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An exact multimonopole solution of heterotic string theory is presented. The solution

is constructed by a modification of the ’t Hooft ansatz for a four-dimensional instanton. An

analogous solution in Yang-Mills field theory saturates a Bogomoln’yi bound and possesses

the topology and far field limit of a multimonopole configuration, but has divergent action

near each source. In the string solution, however, the divergences from the Yang-Mills

sector are precisely cancelled by those from the gravity sector. The resultant action is

finite and easily computed. The Manton metric on moduli space for the scattering of two

string monopoles is found to be flat to leading order in the impact parameter, in agreement

with the trivial scattering predicted by a test monopole calculation.
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1. Introduction

In recent work several classical solitonic solutions of string theory with higher-

membrane structure have been presented. In [1], the tree-level axionic instanton solution

of [2] is extended to an exact solution of bosonic string theory for the special case of a

linear dilaton [3,4] wormhole solution. Exactness is shown by combining the metric and

antisymmetric tensor in a generalized curvature [5,6], which is written covariantly in terms

of the tree-level dilaton field, and rescaling the dilaton order by order in the parameter

α′. An exact heterotic multi-soliton solution with instanton structure in the four dimen-

sional transverse space can be obtained[7,8,9] by equating the curvature of the Yang-Mills

gauge field with the above generalized curvature. This latter solution represents an exact

extension of the tree-level fivebrane solutions of [10,11].

In this paper we present an exact heterotic multi-soliton solution which represents a

multimonopole configuration. We obtain this solution via a modification of the ’t Hooft

ansatz for the Yang-Mills instanton. We identify an analogous multimonopole solution in

field theory with divergent action and indicate how in the string solution these divergences

are cancelled. We also study the dynamics of the string monopoles and find that, unlike

BPS monopoles, the string monopoles scatter trivially to leading order in the impact

parameter.

We first review in section 2 the basic bosonic solution with monopole-like structure

discussed in [12]. A tree-level multi-soliton solution for the massless fields of the string is

written. The corresponding single source wormhole solution is extended to order α′. This

latter solution is noted to contain the basic outline of a stringy correction to a magnetic

monopole. We then summarize the tree-level monopole solution in N = 4 supersymmetric

low-energy string theory of [13].

We proceed in section 3 to construct an exact heterotic multimonopole solution by

modifying the ’t Hooft ansatz[14–18] for the Yang-Mills instanton. We note the relationship

of this solution to the exact multi-instanton solution in [8]. Unlike the latter solution,

however, the multimonopole solution does not lend itself easily to a CFT description.

We note in section 4 that an analogous field theory solution representing a multi-

monopole configuration not in the Prasad-Sommerfield[19] limit can be immediately ob-

tained from the modified ’t Hooft ansatz independently of string theory. This solution

has the topology of Q = 1 monopole sources, saturates the Bogomoln’yi bound[20] and

exhibits the far field behaviour of multimonopole sources. However, the action for this

solution diverges near each source.
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We demonstrate in section 5 that the string solution, by contrast, has finite action.

The divergences coming from the Yang-Mills sector are precisely cancelled by those from

the gravitational sector. The resultant action reduces to the tree-level form and is easily

calculated. The zero force condition for string solitons is seen to arise as a direct result

of the force cancellation in the gauge sector, once the generalized connection and gauge

connection are identified.

In section 6 we study the scattering of two string monopoles by two methods. The

first approach computes the Manton metric on moduli space, which defines distance on the

static solution manifold. A flat metric is obtained to leading order in the impact parameter.

This result is consistent with a calculation of the dynamic force on a test string monopole

moving in the background of a source string monopole.

We conclude in section 7 with a discussion of our results and their implications.

2. Bosonic and Tree-Level Solutions

In this section we briefly review two previously obtained solutions: the bosonic multi-

soliton solution obtained in [12] and the Prasad-Sommerfield monopole[19] solution to

supersymmetric low-energy superstring theory in [13]. Both classes of solutions possess

three-dimensional spherical symmetry, as opposed to the four-dimensional spherical sym-

metry of other instanton and fivebrane solutions[1,21,10,11,8,9].

The tree-level bosonic multi-soliton solution to the string equations of motion is given

by[12]

e2φ = C +

N
∑

i=1

mi

|~x− ~ai|
,

gµν = e2φδµν , µ, ν = 1, 2, 3, 4,

gab = ηab, a, b = 0, 5, 6...25,

Hαβγ = ±ǫαβγµ∂µφ, α, β, γ, µ = 1, 2, 3, 4,

(2.1)

where φ is the dilaton, gMN is the string sigma model metric and HMNP = ∂[MBNP ],

where BNP is the antisymmetric tensor. ~x = (x1, x2, x3) is a three-dimensional coordinate

vector in the (123) subspace of the four-dimensional transverse space (1234). mi represents

the charge and ai the location in the three-space of the ith source.

Note that we have singled out a direction x4 and projected out all the field dependence

on x4. By doing so, we destroy the SO(4) invariance in the transverse space possessed by
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the instanton solution[1]. However, (2.1) is an equally valid solution to the string equations

as the multi-instanton solution with e2φ = 1+
∑N

i=1
Qi

|~x−~ai|2
, where in this case the vectors

are four-dimensional, since in both cases the dilaton field satisfies the Poisson equation

e−2φ e2φ = 0. The projection is necessary to obtain the three-dimensional symmetry of

a magnetic monopole.

Although the above bosonic multi-soliton solution (2.1) lacks the gauge and Higgs

fields normally attributed to a magnetic monopole in field theory, one can think of the

dual field in the transverse four-space H∗
µ ≡ 1

6 ǫαβγµH
αβγ as the magnetic field strength of

a multimonopole configuration in the space (123) (note that H∗
4 = 0).

Since the dilaton equation is essentially unaffected when we try to obtain a tree-level

supersymmetric solution, we can follow the derivation of Duff and Lu’s fivebrane solu-

tion[10], but assume that the fields are independent of one coordinate (say x4), and again

obtain aD = 10 multi-fivebrane solution which breaks half the spacetime supersymmetries,

but with monopole-like structure.

Unlike the four-dimensional (instanton) solutions, the three-dimensional solutions do

not easily lend themselves to a CFT description, and it is therefore difficult to go beyond

O(α′) in obtaining stringy corrections to the tree-level fields. In [1], the O(α′) correction

was worked out for the special case of a single source with C = 0. The metric and

antisymmetric tensor were unchanged to O(α′), but the dilaton is corrected:

e2φ =
m

r

(

1− α′

8mr

)

. (2.2)

Note that, unlike the O(α′) correction to the four-dimensional solution in [1], the dilaton

correction is not a simple rescaling of the power of r to order α′. This fact is intimately

connected with the difficulty in formulating a CFT description of the three-dimensional

solution.

We now briefly summarize the tree-level monopole solution of [13]. Starting with

N = 1, D = 10 supergravity coupled to super Yang-Mills, Harvey and Liu find a solution

to the equations of motion with background fermi fields set to zero. Supersymmetry

requires that there exists a positive chirality Majorana-Weyl spinor ǫ satisfying

δψM =
(

∇M − 1
4
HMABΓ

AB
)

ǫ = 0, (2.3)

δλ =
(

ΓA∂Aφ− 1
6HAMCΓ

ABC
)

ǫ = 0, (2.4)
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δχ = FABΓ
ABǫ = 0, (2.5)

where ψM , λ and χ are the gravitino, dilatino and gaugino fields. The Bianchi identity is

given by

dH = α′
(

trR ∧R − 1
30TrF ∧ F

)

. (2.6)

Choose the spacetime indices to be 0, 1, 2, 3 and the internal indices to be 4, 5...9. The

(9 + 1)-dimensional Majorana-Weyl fermions decompose down to chiral spinors according

to SO(9, 1) ⊃ SO(3, 1)⊗ SO(6) for the M9,1 → M3,1 ×M6 decomposition. Again if we

single out a direction in internal space (say x4), the above supersymmetry equations and

Bianchi identity are solved by a constant chiral spinor[13] ǫ± = ±Γ1234ǫ± and the ansatz

Fµν =± 1

2
ǫµν

λσFλσ,

Hµνλ =∓ ǫµνλ
σ∂σφ,

gMN =diag(−1, e2φ, e2φ, e2φ, e2φ, 1, 1, 1, 1, 1),

∇ρ∇ρ =∓ 1

4
α′ǫµνλσtrFµνFλσ,

(2.7)

where µ, ν, λ, σ = 1, 2, 3, 4. The BPS monopole solution for the gauge and Higgs fields is

given by[19,20]

Aa
i = ǫiab

xb

r2
(K − 1),

Φa =
xa

r2
H,

(2.8)

where H = Cr cothCr − 1, K = Cr
sinhCr and C is the vacuum expectation value of the

Higgs. Making the identification Aa
4 ≡ Φa, replacing (2.8) into (2.7) and solving the dilaton

equation yields

e2φ = e2φ0 + 2α′ 1

r2
[

1−K2 + 2H
]

, (2.9)

which is nonsingular at r = 0 and represents a single monopole source.

Since (2.7) can be solved by any (anti) self-dual configuration, we can in principle

write down a multimonopole solution. While this solution is supersymmetric, it is only

tree-level in α′, and not necessarily an exact solution (i.e. in principle, we would have to

obtain corrections to the fields to higher order in α′).
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3. Exact Heterotic Multimonopole Solution

In this section we construct an exact multimonopole solution of heterotic string the-

ory. The derivation of this solution closely parallels that of the multi-instanton solution

presented in [8,9], but in this case, the solution possesses three-dimensional spherical sym-

metry near each source, which turns out to represent a magnetic monopole of topological

charge Q = 1. Again the reduction is effected by singling out a direction in the transverse

space.

The supersymmetry equations (2.3), (2.4) and (2.5) are unchanged at tree-level in

heterotic string theory. In this case, however, the (9 + 1)-dimensional Majorana-Weyl

fermions decompose down to chiral spinors according to SO(9, 1) ⊃ SO(5, 1)⊗ SO(4) for

the M9,1 → M5,1 ×M4 decomposition. Let µ, ν, λ, σ = 1, 2, 3, 4 and a, b = 0, 5, 6, 7, 8, 9.

Then the ansatz
gµν = e2φδµν ,

gab = ηab,

Hµνλ = ±ǫµνλσ∂σφ

(3.1)

with constant chiral spinors ǫ± again solves the supersymmetry equations (again with zero

background fermi fields) provided the YM gauge field satisfies the instanton (anti)self-

duality condition

Fµν = ±1

2
ǫµν

λσFλσ. (3.2)

An exact solution is obtained as follows. Define a generalized connection by

ΩAB
±M = ωAB

M ±HAB
M (3.3)

embedded in an SU(2) subgroup of the gauge group, and equate it to the gauge connection

Aµ[22] so that dH = 0 and the corresponding curvature R(Ω±) cancels against the Yang-

Mills field strength F . The crucial point is that for e−2φ e2φ = 0 with the above ansatz,

the curvature of the generalized connection can be written in the covariant form[1]

R(Ω±)
mn
µν =δnν∇m∇µφ− δnµ∇m∇νφ+ δmµ∇n∇νφ− δmν∇n∇µφ

± ǫµmnα∇α∇νφ∓ ǫνmnα∇α∇µφ,
(3.4)

from which it easily follows that

R(Ω±)
mn
µν = ∓1

2 ǫ
λσ

µν R(Ω±)
mn
λσ . (3.5)
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Thus we have a solution with the ansatz (3.1) such that

Fmn
µν = R(Ω±)

mn
µν , (3.6)

where both F and R are (anti)self-dual. This solution becomes exact since Aµ = Ω±µ

implies that all the higher order corrections vanish[23,24]. The self-dual solution for the

gauge connection is then given by the ’t Hooft ansatz for the four-dimensional instanton

Aµ = iΣµν∂ν ln f, (3.7)

where Σµν = ηiµν(σi/2) for i = 1, 2, 3 (σi, i = 1, 2, 3 are the 2× 2 Pauli matrices), where

ηiµν = −ηiνµ = ǫiµν , µ, ν = 1, 2, 3,

= −δiµ, ν = 4
(3.8)

and where f−1 f = 0. The ansatz for the anti-self-dual solution is similar, with the

δ-term in (3.8) changing sign.

To obtain a multi-instanton solution, one solves for f in the four-dimensional space

to obtain

f = e−2φ0e2φ = 1 +
N
∑

i=1

ρ2i
|~x− ~ai|2

, (3.9)

where ρ2i is the instanton scale size and ~ai the location in four-space of the ith instanton.

To obtain a multimonopole solution, we modify the ’t Hooft ansatz as follows. We

again single out a direction in the transverse four-space (say x4) and assume all fields are

independent of this coordinate. Then the solution for f can be written as

f = e−2φ0e2φ = 1 +

N
∑

i=1

mi

|~x− ~ai|
, (3.10)

where mi is the charge and ~ai the location in the three-space (123) of the ith source. If we

make the identification Φ ≡ A4, then the gauge and Higgs fields may be simply written in

terms of the dilaton as

Φa = −2

g
δia∂iφ,

Aa
k = −2

g
ǫakj∂jφ

(3.11)

for the self-dual solution. For the anti-self-dual solution, the Higgs field simply changes

sign. Here g is the YM coupling constant. Note that φ0 drops out in (3.11). The solution
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in (3.10) can be thought of as a multi-line source instanton solution, each monopole being

interpreted as an “instanton string”[25].

The above solution (with the gravitational fields obtained directly from (3.1) and

(3.10)) represents an exact multimonopole solution of heterotic string theory. In order

to more clearly see the monopole structure of this solution, we first consider in the next

section an analogous solution in field theory and study its properties, which then carry

over directly into the string solution.

4. Multimonopole Solution in Field Theory

We now turn to an analogous multimonopole solution in field theory. Consider the

four-dimensional Euclidean action

S = − 1

2g2

∫

d4xTrGµνG
µν , µ, ν = 1, 2, 3, 4. (4.1)

For gauge group SU(2), the fields may be written as Aµ = (g/2i)σaAa
µ and Gµν =

(g/2i)σaGa
µν . The equation of motion derived from this action is solved by the modi-

fied ’t Hooft ansatz shown in the previous section:

Aµ = iΣµν∂ν ln f, (4.2)

where again

f = 1 +

N
∑

i=1

mi

|~x− ~ai|
, (4.3)

where mi is the charge and ~ai the location in the three-space (123) of the ith source. To

obtain a multimonopole solution, we again identify the scalar field Φ ≡ A4 (we loosely

refer to this field as a Higgs field in this paper, although there is no apparent symmetry

breaking mechanism). The Lagrangian density for the above ansatz can be rewritten as

Ga
µνG

a
µν =Ga

ijG
a
ij + 2Ga

k4G
a
k4

=Ga
ijG

a
ij + 2DkΦ

aDkΦ
a,

(4.4)

which has the same form as the Lagrangian density for YM + massless scalar field in three

dimensions.

We now go to 3 + 1 dimensions with the Lagrangian density (signature (−+++))

L = −1

4
Ga

µνG
µνa − 1

2
DµΦ

aDµΦa, (4.5)
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and show that the above multi-soliton ansatz is a static solution with Aa
0 = 0 and all time

derivatives vanish. The equations of motion in this limit are given by

DiG
jia = gǫabc(DjΦb)Φc,

DiD
iΦa = 0.

(4.6)

It is then straightforward to verify that the above equations are solved by

Φa = ∓1

g
δai∂iω,

Aa
k = ǫakj∂jω,

(4.7)

where ω ≡ ln f . This solution represents a multimonopole configuration with sources at

~ai = 1, 2...N . A simple observation of far field and near field behaviour shows that this

solution does not arise in the Prasad-Sommerfield[19] limit. In particular, the fields are

singular near the sources and vanish as r → ∞.

The topological charge of each source is easily computed (Φ̂a ≡ Φa/|Φ|) to be

Q =

∫

d3xk0 =
1

8π

∫

d3xǫijkǫ
abc∂iΦ̂

a∂jΦ̂
b∂kΦ̂

c = 1. (4.8)

The magnetic charge of each source is then given by mi = Q/g = 1/g. It is also straight-

forward to show that the Bogomoln’yi[20] bound

Ga
ij = ǫijkDkΦ

a (4.9)

is saturated by this solution. Finally, it is easy to show that the magnetic field Bi =
1
2 ǫijkF

jk (where Fµν ≡ Φ̂aGa
µν − (1/g)ǫabcΦ̂aDµΦ̂

bDνΦ̂
c is the gauge-invariant electro-

magnetic field tensor defined by ’t Hooft[26]) has the the far field limit behaviour of a

multimonopole configuration:

B(~x) →
N
∑

i=1

mi(~x− ~ai)
|~x− ~ai|3

, as r → ∞. (4.10)

As usual, the existence of this static multimonopole solution owes to the cancellation of

the gauge and Higgs forces of exchange–the “zero-force” condition.

We have presented all the monopole properties of this solution. Unfortunately, this

solution as it stands has divergent action near each source, and this singularity cannot be

simply removed by a unitary gauge transformation. This can be seen for a single source

by noting that as r → 0, Ak → 1
2

(

U−1∂kU
)

, where U is a unitary 2 × 2 matrix. The

expression in parentheses represents a pure gauge, and there is no way to get around the

1/2 factor in attempting to “gauge away” the singularity[27]. The field theory solution is

therefore not very interesting physically. As we shall see in the next section, however, the

string theory solution has far greater potential.
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5. Finiteness of String Solution

The string solution presented in section 3 has the same structure in the four-

dimensional transverse space as the multimonopole solution of the YM + scalar field action

of section 4. If we identify the (123) subspace of the transverse space as the space part of

the four-dimensional spacetime (with some toroidal compactification, similar to that used

in [13]) and take the timelike direction as the usual X0, then the monopole properties

described in the previous section carry over directly into the string solution.

The string action contains a term −α′F 2 which also diverges as in the field theory

solution. This divergence, however, is precisely cancelled by the term α′R2(Ω±) in the

O(α′) action. This result follows from the exactness condition Aµ = Ω±µ which leads to

dH = 0 and the vanishing of all higher order corrections in α′. Another way of seeing

this is to consider the higher order corrections to the bosonic action shown in [23,24]. All

such terms contain the tensor TMNPQ, a generalized curvature incorporating both R(Ω±)

and F . The ansatz is contructed precisely so that this tensor vanishes identically[1,7]. The

action thus reduces to its lowest order form and can be calculated directly for a multi-source

solution from the expressions for the massless fields in the gravity sector.

The divergences in the gravitational sector in heterotic string theory thus serve to

cancel the divergences stemming from the field theory solution. This solution thus provides

an interesting example of how this type of cancellation can occur in string theory, and

supports the promise of string theory as a finite theory of quantum gravity. Another point

of interest is that the string solution represents a supersymmetric multimonopole solution

coupled to gravity, in which the zero-force condition in the gravitational sector (i.e. the

cancellation between the attractive gravitational force and repulsive antisymmetric tensor

force) arises as a direct result of the zero-force condition in the gauge sector (cancellation

between gauge and Higgs exchange forces) once the gauge connection and generalized

connection are identified.

We now calculate the mass of the heterotic multimonopole configuration. Naively, the

mass can be calculated from the tree-level action (since the higer order terms drop out)

S = − 1

2κ2

∫

d3x
√
ge−2φ

(

R+ 4(∇φ)2 − H2

12

)

. (5.1)

There is one subtlety we must consider, however (see [28]). From the term
√
ge−2φR in the

integrand of the action, the action density in (5.1) contains double derivative terms of the

metric component fields. In general, one would like to work with an action which depends
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only on the fields and their first derivatives. This problem was solved in general relativity

by Gibbons and Hawking[29,30], who added a surface term which precisely cancelled the

double derivative terms in the action in general relativity. The addition of a surface term

does not, of course, affect the equations of motion.

It turns out that there is a relatively straightforward generalization of the Gibbons-

Hawking surface term (GHST) to string theory[31,32]. By antisymmetry, the axion field

does not contribute to the GHST and the surface term in this case can be written in the

simple form

SGHST = − 1

κ2

∫

∂M

(

e−2φK −K0

)

, (5.2)

where ∂M is the surface boundary and K and K0 are the traces of the fundamental

form of the boundary surface embedded in the metric g and the Minkowskian metric η

respectively. The correct effective action is thus obtained by adding the surface term of

(5.2) to the volume term of (5.1):

S = − 1

2κ2

[
∫

d3x
√
ge−2φ

(

R+ 4(∇φ)2 − H2

12

)

+ 2

∫

∂M

(

e−2φK −K0

)

]

. (5.3)

By using the equations of motion, the volume term SV can be written as a surface

term (see [28]):

SV = − 1

κ2

∫

∂M

n̂ · ~∇e−2φ. (5.4)

Note that
√
g has been absorbed into the surface measure of ∂M . Since we have separability

of sources in the limit of surfaces of infinite radius, we may therefore compute SV for a

single monopole configuration in three-space

e2φ = 1 +
m

r
,

gij = e2φδij ,
(5.5)

and simply add the contributions of an arbitrary number of sources. The contribution of

a single monopole to the static volume action is given by

SV = − 1

κ2
(
∂

∂r
e−2φ)A(M)

= −4πm

κ2

(5.6)

in the r → ∞ limit, where A(M) = 4πr2(1 +m/r) is the area of the boundary surface.
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We now turn to the GHST. A simple calculation of the extrinsic curvature K for a

single monopole configuration (5.5) gives

K =
2

r2
e−3φ(r +m/2). (5.7)

When the surface ∂M is embedded in flat space, the radius of curvature R is given by

R = reφ. The extrinsic curvature K0 is then given by

K0 =
2

R
=

2

r
e−φ. (5.8)

The GHST is therefore given by

SGHST = − 2

κ2r

(

e−5φ(1 +
m

2r
)− e−φ

)

A(M) =
12πm

κ2
(5.9)

in the r → ∞ limit.

The total static action for a multi-soliton configuration, equal to the total mass of

the solitons, can then be obtained by adding the static contributions to the action of the

volume part and the GHST. The result is

MT =
8π

κ2

N
∑

n=1

mn. (5.10)

For our multimonopole configuration, however, it should be noted that mn = 1/g for

n = 1, 2...N .

6. Dynamics of String Monopoles

We now consider the dynamics of the string monopoles. For this purpose, we adopt

two different methods. The first computes the Manton metric on moduli space for the

scattering of two string monopoles, while the second studies the motion of a test string

monopole in the background of a source string monopole. We will find that the two

methods yield consistent results.

Manton’s prescription[33] for the study of soliton scattering may be summarized as

follows. We first invert the constraint equations of the system. The resultant time depen-

dent field configuration does not in general satisfy the full time dependent field equations,

but provides an initial data point for the fields and their time derivatives. Another way

of saying this is that the initial motion is tangent to the set of exact static solutions. The
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kinetic action obtained by replacing the solution to the constraints into the action defines

a metric on the parameter space of static solutions. This metric defines geodesic motion

on the moduli space[33].

A calculation of the metric on moduli space for the scattering of BPS monopoles and a

description of its geodesics was worked out by Atiyah and Hitchin[34]. Several interesting

properties of monopole scattering were found, such as the conversion of monopoles into

dyons and the right angle scattering of two monopoles on a direct collision course[34,35].

The configuration space is found to be a four-dimensional manifold M2 with a self-dual

Einstein metric.

In this section, we adapt Manton’s prescription to study the dynamics of heterotic

string monopoles. A similar procedure was followed in [28] for the Manton scattering of

heterotic instantons. Indeed, many of the formal computations carry over from the instan-

ton computation. For the monopoles, however, the divergences plagueing the instanton

calculation are absent, thus rendering our task far simpler. In both cases, we follow essen-

tially the same steps that Manton outlined for monopole scattering, but take into account

the peculiar nature of the string effective action. Since we work in the low-velocity limit,

our kinematic analysis is nonrelativistic.

We first solve the constraint equations for the soliton solutions. These equations are

simply the (0j) components of the equations of motion (see [1,28])

R0j −
1

4
H2

0j + 2∇0∇jφ = 0,

−1

2
∇kH

k
0j +H0j

k∂kφ = 0.

(6.1)

Note that we use the tree-level equations of motion, as the higher order corrections in

α′ automatically vanish. We wish to find an O(β) solution to the above equations which

represents a quasi-static version of (3.1) (i.e. a solution of the form (3.1) but with time

dependent ~ai). In other words, we would like to give each source an arbitrary transverse

velocity ~βn in the (123) subspace of the four-dimensional transverse space and see what

corrections to the fields are required by the constraints. The vector ~an representing the

position of source n in the three-space (123) is given by

~an(t) = ~An + ~βnt, (6.2)

where ~An is the initial position of the nth source. Note that at t = 0 we have an exact

static multi-soliton solution. Our solution to the constraints will adjust our quasi-static
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approximation so that the initial motion in the parameter space is tangent to the initial

exact solution at t = 0.

The O(β) solution to the constraints is given by

e2φ(~x,t) = 1 +

N
∑

n=1

mn

|~x− ~an(t)|
,

g00 = −1, g00 = −1, gij = e2φδij , gij = e−2φδij ,

g0i = −
N
∑

n=1

mn
~βn · x̂i

|~x− ~an(t)|
, g0i = e−2φg0i,

Hijk = ǫijkm∂me
2φ,

H0ij = ǫijkm∂mg0k = ǫijkm∂k

N
∑

n=1

mn
~βn · x̂m

|~x− ~an(t)|
,

(6.3)

where i, j, k,m = 1, 2, 3, 4, the ~an(t) are given by (6.2) and we use a flat space ǫ-tensor.

Note that g00, gij and Hijk are unaffected to order β. Also note that we can interpret the

solitons as either line sources in the four-dimensional space (1234) or point sources in the

three-dimensional subspace (123).

The kinetic Lagrangian is obtained by replacing the expressions for the fields in (6.3)

into (5.3). Since (6.3) is a solution to order β, the leading order terms in the action (after

the quasi-static part) are of order β2. In the volume term of the action, O(β) terms in

the solution give O(β2) terms in the kinetic action. As explained in [28], the contribution

of the GHST to the kinetic action can be written in the form msβ
2/2 for each source,

and the contributions of the sources can be simply added. The GHST does not therefore

play an important role in the dynamics of the string monopoles, but merely serves to

give the correct total mass. Collecting all O(β2) terms in SV we get the following kinetic

Lagrangian density for the volume term:

Lkin = − 1

2κ2

(

4φ̇ ~M · ~∇φ− e−2φ∂iMj∂iMj − e−2φMk∂jφ (∂jMk − ∂kMj)

+ 4M2e−2φ(~∇φ)2 + 2∂2t e
2φ − 4∂t( ~M · ~∇φ)− 4~∇ · (φ̇ ~M)

)

,

(6.4)

where ~M ≡ −
∑N

n=1
mn

~βn

|~x−~an(t)|
. Henceforth let ~Xn ≡ ~x − ~an(t). The last three terms in

(6.4) are time-surface or space-surface terms which vanish when integrated. Note that the

13



kinetic Lagrangian has the same form as in [28]. The contributions of the GHST are again

simply flat kinetic terms.

In contrast to the instanton case, the kinetic Lagrangian Lkin =
∫

d3xLkin for

monopole scattering converges everywhere. This can be seen simply by studying the limit-

ing behaviour of Lkin near each source. For a single source at r = 0 with magnetic charge

m and velocity β, we collect the logarithmically divergent pieces and find that they cancel:

mβ2

2

∫

r2drdθ sin θdφ

(

− 1

r3
+

3 cos2 θ

r3

)

= 0. (6.5)

So unlike the instanton case, in which we were compelled to extract information from the

convergent interaction terms, in this case we can use the self-terms directly.

We now specialize to the case of two heterotic monopoles of magnetic charge m1 =

m2 = m = 1/g and velocities ~β1 and ~β2. Let the monopoles be located at ~a1 and ~a2.

Our moduli space consists of the configuration space of the relative separation vector

~a ≡ ~a2 − ~a1. The most general kinetic Lagrangian can be written as

Lkin =h(a)(~β1 · ~β1 + ~β2 · ~β2) + p(a)
(

(~β1 · â)2 + (~β2 · â)2
)

+ 2f(a)~β1 · ~β2 + 2g(a)(~β1 · â)(~β2 · â).
(6.6)

Now suppose ~β1 = ~β2 = ~β, so that (6.6) reduces to

Lkin = (2h+ 2f)β2 + (2p+ 2g)(~β · â)2. (6.7)

This configuration, however, represents the boosted solution of the two-static soliton solu-

tion. The kinetic energy should therefore be simply

Lkin =
MT

2
β2, (6.8)

where MT = M1 +M2 = 2M = 16πm/κ2 is the total mass of the two soliton solution. It

then follows that the anisotropic part of (6.7) vanishes and we have

g + p = 0,

2(h+ f) =
MT

2
.

(6.9)

It is therefore sufficient to compute h and p. This can be done by setting ~β1 = ~β and

~β2 = 0. The kinetic Lagrangian then reduces to

Lkin = h(a)β2 + p(a)(~β · â)2. (6.10)
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Suppose for simplicity also that ~a1 = 0 and ~a2 = ~a at t = 0. The Lagrangian density of

the volume term in this case is given by

Lkin =
−1

2κ2

(

3m3e−4φ

2r4
(~β · ~x)

[

~β · ~x
r3

+
~β · (~x− ~a)
|~x− ~a|3

]

− e−2φm2β2

r4

− e−4φm3β2

2r4

(

1

r
+
~x · (~x− ~a)
|~x− ~a|3

)

+
e−6φm4β2

r2

(

1

r4
+

1

|~x− ~a|4 +
2~x · (~x− ~a)
r3|~x− ~a|3

)

)

.

(6.11)

The GHST contribution to the kinetic Lagrangian can be simply added after integration

and will not affect the analysis below.

The integration of the kinetic Lagrangian density in (6.11) over three-space yields the

kinetic Lagrangian from which the metric on moduli space can be read off. For large a,

the nontrivial leading order behaviour of the components of the metric, and hence for the

functions h(a) and p(a), is generically of order 1/a. In fact, for Manton scattering of YM

monopoles, the leading order scattering angle is 2/b[36], where b is the impact parameter.

In this paper, we restrict our computation to the leading order metric in moduli space. A

tedious but straightforward collection of 1/a terms in the Lagrangian yields

−1

2κ2
1

a

∫

d3x

[

−3m4e−6φ1

r7
(~β · ~x)2 + m3e−4φ1

r4
β2 +

m4e−6φ1

r5
β2 − 3m5e−8φ1

r6
β2

]

, (6.12)

where e2φ1 ≡ 1 + m/r. The first and third terms clearly cancel after integration over

three-space. The second and fourth terms are spherically symmetric. A simple integration

yields

∫ ∞

0

r2dr

(

e−4φ1

r4
− 3m2e−8φ1

r6

)

=

∫ ∞

0

dr

(r +m)2
− 3m2

∫ ∞

0

dr

(r +m)4
= 0. (6.13)

The 1/a terms therefore cancel, and the leading order metric on moduli space is flat. This

implies that the leading order scattering is trivial. In other words, there is no deviation

from the initial trajectories to leading order in the impact parameter.

The above result is rather surprising and suggests that, in addition to the static force,

the leading order dynamic force also vanishes. For pure YMmonopoles, this is certainly not

the case. For the string monopoles, however, the dynamic YM force is precisely cancelled

by the dynamic gravity sector force.

To confirm this result, we employ the test-soliton approach of [37,38] to compute the

dynamic force exerted on a test string monopole moving in the background of a source
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string monopole. Again only the massless fields in the gravitational sector come in to play

at tree-level. Since the monopoles have fivebrane structure, we adopt the fivebrane action

of Duff and Lu[10,11]

Sσ5
=− T6

∫

d6ξ

(

1

2

√
−γγmn∂mX

M∂nX
NgMNe

−φ/6 − 2
√
−γ

+
1

6!
ǫmnpqrs∂mX

M∂nX
N∂pX

P∂qX
Q∂rX

R∂sX
SAMNPQRS

)

,

(6.14)

where m,n, p, q, r, s = 0, 5, 6, 7, 8, 9 are fivebrane indices and M,N, P,Q,R, S = 0, 1, ...9

are spacetime indices (transverse indices are denoted by i, j = 1, 2, 3, 4). γmn is a 5 + 1-

dimensional worldsheet metric, gMN is the canonical spacetime metric and AMNPQRS is

the antisymmetric six-form potential whose curl K = dA is dual to the antisymmetric field

strength Hαβγ.

The multimonopole solution written in this frame is given by

ds2 = e2Aηmndx
mdxn + e2Bδijdx

idxj ,

A056789 = −eC ,
(6.15)

where all other components of AMNPQRS are set to zero and the dilaton φ and the scalar

functions A, B and C are given by

A = −(φ− φ0)

4
,

B =
3(φ− φ0)

4
,

C = −2φ+
3φ0
2
,

(6.16)

where φ0 is the value of the dilaton field at infinity and

e2φ = e2φ0

(

1 +

N
∑

n=1

mn

|~x− ~an|

)

, (6.17)

where ~x and ~an are again vectors in the three-dimensional subspace (123) of the transverse

space (1234).

The Lagrangian for a test monopole moving in a background of identical static source

monopoles is given by substituting (6.15) in (6.14) and then eliminating the worldbrane

metric. The result is

L6 = −T6
[

√

− det(e−2φ/3+φ0/2ηmn + e4φ/3−3φ0/2∂mXM∂nXM )− e−2φ+3φ0/2

]

. (6.18)
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Since the test-monopole moves only in the (123) subspace of the transverse space

(there is no motion along or field dependence on the direction x4), (6.18) reduces in the

low-velocity limit to

L6 ≃ −T6
[

e−2φ+3φ0/2
(

1− 1
2e

2(φ−φ0)(Ẋ i)2
)

− e−2φ+3φ0/2
]

=
T6
2
e−φ0/2(Ẋ i)2 ,

(6.19)

where i = 1, 2, 3. Again both the static force and the nontrivial O(v2) velocity-dependent

force vanish. Hence this result also predicts trivial scattering, in direct agreement with the

flat Manton metric calculation.

7. Conclusion

In this paper, we have presented an exact multimonopole solution of heterotic string

theory. This solution represents a supersymmetric extension of the bosonic string multi-

monopole solution outlined in [12], and is obtained by a modification of the ’t Hooft ansatz

for a four-dimensional instanton. Exactness is shown by the generalized curvature method

used in [1,7,8,9] to obtain exact instanton solutions in bosonic and heterotic string theory.

Unlike the instanton solutions, however, the monopole solutions do not seem to be easily

describable in terms of conformal field theories, an unfortunate state of affairs from the

point of view of string theory.

An analogous multimonopole solution of the four dimensional field theory of YM

+ massless scalar field can be immediately written down. This solution possesses the

properties of a multimonopole solution (topology, far-field limit and Bogomoln’yi bound)

but has divergent action near each source. In the string solution, however, these divergences

in the YM sector are cancelled by similar divergences in the gravity sector, thus resulting

in a finite action solution. This finding is significant in that it represents an example of

how string theory incorporates gravity in such a way as to cancel infinities inherent in

gauge theories, thus supporting its promise as a theory of quantum gravity.

The cancellation between the gauge and gravitational sectors also influences the dy-

namics of the string monopoles. Indeed, we find from both a Manton metric on moduli

space calculation and a test string monopole calculation that the leading order dynamic

force between two string monopoles vanishes. This result implies trivial scattering between

string monopoles to leading order.
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