the measurement, the

one step information gain ∆Izk(χS(k)(t), zk(t)) is given by ∆Izk(χS(k)(t), zk(t)) =

|inv(CS(k)(t)| − |inv(CS(k))(t
−)| where | | is the determinant. The incremental infor-

mation gain for the full set of targets at time t is defined as the sum of information
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gains of individual targets t.

∆Iz(χ(t), z(t)) =
K∑
k=1

∆Izk(χS(k)(t), zk(t)) (8.10)

In this example, we consider the problem of obtaining the optimal action sequence

that maximizes information gain over a receding horizon of length ∆t using the

p-MCMC algorithm.The p-MCMC method is used to obtain the optimal sensor con-

figuration for the single sensor Multi-target scheduling problem as described below.

Let the total number of parallel simulations run at the scheduling instant t be Npar(t).

Then the p-MCMC algorithm starts by sampling Npar different initial sensor config-

urations V 0(t) = {V 0
1 , · · ·V 0

Npar
} where each configuration state V 0

i represents a full

sequence of look directions from time t to t+∆t. Each sample Vi(0) is used to initial-

ize an MCMC chain whose target density is a function of the expected information

gain over a ∆t window.

The evaluation of expected information gain for the configuration Vi(m) over the

space of all possible measurement sequences in the interval from t to t+ ∆t is com-

putationally tedious. Instead we will obtain an approximate expected information

gain Ī∆t(t, Vi(m)) using the measurement sequence generated from the mean sys-

tem path. The approximate expected information gain for the configuration Vi(m)

is computed as follows. Given the propagated prior PDF P (X(t)|Z(t − 1)), we

obtain a deterministic sequence of target states {X−w(t), · · ·X−w(t + ∆t)} by sim-

ulating the mean path, starting from X−w(t) = E[X(t)|Z(t − 1)] and assuming

noiseless dynamics, i.e., X−w(t + j + 1) = f(X−w(t + j)). From this state sequence

and the sampled configuration state V m
i , we obtain a deterministic sequence of fu-

ture measurements {z−ν(t), · · · z−ν(t + ∆t)} by assuming zero measurement noise.

This sequence of measurements is then used to obtain a sequence of posterior PDFs
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P (X(t+ j)|Z(t− 1), z−ν(t) : z−ν(t+ j)) where j = 0, · · · ,∆t. An estimate of the se-

quence of expected posterior information matrices corresponding to the configuration

sequence V m
l can be calculated from these PDFs. The approximate expected infor-

mation gain Ī∆t(t, Vi(m)) is then arrived at as the sum of incremental changes in the

determinants of these information matrices during each measurement update. Given

Ī∆t(t, Vi(m)), p-MCMC computes the value of target density for the configuration

Vi(m) at t as

πt(Vi(m)) = Ce(
Ī∆t

(t,Vi(m))

T
), (8.11)

where C and T are positive constants.

The p-MCMC algorithm runs several such chains, exploring a large volume of

the configuration space. As the chains are run simultaneously on parallel processors,

there is no additional time penalty involved [7]. After simulating each chain for

a sufficiently large number of time steps Ttotal, we assemble the collection of Npar

Markov chains Vtotal(t) = {(V 0
1 · · ·V

Ttotal
1 ), · · · , (V 0

Npar
· · ·V Ttotal

Npar
)}. Then the optimal

sensor configuration at time t can be approximated as

V ∗(t) ≈ arg max
Vi(m)

Ī∆t(t, Vi(m)) Vi(m) ∈ A = Vtotal(t) (8.12)

From V ∗(t) we obtain the optimal sensor configuration at time t that maximizes the

information gain until t+ ∆t. The optimal action for the time t+ 1 is computed in

a similar manner by considering the information gain over the time window between

t+1 and t+1+∆t. We test the effectiveness of the p-MCMC method in an example

sensor scheduling problem. A sensor located on earth is required to track 10 moving

targets. The sensor has a field of regard (FOR) of π radians and a field of view

(FOV) 15◦ in each direction, as shown in Figure 8.19. The orbits of the targets are
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randomly sampled with a mean semimajor axis of length 42164 km and standard

deviation of 100 km. The inclination of the orbits are sampled uniformly from an

interval [−π/6, π/6] radians.The eccentricity and eccentricity anomaly for each orbit

is sampled from uniform distributions in the intervals [0.01, 0.04] and [−π/4, π/4]

radians respectively. Each target PDF is initialized with a diagonal covariance matrix

constructed using randomly sampled standard deviations. The standard deviations

for the position coordinates are sampled uniformly from the range [10km, 80km]

and for velocity coordinates are sampled from the range [0.01km/s, 0.1km/s]. The

process noise is modeled as acceleration terms with zero mean and variance equal to

10−10 km2

s4
.

The sensor records measurements during a periodic observation window, with the

Figure 8.19: Sensor tasking system with 10 targets and a sensor with FOR = π rad
and FOV=15◦ around the look direction. Reprinted with permission from [7].

period of the measurement cycle being 600 s. The observation window of the sensor
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Figure 8.20: Expected information gain at different parallel pool workers. Reprinted
with permission from [7].

comprises 3 measurements, spaced 2 s apart. The measurement noise associated with

the observations is set at 2.5893× 10−6. The observation model is allowed to run for

5 measurement cycles, that is 3000 s. Eight parallel workers were used to run MCMC

simulations with different randomly sampled initial conditions. A PGM-I filter was

used to track the targets. The simulations were run using the Terra supercomputing

cluster maintained by High Performance Computing Resources (HPRC) at Texas

A&M University.

The expected information gain over the MCMC runs in the eight parallel pool

workers is shown in Figure 8.20. Each Markov chain corresponds to a different

initial look direction. All chains are seen to converge to local optima in just a few

iterations. Some of the chains are also seen to converge to the same local optimum.

For example, chains 2, 5, 6, 7, 8 converge to a local optima with a value of 7 for

expected information gain.

The instantaneous net information gain over all ten targets, resulting from

the optimal look direction is shown in Figure 8.21. The spikes correspond to the

measurement windows that are periodical with time period 600s. The time evolution
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Figure 8.21: Instantaneous net information gain, with spikes corresponding to the
five measurement windows. Reprinted with permission from [7].

of the determinant of the information matrix, for each of the ten targets is shown

in Figure 8.22. The information gain is measured as the change in determinant of

the information matrix during a measurement update. As expected, the optimal

look direction does not capture all targets in a particular measurement window. For

example, during the first measurement cycle that lasts between 1s and 5s, three

targets (Targets 2, 5 and 6) show an increase in information. However, during the

measurement window between 601s and 605s, only two targets (Targets 1 and 7)

are being observed. The time evolution of the sum of determinants of the realized

information gains over all ten targets are shown in Figure 8.23.
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Figure 8.22: Time evolution of the determinant of the information matrix for the ten
targets. Reprinted with permission from [7].

Figure 8.23: Time evolution of determinants of information matrices summed over
all targets. Reprinted with permission from [7].
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9. CONCLUSIONS

In this chapter, we summarize the contributions of this dissertation and discuss

avenues for future research.

In this dissertation we developed a novel Particle Gaussian Mixture (PGM) fil-

tering framework for addressing the problem of nonlinear Bayesian estimation. The

PGM filtering design was inspired by our work on the unscented Kalman particle

hybrid filter. The hybrid filter, whose development is discussed in chapter 3 was pro-

posed to tackle the problem of space object tracking. It employs the UKF for tracking

when the target is inside the FOV of the observer. In order to handle the nonlinear

distortion outside the FOV, the tracking scheme transitions from UKF to PF as the

object exits the FOV. It addresses the problem of particle depletion through a suit-

ably designed PF to UKF transition scheme based on a Kalman update. The hybrid

filtering scheme was employed to estimate the state of a space object in inclined low

earth orbits and the estimation performance is studied in terms of the RMSE and

NEES metrics. The hybrid filters that employed the Kalman measurement update

were found to offer reliable estimation performance even with large initial uncer-

tainty and sparse measurements while using a relatively small number of particles.

The superior performance of hybrid filter in comparison to UKF and the PF particle

approximation lead us to the following important conclusions.

• Conventionally employed nonlinear filters such as the EKF and UKF are not

effective in estimation problems in which the state PDF undergoes extensive

distortion under nonlinear transformations.

• Monte Carlo uncertainty propagation can handle the nonlinear transformations

without making restrictive assumptions about state PDF.
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• In the absence of a good importance density, the performance of particle mea-

surement update deteriorates quickly with the dimension of the state space.

• Kalman measurement update, even though inexact in nonlinear settings, can

prevent filter collapse and produce consistent estimates.

Based on these findings, in chapter 4 we designed a generalization of the hybrid filter,

namely the PGM-I filter to address the general multimodal nonlinear filtering prob-

lem. Like the hybrid filter, the PGM-I filter uses an ensemble of particles to propagate

the prior uncertainty. The propagated ensemble is clustered to recover a GMM repre-

sentation of the propagated PDF. Measurements are incorporated through a Kalman

update of the mixture modes to arrive at the posterior PDF. The PGM-I approach

allows the number and weight of mixture components to be adapted during propa-

gation unlike the conventional mixture filters [18, 19]. Additionally, the PGM-I filter

is not prone to the curse of dimensionality associated with particle measurement up-

dates. The PGM-I filter density is shown to converge in probability to the true filter

density under the condition of exponential forgetting of initial conditions by the true

filter. The PGM-I filter is employed in three test cases to evaluate the estimation

performance. It is demonstrated that the PGM-I filter offers superior estimation

performance in comparison to UKF, PF the blob filter and a mixture UKF. The

PGM-I filter is demonstrated to be capable of tracking the 40 dimensional Lorenz 96

system wherein the PF and blob filter suffers weight depletion.

The PGM-I filter assumes the validity of the Kalman measurement update even

when measurements are highly nonlinear. The can prove restrictive in the presence

of significant measurement nonlinearity. In chapter 5 we proposed the PGM-II fil-

ter which relaxes this assumption. Like its predecessor, the PGM-II filter uses the

transition kernels of the underlying Markov chain to generate samples during the
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propagation step. The samples are then clustered to recover a GMM representation

of the propagated prior PDF. The measurement update is performed with the help of

a parallel MCMC based sampling algorithm. As a result, the PGM-II measurement

update step is asymptotically exact. It does not enforce restrictive assumptions on

the number of mixture components during either propagation or measurement up-

date. Using the exponential forgetting assumption, we proved the convergence of the

PGM-II filtered PDF to the true filter PDF. The PGM-II filter is employed in the

estimation of two test cases to evaluate the estimation performance. The PGM-II

filter is seen to outperform the PF and the UKF in both test cases. The blob filter

is seen to offer superior performance in the blind tricyclist problem. Our results

from this chapter also indicated that strategies for improving the performance of

the MCMC method in sampling extremely multimodal target densities need to be

studied as future work.

In chapter 6 we extensively studied the performance of the PGM filters on a

selected class of benchmark problems chosen from recent literature. We compared

the PGM filtering performance with that of other recently proposed general purpose

nonlinear filters such as the log homotopy based particle flow filters and the feedback

particle filter. The performance of PGM filters was found to be at par with or better

than these despite being much simpler in implementation. The benchmark study

allowed us to investigate how dimensionality, nonlinearity and number of samples

affect the performance of PGM filters. Based on our results, we found the following

important guidelines for choosing between the PGM filters.

• For problems with significant nonlinearity in propagation but mildly nonlinear

measurement functions, choose PGM-I filter.

• When the measurement nonlinearity is significant or when measurement noise
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is significantly multimodal, choose PGM-II filter.

• However, when the computational cost is a concern such as when estimation

is to be performed in very high dimensions, PGM-I filter may be chosen over

PGM-II.

• A non-Gaussian measurement noise can be incorporated within the existing

PGM-I framework. To accomplish this, the noise has to be approximated by

a Gaussian via moment matching. However, the PGM-I performance in this

case can turn out to be inferior in comparison to the PGM-II filter.

We found that filters that rely on Kalman measurement update may provide more

consistent estimates than those that use sampling. This is despite the latter being

the asymptotically exact choice. Note that the PGM-I filter is designed assuming

that the measurement noise is Gaussian. It may be possible to represent a non-

Gaussian measurement noise with a Gaussian mixture model. A rigorous generaliza-

tion of the PGM-I filter that can handle Gaussian mixture measurement noise may

be pursued as future work. The results obtained from these experiments inspired

us to design an augmented PGM-I filter, a variant of PGM-I that can better handle

measurement nonlineariy/non-Gaussianity without incurring the significantly higher

computational cost of PGM-II filter. The augmented PGM-I filter uses samples from

the conditional measurement distribution to obtain samples from the joint distribu-

tion of state and measurement random variables. It then uses density estimation to

obtain a mixture representation of the joint distribution from which the posterior

PDF is obtained. The augmented PGM-I filter only assumes the availability of a den-

sity estimation algorithm that can accurately recover the joint PDF. The augmented

PGM-I can circumvent the need for the aforementioned PGM-I generalization thgat

incorporate multimodal measurement noise.
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Given the central role the it plays in PGM filtering, we investigated how certain

aspects of the density estimation problem influence the PGM filtering performance.

The maximum number of mixture modes that can be used to represent the state

PDF is the main user defined input in the density estimation step. We investigated

how this parameter affects the PGM filtering performance. We found that for one

dimensional problems, increasing the number of modes improved the filtering perfor-

mance of PGM-I filters. This is found to be true even when the actual state PDF is

unimodal. This improvement in PGM-I performance can be ascribed to the splitting

of measurement function domain that happens when the PDF is represented using

more modes. When the domain is split, the linearization errors become smaller and

the posterior PDF becomes more accurate. The effect is pronounced in augmented

PGM-I as the measurement nonlinearities are incorporated in the clustering distri-

bution resulting in more effective splitting of the domain. However, a similar effect

was not observed in PGM-II as the MCMC based measurement update is not subject

to linearization errors. Our results from this experiment indicate the possibility of

using an augmented PGM-I filter with a relatively large number of modes as a substi-

tute for PGM-II to save computational cost. We experimented further by designing

PGM filters that rely on non-parametric density estimation methods. In particular

we considered a a PGM-II variant that uses kernel density estimation and MCMC

to perform measurement update. The KDE performance was found to be remark-

ably sensitive towards the kernel window size selection. However, this experiment

underlined the flexibility of PGM-II design with respect to the choice of density es-

timators.

Next we considered developing a PGM-I analogue for the distributed filtering

problem. In particular, we explored the decentralized estimation scenario, in which

the network of agents/sensors is assumed to have no central node. We derived the
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equations for performing distributed averaging of information vectors and matrices

when the prior PDF is multimodal and the measurement function is nonlinear. We

considered a simple example where a one step measurement update is performed

using these equations. Future research must address the problem of developing dis-

tributed PGM-I, PGM-II filters that allows connectivity failures and distributed

clustering.

In chapter 8, we looked at the parallel MCMC method that we developed for

PGM-II filtering. Even though MCMC is an inherently sequential algorithm, the in-

creasing prevalence of parallel computing has bolstered efforts towards parallelizing

it. We demonstrated how the parallel MCMC method is significantly more successful

in sampling from multimodal densities in comparison to a single Metropolis-Hastings

based random walk chain. We also explored how the parallel MCMC approach can

be utilized to solve global optimization problems. The performance of the parallel

MCMC method was tested on multiple optimization examples and compared with

that of simulated annealing. Strict theoretical guarantees on the finite time sampling

performance of the parallel MCMC method have to be pursued as future work.
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APPENDIX A

CLUSTERING

Let S be a set of d dimensional vectors, i.e.,

S = {x1, · · · , xi, · · · , xn}, xi ∈ Rd×1. (A.1)

Then, the problem of partitioning S into a group of distinct clusters is called cluster

analysis. Clustering involves identifying groups of similar data inside the data set

S, grouping them and separating them from the remaining set of vectors. A closely

related problem is known as probabilistic clustering or parametric density estima-

tion. The objective of probabilistic clustering is to be able to compute a parametric

mixture model describing the distribution of data in S. It is essentially an approach

clustering that is based on probabilistic models wherein data points are assumed to

be arriving from distinct mixture modes. In a nutshell, the parametric density esti-

mation problem attempts to find out the model parameters that specify this mixture;

e.g. given the data set S, estimate the parameter set Θ =
⋃L
i=1(wi, µi, Ci) describ-

ing the Gaussian mixture model that describes the uncertainty in the set S. Several

clustering algorithms with widely differing notions of similarity have been proposed.

The k-means clustering employed in this paper uses the Euclidean distance in the

state space as a metric for similarity.

The Expectation-Maximization (E-M) algorithm is an iterative approach to ar-

riving at a GMM describing a data set using probabilistic methods [33]. The E-M

algorithm computes the modal parameters Θ that maximizes the log likelihood of the

observed data S. As the name suggests, each iteration of the EM algorithm consists of
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two steps. In the first step, the expected value of the log likelihood function is com-

puted. In the maximization step, model parameters that maximize this expected log

likelihood are found. Both E-M and k-means clustering alogrithms can be employed

to compute the GMM parameters. However, both of these approaches require the

required number of clusters to be specified externally. Clustering approaches such as

the Figueiredo-Jain (F-J) algorithm are capable of computing the necessary number

of clusters without user supervision [64]. The F-J algorithm computes the optimal

number of mixture modes, their weights, means and covariances using an informa-

tion theoretic criterion. Performance of clustering algorithms can vary significantly

between different applications. Hence, choice of clustering algorithms has to be ex-

ercised based on the nature of application at hand, expected accuracy and available

computational resources.
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APPENDIX B

SIMULATION RESULTS

B.1 Generalized bi-modal system model

(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ volume

Figure B.1: Monte Carlo averaged performance metrics for the bi-modal system
model at d=2
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(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ volume

Figure B.2: Monte Carlo averaged performance metrics for the bi-modal system
model at d=4
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(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ volume

Figure B.3: Monte Carlo averaged performance metrics for the bi-modal system
model at d=6
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(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ volume

Figure B.4: Monte Carlo averaged performance metrics for the bi-modal system
model at d=8
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(a) RMSE (b) NEES

(c) Likelihood (d) 2− σ volume

Figure B.5: Monte Carlo averaged performance metrics for the bi-modal system
model at d=10
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B.2 Re-entry Problem

(a) x1 (b) x3

(c) x5

Figure B.6: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 50
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(a) x1 (b) x3

(c) x5

Figure B.7: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 100
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(a) x1 (b) x3

(c) x5

Figure B.8: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 500
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(a) x1 (b) x3

(c) x5

Figure B.9: Monte Carlo averaged RMSE in x1, x3 and x5 when Np = 1000
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