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Abstract: 

The manipulation of light by conventional optical components such as a lenses, prisms and 

wave plates involves engineering of the wavefront as it propagates through an optically-

thick medium. A new class of ultra-flat optical components with high functionality can be 

designed by introducing abrupt phase shifts into the optical path, utilizing the resonant 

response of arrays of scatters with deeply-subwavelength thickness. As an application of 

this concept, we report a theoretical and experimental study of birefringent arrays of two-

dimensional (V- and Y-shaped) optical antennas which support two orthogonal charge-

oscillation modes and serve as broadband, anisotropic optical elements that can be used to 

locally tailor the amplitude, phase, and polarization of light. The degree of optical 

anisotropy can be designed by controlling the interference between the light scattered by 

the antenna modes; in particular, we observe a striking effect in which the anisotropy 

disappears as a result of destructive interference. These properties are captured by a 

simple, physical model in which the antenna modes are treated as independent, 

orthogonally-oriented harmonic oscillators.   

 

 

Introduction    

The general function of optical devices consists of the modification of the wavefront of light by 

altering its phase, amplitude, and polarization in a desired manner. The class of optical 

components with a varying phase retardation includes lenses, wave plates, spiral phase plates [1], 

axicons [2], and more generally spatial light modulators (SLMs), which are able to imitate many 

of these components by means of a dynamically tunable spatial response [3]. All of these 

conventional optical components rely on gradual evolution of phase, amplitude, and polarization 

as the wave propagates through an optically-thick medium. The introduction of abrupt phase 

changes into the optical path by using the resonant behavior of plasmonic nanostructures allows 

one to achieve control over the wavefront without relying on gradual phase accumulation [4]. 

This approach is now enabling the design of various new optical devices which are thin 

compared to the wavelength of light [5, 6, 7].  
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Our previous work on phase discontinuities involved spatially-inhomogeneous configurations of 

V-shaped optical antennas [4, 5, 7]. Here, we report that homogeneous arrays optical antennas 

supporting two independent and orthogonally-oriented current modes operate as highly 

birefringent meta-surfaces. We consider arrays of V-shaped antennas, creating a connection with 

our previous work, and Y-shaped antennas in which the anisotropy can be widely tailored or 

extinguished via interference between the scattered light from the two current modes. A simple, 

analytical two-oscillator model for two-dimensional (2D) optical antennas is developed which 

captures the physics of these antennas and provides an intuitive way to understand how 

engineering of the amplitude and phase of the scattered light provides control over the optical 

anisotropy of the meta-surface.  

Two-dimensional optical antennas as double oscillators    

The optical response of surface plasmons in confined structures such as linear optical antennas is 

well described in terms of a charge-oscillator model that includes the effects of forcing by the 

incident electric field, internal damping, and radiation reaction [8]. Of particular interest for this 

study are 2D optical antennas because they support orthogonal, independent current modes. By 

controlling their dimension and shape, their inherent optical anisotropy can be tailored over a 

broad range. In this section, we develop an extension of the charge-oscillator model for V-shaped 

optical antennas, which can serve as elements of birefringent meta-surfaces. Examples of other, 

previously investigated 2D plasmonic structures which support orthogonal modes include 

asymmetric cross antennas [9], L-shaped nanoparticles and antennas [10, 11], split rings [12], 

and rectangular patch antennas [13]. 

Treating the two plasmonic modes as independent harmonic oscillators, the combined system 

can be represented as a charged mass on two orthogonally-oriented springs (schematics in Fig. 

1(a, b)). The two oscillators are oriented along x and along y, respectively, with the incident light 

propagating along z and its electric field oriented along an axis w, which lies in the x-y plane at 

an angle θ from the y-axis (Fig. 1(c)). For a charged, driven oscillator oriented along the x-axis, 

the complex amplitude )(x ω  of the displacement from the equilibrium position, assumed to be 

harmonically varying as )(x ω tie ω
, can be written as [8]:  



4 

 

 
0,

0,
2 2

0, , ,
2

( ) (

( ) (

)

)

x
x

x
x

x a x s x
x

q
E

m
x x E

i
m

ω ω
ω

ω ω ωΓ + Γ
= =

− +
ɶ  (1) 

where xq is the participating charge, xm  is the mass, 0 , xω is the resonant frequency, and ,a xΓ  and 

,s xΓ  are the damping coefficients representing absorption and scattering, respectively. The field 

emitted by the oscillator , )(s xE ω  can be written as  

 2
, ,) ( .( )( )s x x s xE xDω ω ω= − Γr  (2) 

In Eqn. 2, ( )xD r contains the angular and radial dependence of the emitted field. The exact form 

of ( )xD r depends on the specific geometry of the oscillator and the surrounding environment, but 

in the limit that the oscillator element is small relative to the wavelength of light, ( )xD r  is simply 

the emission pattern of a radiating electric dipole [see Supplementary Information]. The 

expressions for the y-oscillator ( ),  (( )y yω ωɶ and , )(s yE ω ) are analogous to that of the x-oscillator.  

In general, light is scattered by the two-oscillator element into some elliptical polarization. 

Deliberate engineering of this polarization state offers intriguing prospects, but remains outside 

of the scope of this work. Instead, we focus on light scattered into the polarization state along the 

v-axis in Fig. 1(c), which is the cross-polarized direction relative to the incident light. The 

polarization conversion efficiency is a direct measure of the degree of anisotropy of the 2D 

plasmonic antenna, and can be easily isolated by filtering out light with the incident polarization 

with a linear polarizer. This cross-polarized configuration is also critical for the design of planar 

optical components, as it extends the phase coverage of the scatterers to cover a full 2π range [4]. 

Given an incident field polarized along ŵ , (Fig. 1(c)), we calculate the component of the emitted 

field polarized along the v-direction , )( .s vE ω We can break up this polarization-conversion 

process into two steps: the in-coupling of incident light into the two oscillator modes, and the 

out-coupling of cross-polarized light. The in-coupling process involves the projection of the 

incident field along the two oscillator modes, which can be expressed as 0, 0 0ˆ ˆ sin( )x E w x EE θ= ⋅ =
 

and 0, 0 0ˆ ˆ cos( )y E w y EE θ=⋅= . For the out-coupling process, we project the field scattered by each 

oscillator onto the v-axis to arrive at 
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 2
, , 0,ˆ ˆ ( ) ) )( cos(s x x s x xE v x D x Eω ω θ⋅ Γ= − r ɶ  (3) 

 2
, , 0,ˆ ˆ ( ) ( s) )in(s y y s y yEE v y D yω ω θΓ⋅ = r ɶ  (4) 

After summing these projections, the total cross-polarized field emitted by the structure ,s vE can 

be written as 

 
0 2

, , ,( ( ) sin(2 ( ()
2

) ) )s v s x s y
iE

E D x e yπω θ ω ω ω = + Γ Γr ɶ ɶ  (5) 

where we assumed that ( ) ( ) ( )x yD D D≈ =r r r , which is true for light emitted approximately normal 

to the orientation of the two oscillators. Eqn. (5) provides a complete description of the 

generation of cross-polarized light by our two-oscillator system. The intensity 
2

, )(s vE ω and phase

( )φ ω of the cross-polarized light ( )
, ,( ( () ) )i

s v s vE E e φ ωω ω=
 
are plotted in Fig. 1(d, e). The specific 

parameters , ,, 0, , m , a i s i i iωΓ Γ ( , )i x y∈  for the two oscillators used in generating Fig. 1(d, e) 

correspond roughly to the modes of a typical isolated V-shaped antenna [see Supplementary 

Information].  

The phase of the cross-polarized light generated by our two-oscillator element (black curve in 

Fig. 1(e)) is able to span twice the range of phase of either single oscillator (blue or pink), even 

though the two oscillators are uncoupled and operate independently. This phase extension, which 

can be seen as the ie π  term in Eqn. (5), is due to the fact that the projections of the scattered 

fields from the spatially-overlapped x- and y-oriented oscillators onto the v-axis are opposite in 

phase (Fig. 1(c) and Eqns. (3) and (4)). This is shown graphically in Fig. 1(e) as a shift of the 

intrinsic phase response of the x-oscillator (blue curve) down by π. As a result, this two-

oscillator system is able to provide a much larger phase coverage in cross-polarization while 

maintaining a significant scattering amplitude. The use of two spectrally-separate resonances as 

in Fig. 1 allows one to broaden the frequency range over which there is significant polarization 

conversion (Fig. 1(d)), creating broadband optical anisotropy.  

Eqn. (5) encodes the θ-dependence of the polarization conversion properties with the sin(2θ) 

term. No cross-polarized light is generated for θ = 0˚ or 90˚ when the incident field is aligned 

along one of the two orthogonally-oriented oscillators, and maximum polarization conversion is 

obtained for θ = 45°. Due to the sin(2 )θ  dependence, a rotation of the structure by 90˚ maintains 
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the amplitude of cross-polarized scattering while adding an extra phase of π to the scattered light. 

This feature of double-oscillators allows for the same element to scatter with phase φ and φ + π, 

simply by applying a 90˚ rotation ( ' 90  in Eqn. (5))θ θ= + � , and was used in [4] to generate 8 

distinct phase elements from four V-shaped antennas.   

The intensity and phase response of cross-polarized scattered light in Fig. 1(d, e) is given as a 

function of wavelength (or, equivalently, frequency) for a fixed set of oscillator parameters. 

However, a careful analysis of Eqn. (1) leads to an alternative approach; since Eqn. (1) depends 

on 2 2
0( )ω ω− , one can plot the amplitude and phase response of an oscillator as a function of 0ω  

for a fixed frequency ω . This method of analyzing the behavior of oscillators is required for the 

design of phase elements for single-frequency optical components [4, 5, 14]. These two 

approaches are complementary; if wide tunability of the phase response for a fixed oscillator (or 

set of oscillators) is achieved as a function of frequency, then it can likewise be achieved for a 

fixed operating frequency by exploring the parameter space of the oscillator. 

Broadband spectral and polarization-conversion properties of V-antenna arrays  

To experimentally characterize the birefringent properties of meta-surfaces based on V-shaped 

antennas, we performed mid-IR spectral measurements of arrays fabricated by electron-beam 

lithography (see SEM in Fig. 2) using a Fourier transform infrared (FTIR) spectrometer. In Fig. 

2(a, b) we plot the measured (1 - T) spectra, where T is the transmission through arrays of V-

shaped gold antennas (L ≈ 650 nm, w ≈ 130 nm, Si substrate) for opening angles ∆ from 45° to 

180° at normal incidence. The quantity (1 - T) corresponds to the sum of the scattering and 

absorption spectra, and is sometimes referred to as extinction. The incident polarization was 

fixed along the x- and y- directions in (a) and (b), respectively. 

The (1 - T) spectra peak around the resonance frequencies of the antenna modes, and the 

expected small differences between the spectral locations of the scattering and absorption peaks 

[8] are obscured by the inhomogeneities of the arrays. The first order approximation of the 

locations of the two peaks yields 0, 2 3.4x effLn mλ µ=≃  and 0, 4 6.8y effLn mλ µ=≃ , taking neff as 2.6 [4]. 

The measurements yield slightly different values 0, 0,3.7 6(  and  for  = 90 , e.g.)x ym mλ µ λ µ ∆ �
≃ ≃

 due to 

the non-zero thickness and width of the antennas, coupling between neighboring elements, and 

the presence of native oxide on the silicon surface (~2 nm as measured by ellipsometry), which 
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is also responsible for the sharp feature at ~8 - 8.5 µm [15, 16] [See supplementary information]. 

The spectral position of the resonances shifts with varying ∆ due to near-field interactions 

between the two arms, which are strongest for small ∆. In Fig. 2(c), we plotted the power of the 

generated beam in cross-polarization, normalized to the incident light, when the polarization is 

along θ = 45°, where θ is defined in Fig. 1(c). As expected, the polarization conversion 

efficiency peaks in the 3 µm – 8 µm range, in the vicinity of the antenna resonances. In Fig. 2(d), 

we plotted the line scans of Figs. 2(a - c) for ∆ = 90°, indicated by the white dashed lines. The 

small, irregular oscillations between ~4.5 µm and ~7.5 µm correspond to atmospheric absorption 

from ambient water vapor. The corresponding finite-difference time-domain (FDTD) simulations 

are shown in Fig. 2(e). Note that our choice of ∆ = 90° is purely arbitrary and one can generate 

similar plots for any opening angle. Additionally note that in the experiment a finite, 280 µm 

thick double-side polished silicon substrate is used; however, it is computationally intensive to 

include this large, finite slab in the simulations due to the high resolution required to model the 

nanoscale antennas. The polarization-conversion result shown as the black curve in Fig. 2(e) is a 

result of such a complete simulation and matches very well the experimental measurements, but 

all of the other simulations presented in this article are performed using an infinite silicon 

substrate. [see Supplementary Information for more details, as well as for simulations 

corresponding to Fig. 2(a-c)]. 

In Fig. 2(f), we plot the measured polarization-conversion efficiency at λ = 4µm (wavelength 

chosen to be away from the atmospheric absorption resonances) as a function of θ. The error bars 

account for polarizer misalignment ∆θ and spectrometer noise. The data was fit to 2sin ( )2A Cθ +  

to account for the θ-dependence of Eqn. (5) and some offset due to imperfect cross-polarization 

extinction of our polarizers (black curve). Since within the 0 – 90˚ range, the θ-dependence only 

affects the amplitude of  ,s vE , θ can be used as a degree of freedom to control the cross-polarized 

scattering amplitude without altering its phase response (for example, simply rotating the 

individual elements of a planar optical component such as the vortex plates in ref. [5] allows for 

independent amplitude control of each antenna, enabling the creation of a simultaneous 

amplitude and phase plate). The phase of the cross-polarized light (which is independent of θ) is 

calculated via FDTD simulations, and plotted as the black curve in Fig. 2(g). As in Fig. 1(e), the 

brightness of the curve encodes the intensity of the scattered light.  
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While the intensity and phase response in Fig. 2(d, e, g) is given as a function of wavelength, a 

complementary plot can be made keeping the wavelength constant and sweeping across the arm 

length L because the resonant wavelengths of both oscillator modes 0,xλ  and 0, yλ  depend linearly 

on L, though an extra scaling factor has to be introduced in the near-IR and visible regimes [17]. 

It is much more difficult to generate such plots because a new sample has to be fabricated and 

measured (or simulated) for every possible value of L; however, the Supplementary Information 

includes approximate intensity and phase response maps for V-antennas as a function of 

geometrical parameters L and ∆, keeping the frequency constant. 

Tailorable optical anisotropy via interference in Y-shaped antennas 

The spectral position of V-antenna resonances can be tuned by varying the arm length L and, to a 

smaller extent, by adjusting the opening angle ∆ (Fig. 1(a, c)). However, both of these 

simultaneously shift the resonance frequencies of the x-oriented (symmetric) and y-oriented 

(antisymmetric) modes of the antenna. By appending a "tail" of length LT to the V-antenna as 

shown in Fig. 3(a), an additional degree of freedom is attained that allows for independent tuning 

of the spectral position of the x-oriented mode. By increasing LT, the x-oriented mode is red-

shifted without affecting the y-oriented mode. We fabricated these Y-shaped antennas on a 

silicon substrate, with an SEM image of the structures shown in Fig. 3(a). The x- and y-oriented 

modes are  identified in Fig. 3(b, c), respectively, for 4 different values of LT, by measuring the 

reflectivity spectra from arrays of these antennas. The x-oriented mode increases in resonant 

wavelength and amplitude as LT increases, because the effective antenna length is increasing, 

increasing ,,  ,  and x x s xq m Γ  and decreasing 0 , xω  (Fig. 3(b)). The y-oriented mode is not perturbed by 

this tail section, so all of the reflectivity curves in Fig. 3(c) overlap.  

The polarization conversion efficiency due to the Y-antennas is plotted in Fig. 3(d) as a function 

of wavelength, given incident polarization along 0 ˆE w  for θ = 45° as in Figs. 1 and 2, such that the 

projections of the incident field along the two antenna modes are equal, which maximizes the 

conversion. There is a substantial amount of polarization conversion for 

100 ,  300 ,  and 700T nm nmL nm≃  (red, black, and blue curves, respectively). However, for 500TL mn≃  

(green curve), the polarization conversion is almost completely extinguished. FDTD simulations 

corresponding to Fig. 3(b-d) are shown in Fig. 3(f-h), and demonstrate the same behavior as in 
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the measurements (unlike the simulations in Fig. 2(b) and (d), we did not include the native 

oxide layer in the simulations as it detracts from visual clarity, so the feature at λ ~ 8 µm is not 

reproduced in these simulation results). The origin of this effect can be interpreted as destructive 

interference between the contributions to the cross-polarization generation from the two 

oscillator modes. As illustrated in Fig. 3(e), the incident field excites both the x-oriented and y-

oriented modes of the Y-antenna, each of which contribute to the cross-polarized field. However 

the projections of the scattering of the x- and y-oriented oscillators onto the v-axis are opposite in 

phase (Fig. 1(c)), which results in an additional dephasing of π between the two contributions 

( ie π term in Eqn. (5)).  

When the two oscillators are nearly identical in their individual amplitude and phase response (as 

is the case for 500TL mn≃ ), their contributions to the polarization conversion efficiency are π out 

of phase, resulting in destructive interference [see Supplementary Information for a detailed 

discussion]. The observed imperfect extinction and line shape asymmetry are a result of the two 

eigenmodes in our experiment being not completely identical in linewidth, amplitude, and 

resonance frequency. In this way, Eqn. (5) explains that any structure with, for example, three-

fold (C3) or four-fold (C4) rotational symmetry cannot be used for polarization conversion, and is 

therefore isotropic. Conversely, arrays of resonant structures which support two unequal 

eigenmodes can be viewed as meta-surfaces with giant birefringence since they can rotate the 

polarization of light over a thickness of just ~50 nm at mid-IR wavelengths. Such birefringence 

arising due to structural anisotropy instead of intrinsic crystal properties of a material is 

sometimes referred to as "form birefringence" in literature (see, e.g., [9, 11, 18-22]). Conversely, 

arrays of C3-symmetric structures including Y-shaped antennas with equal arms (and ∆ = 120°) 

and nanoparticle trimers [23] have an isotropic in-plane response [24], and thus have no 

polarization-converting properties. We note that resonant metallic structures which exhibit large 

optical activity have been explored in the literature (e.g. [25-26]), and serve as the circular-

polarization equivalents to the birefringent metallic structures demonstrated in this work. 

Conclusion 

We showed that an optical element consisting of two orthogonally-oriented uncoupled oscillators 

possesses widely-tailorable optical anisotropy, and is able to independently control the phase and 

amplitude of light scattered into the cross-polarization. To demonstrate this concept, we utilized 
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the double resonances of V- and Y-shaped plasmonic antennas. The properties of these 

resonances are controlled by changing the opening angle and length of the arms of both the V- 

and Y-shaped antennas. While the Y-shaped antennas have a larger geometrical footprint than 

their V counterparts, they allow for more direct tailoring of the two eigenmodes and thus are 

more flexible components of anisotropic interfaces. The phase response of the individual modes 

in Y-shaped antennas was experimentally investigated via an interference experiment, in which 

the polarization conversion was extinguished by destructive interference between the 

contributions from two nearly-identical oscillator modes. Arrays of these antennas form meta-

surfaces with widely tailorable birefringence. 

The approach of molding waves with both uniform and spatially-varying arrays of antennas is 

applicable to a large part of the electromagnetic spectrum from radio frequencies to the 

ultraviolet. The possibility of using other optical oscillators, such as quantum dots, nanocrystals, 

resonant molecules or metamolecules is promising for creating isotropic or birefringent optical 

phase and amplitude elements with deeply-subwavelength dimensions, reduced losses and 

dynamic tunability.  

Methods 

Fabrication 

The antenna arrays were fabricated on high resistivity (> 10,000 Ω-cm) double side polished 

silicon using a conventional electron-beam (e-beam) lithography process with lift-off. A double 

layer of poly(methyl methacrylate) (PMMA) resist (495A4, then 950A2, MicroChem) was spun 

at 4000 RPM onto the silicon wafer, baked at 120°C, and then exposed using a 100 kV e-beam 

system (Elionix ELS-7000). After development with 3:1 isopropanol (IPA) : methyl isobutyl 

ketone (MIBK), 10 nm of titanium and 40 nm of gold was deposited using e-beam evaporation, 

and the lift-off process was completed in acetone with ultrasonic agitation. For SEM images of 

the resulting structures, see Fig. 2(a), in Fig. 3(a) as well as the Supplementary Information. 

Measurements 

The transmission and polarization conversion measurements were performed using a Bruker 

Vertex 70 FTIR spectrometer connected to a Hyperion 2000 mid-IR microscope. A linearly 
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polarized Globar source is used, and the beam is focused onto the sample and then collected in 

transmission mode using two 15X objectives (NA = 0.4). An additional polarizer was placed 

between the sample and the outcoupling objective for the polarization conversion measurements 

and is used to isolate the scattered light into the cross-polarization. For transmission 

measurements, the measured signal through V- and Y-antennas on a Si substrate was normalized 

to the transmission through the Si substrate alone. For polarization conversion measurements, the 

normalization reference was taken by doing a transmission measurement through the bare Si 

substrate with both polarizers aligned. The uncertainty in the measurement of the spectrum away 

from atmospheric noise was ~3%, and the uncertainty in θ (polarizer alignment) was ~2°. These 

uncertainties were combined using standard error propagation to obtain the error bars in Fig. 2(c). 

Simulations 

The FDTD simulations were performed using Lumerical Solutions FDTD running on a 

workstation. For Fig. 2(b, d), the transmission and cross-polarization properties of V-antenna 

arrays were simulated by using periodic boundary conditions to define a single repeating unit cell 

of (1 µm x 1 µm), each containing a single antenna. A broadband plane wave was launched from 

the silicon side to illuminate the antenna array. The phase response in Fig. 2(d) was obtained by 

performing a near- to far-field transform and looking at a point 1 meter above the antenna array 

in a direction normal to the surface. The phase response was calculated as the phase of the field 

at that point less the phase accumulated by the plane wave via propagation through the silicon 

slab and the air above the array. For Fig. 3(f-h), the simulations of the Y-antennas were done by 

defining a 3 x 3 array of antennas at a spacing of 1.7 µm x 1.7 µm, and using a total-field 

scattered-field (TFSF) plane wave source with perfectly matched layer (PML) boundary 

conditions [See Supplementary Information for more details]. 
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Figures 

Fig. 1 (a) Charge-oscillator model of a two

m is the inertial mass.  (b) A metallic V
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Fig. 2 (a, b). Color maps showing the measured extinction (defined as 1 - Transmission) spectra 

through arrays of lithographically-defined V-antennas (L ~ 650 nm, ∆ from 45° to 180°) for x- 

and y-oriented incident polarizations, respectively. (c). Color map showing the polarization 

conversion efficiency spectra corresponding to (a, b) when the incident field is polarized at a θ = 

45° angle between both principle axes. (d). Blue and pink curves are the measured extinction 

through the V-antenna array with ∆ = 90° for the x-oriented (blue) and y-oriented (pink) incident 

polarization for every antenna. The black curve is the polarization conversion efficiency from the 

array for θ = 45°. All three curves correspond to line scans of (a-c), shown by the white dashed 

line. (e). FDTD simulations corresponding to the curves in (d), with the dashed curves 

representing simulations with an infinitely thick substrate and the solid black curve representing 

the calculated polarization-conversion efficiency when the finite (280 µm) thickness of the 

substrate is accounted for. (f). Measured polarization conversion efficiency at λ = 4 µm plotted 

vs. the incident polarization angle θ (blue symbols) and a fit to a 2sin (2 )θ
 dependence as 

predicted by Eqn. (5). The calculated correlation R is 0.997. (g). Phase response of the cross-

polarized light generated by the antennas as calculated by FDTD (black). The blue and pink 

curves represent the phases of the contributions from the symmetric and antisymmetric modes, 

respectively. Brightness of the phase curves indicates the intensity of the scattered light. (h). 

SEM image of the ∆ = 90° V-antenna array and the coordinate system. 
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Fig. 3 Y-shaped plasmonic antennas. (a) SEM image of the antenna array. (b, c) Measured 

normal-incidence reflectivity spectra of the x- and y-oriented antenna modes, respectively, as a 

function of tail length LT, which varies from 100 nm to 700 nm by increments of 200 nm (see 

legend in upper panel). The reflectivity of the bare silicon substrate is ~0.3. The vertical dashed 

line shows that for 500TL nm≃  (green curves), the x- and y- oriented resonances are overlapping. 

The arrows indicate the polarization of the incident field. (d) Polarization conversion spectrum 

with θ = 45°, with the incident and measured polarizations indicated with arrows. The 

polarization conversion is nearly extinguished for one intermediate value of LT (green). (e) 

Diagram explaining the extinguishing of polarization conversion due of destructive interference 

between contributions of the two antenna modes when LT is adjusted such that the two oscillator 

modes have the same resonant response. (f-h) FDTD simulations corresponding to the 

measurements in (b-d). The native oxide layer was not included in the simulations for visual 

clarity.  
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SEM images of fabricated structures  

Scanning electron microscope (SEM) images of the V- and Y-shaped antennas we fabricated are 

shown in the inset of Fig. 2(a), in Fig. 3(a), and in Fig. S1.  

 

Fig. S1. SEM images of gold V-shaped antennas fabricated on a silicon substrate with opening 

angle (a) ∆ = 45°, (b) ∆ = 75°, (c) ∆ = 90°, and (d) ∆ = 120° 

 

Simulations of V-antenna arrays 

In Fig. S2, we map the two modes of the V-antennas in the antenna arrays as a function of both 

wavelength and changing angle ∆ from 45° to 180° by showing the measured (a-c) and 

calculated (d-f) transmission spectra. The (a) and (b) panels correspond go Fig. 2(a, b) in the text. 

The orientation of the incident polarization is shown in the upper right corner. Fig. S2 (a) and (d) 

correspond to excitation of only the x-oriented symmetric antenna mode, whereas (b) and (e) 

correspond to the y-oriented antisymmetric mode, and (c) and (f) shows both excited modes. All 

of the experimental spectra are reproduced very well in simulations, including the feature at 8-

9µm due to a phonon resonance in the native silicon oxide layer which is enhanced by the strong 

local fields formed around the metallic antennas. In Fig. S2 (b) and (e), a higher order antenna 

mode is clearly visible at λ0 ~ 3 µm for large ∆. 

The resonant properties of the two modes of V-shaped plasmonic antennas (Fig. 1(b)) are 

associated with the length L of one of the antenna arms, and the combined length 2L, 

respectively. Changing the angle ∆ at which the arms are oriented changes the radiative losses 
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,s iΓ of the oscillators ( { , })i x y∈ , with ,s xΓ
 increasing as ∆ decreases due to the greater overlap of 

the incident field with the x-oscillator and ,s yΓ decreasing due to the reduced overlap with the y-

oscillator.  

 

 

Fig. S2 Mapping the two V-antenna eigenmodes corresponding to the two-oscillators. (a-c) 

Measured transmission spectrum through the V-antenna arrays at normal incidence as a function 

of wavelength (horizontal axis) and angle ∆ (vertical axis) for fixed arm length L = 650 nm. The 

incident light is polarized (a) along the symmetry axis of the antennas, (b) orthogonal to the 

symmetry axis, and (c) at a 45° angle. (d-f) FDTD simulations corresponding to the experimental 

spectra in (a-c), respectively. The feature at λ = 8 - 9 µm is due to the phonon resonance in the 

~2 nm native oxide. The horizontal lines represent the line scans taken to obtain Fig. 2 in the 

main text. 

We re-plotted the polarization conversion spectral map from Fig. 2(c) in Fig. S3(a). The 

corresponding FDTD simulation is shown in Fig. S3(b), and retains the same features as the 

experiment, though the simulated polarization conversion spectrum is more clearly broken up 

into two resonances. The experimental data shows less of this separation due to inhomogeneous 

broadening in the experiment due to fabrication imperfections. The simulated phase of the 

scattered light is plotted in Fig. S3(c). 
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Fig. S3 (a,b) Experimental measurements (a) and FDTD calculations (b) of the cross-polarized 

scattering for the V-antenna arrays in Fig. 2. The arrows indicated the polarization of the incident 

and output (collected) light. (c) Calculated phase of the cross-polarized light where in the 

spectral region where scattering efficiency is high (box enclosed by dashed lines). The horizontal 

lines represent the line scans taken to obtain Fig. 2 in the main text. 

Comment on the simulations of Y-antennas 

The inter-antenna spacing was increased due to the increased geometric footprint of the Y-

antennas relative to the V-antennas, and the 3 x 3 array was used instead of the infinite array to 

avoid observing a Rayleigh-Wood anomaly feature [S1, S2], which is not present in our 

experiment due to the finite size of our arrays, inhomogeneous broadening effects, and the finite 

size of our beam. We previously performed such small-array simulations of plasmonic arrays in 

[S3]. 

The oscillator models of plasmonic antennas 

As shown in [7], an optical antenna (or any localized plasmonic resonance) can be treated as a 

driven harmonic oscillator with two damping terms -- the first due to internal absorption via free 

carrier absorption in the metal (as well as any other optical losses due to the surrounding 

dielectric), and the second due to emission of light into free space (scattering). In the case of this 

paper, our elements contain two independent, orthogonal plasmonic modes, each of which we 

treat as a damped, driven harmonic oscillator. In this section, we re-state and elaborate on some 

of the results from [7] that are relevant to this work, leaving off the x- and y- subscripts because 

the x- and y- oscillators can be treated independently, and using x as the position variable. 
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A single plasmonic mode can be modeled as a charge q located at x(t) with mass m on a spring 

with spring constant κ . The charge q and mass m are, roughly speaking, the charge and the mass 

of the conduction electrons which interact with external driving and scattered fields. The 

oscillator equation can be written as  

 
2 3
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2 3

i t
a s

d x dx d x
m e

dt dt dt
x qE ωκΓ = Γ+ + +  

with internal damping coefficient aΓ  and radiation damping coefficient 2 3
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where 0 /k mω = . The time-average scattered power )(sP ω  can be written as  

 
2

4( .) )(s sP xω ω ω= Γ  

The scattered electric field from the oscillator is polarized along the x-direction and can be 

written as  

 2) ( )( ).(s sE xDω ω ω= − Γr  

( )D r  contains the angular and radial dependence of the emitted field, which changes 

significantly with the geometry of the oscillator. If the oscillator is very small relative to the 

wavelength of light, ( )D r has the angular dependence of a radiating electric dipole. When located 

in vacuum, ( )D r  is proportional to sin( ) / rφ , where φ  is the polar angle from the dipole axis and 

r is the distance from the dipole [S4]. However, as the oscillator size approaches the scale of the 

wavelength, ( )D r  becomes significantly more complex. In a forthcoming paper [S5] we show 

that for V-shaped antennas such as the ones studied in Figs. 2 and 3 both the amplitude and 

phase response vary as a function of far-field angle, making ( )D r in general complex-valued. 

( )D r  follows the following: 
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where dΩ  is the solid angle, and S is any surface which encompasses the scattering element.  

Furthermore, in practical realizations of meta-surfaces based on plasmonic oscillators, the 

elements are typically fabricated on a substrate, such that they are surrounded by two half-spaces 

with differing dielectric properties. This further alters the emission pattern [S5, S6].   

Note regarding the charges qx and qy 

In Eqn. (1), it is stated that qx is the total charge participating in the x-oriented oscillation 

behavior. Correspondingly, qy is charge involved in the y-oriented oscillation. Note that for any 

asymmetric plasmonic particles, qx will not in general be equal to qy. This is best illustrated in 

the Y-antennas in Fig. 3(e). As the tail length LT is altered, more charges participate in the x-

oriented oscillation, so qx changes, while qy remains unchanged.  

Obtaining parameters for Eqn. 1 by fitting to simulations 

In order to obtain the parameters used to generate Fig. 1 in the main text, we fit the scattering 

spectra of the two orthogonal antenna modes as calculated by FDTD simulations to Eqns. (1) and 

(2) in the main text. An isolated gold antenna with ∆ = 90° and L = 650 nm and sitting on a 

silicon substrate is used in the scattering simulations. The resulting fits are shown in Fig. S4 for 

the symmetric mode (a) and the antisymmetric mode (b).  

Since the internal losses of antennas at these wavelengths are approximately an order of 

magnitude smaller than the scattering losses [4], we assumed here that they were negligible, 

reducing the number of fitting parameters. The resulting values are 

14 1 14 1
0, 0,, 5.18 , 10 2.67 10x ys sω ω− −= × = × , ,/ 0,  / 0,a x x a y ym mΓ = Γ = 16 1

, ,
610 s, / 13 / 10.4 10 s,s x x s y ym m− −Γ = Γ ×=×

with ( / ) / ( / ) 1.18.x x y yq m q m = Note that only relative values are given for the charge and mass 

parameters as the data in Figs. 1(d) and S4 is in arbitrary units.  

The simulations (blue dots) and the resulting fit (black line) match up very well. 
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Fig. S4 Scattering spectra from the symmetric (a) and antisymmetric (b) mode of an isolated 

gold V-shaped antenna (∆ = 90° and L = 650 nm) on a silicon substrate as calculated by FDTD 

simulations (blue dots). The black curve shows the fit of Eqns. (1) and (2) to the simulation 

results.  

Discussion on dispersion and Q-factors 

Fundamentally, the phase and amplitude control over the cross-polarized scattered light (and thus 

the optical anisotropy) offered by our two-oscillator system is due to the dispersive nature of the 

oscillators, corresponding to a significantly reduced speed of light. The geometry and type of 

oscillator can be used to obtain significant control over the dispersion and speed of light at the 

oscillators (e. g. [S7, S8]). The oscillators presented here have relatively low quality factors, 

corresponding to broad linewidths and relatively low dispersion. For the general design of phase 

and amplitude components with oscillator elements, the resonances must be sufficiently narrow 

to achieve a significant phase coverage yet sufficiently broad to enable broadband operation. 

Furthermore, more broad resonances allow for greater tolerances for practical device 

implementation. The relatively low Q-factors of optical antennas offer a good compromise.  

Additional Y-antenna measurements 

The measurements shown in Fig. 3(b-d) were also performed for Y-antennas with multiple 

angles ∆, although data for only one angle was presented in Fig. 3. In Fig. S5, we summarize the 

experimentally-measured resonant wavelengths of the x-oriented (circles, dashed line) and y-

oriented (squares, solid line) oscillator modes for values of ∆ from 60° to 120°. The extinction of 

polarization conversion due to destructive interference occurs whenever the two modes overlap 

in spectrum (i. e. when the solid and dashed lines cross).  
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Fig. S5 Experimental mapping of the resonance wavelength of the x-oriented and y-oriented 

oscillator modes of Y antennas for various opening angles ∆ as a function of the tail length LT. 

The resonance wavelength is calculated by taking the peak of the reflectance for each antenna 

geometry as a function of wavelength.  

Interference in polarization conversion  

In Section 3 of the main text, we made the claim that the extinguishing of polarization 

conversion in certain Y-shaped antennas is due to destructive interference between the two 

oscillator modes. In this supplementary section, we use the model developed in Section 1 to 

demonstrate how the polarization conversion efficiency evolves with various parameters for the 

two oscillator modes.  

In Figs. S6 and S7 we plot the intensity and phases of light scattered into the cross-polarization 

by a two oscillator element following the same convention and coordinate systems as Figs. 1 and 

2 in the main text. The blue and pink curves represent the polarization conversion intensity due 

to the x- and y-oriented modes, respectively, while the black curve represents the total 

polarization conversion intensity from the two-oscillator element, which includes the 

interference between the two independent contributions.  

In Fig. S6(a), we plot the polarization conversion contributions from two identical orthogonal 

oscillators, with resonant wavelengths around 5 µm. Note that the blue and pink curves are 

overlapping exactly. The phase response of these two contributions to the polarization 

conversion is show in Fig. S6(d). There is a π phase difference between the two curves across all 
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wavelengths; this is a graphical representation of the ie π  term in Eqn. 5 and is due to the fact that 

the projections of the x- and y- oscillators onto the v-axis in Fig. 1 are exactly out of phase. As a 

result, the two contributions completely destructively interfere, and therefore the total 

polarization conversion efficiency from the two-oscillator element is identically 0 (black curve in 

Fig. S6(a)). 

By moving the two resonances apart (say ~4.5 µm and ~7 µm) as in Fig. S6(b), the two 

contributions to the polarization conversion no longer destructively interfere (see S6(e) for the 

phase), and therefore there is substantial conversion intensity (black curve in S6(b)). Note that 

the movement of one resonance with respect to the other can be achieved in Y-shaped antennas 

by varying LT (Fig. S5). A similar effect is seen by keeping the two resonances roughly at the 

same wavelength, but changing their linewidths significantly, as in Fig. S6(c), such that the 

contributions are π out of phase at very long and very short wavelengths, and also exactly on 

resonance, creating the sharp dip in polarization conversion. 

 

Fig. S6 Polarization conversion due to the x- or y-oriented mode only (blue and pink curves, 

respectively, and due to both (black curve) (a). The two modes are exactly overlapping, 

generating no polarization conversion due to destructive interference. (b). The two modes are 

similar in linewidth, but have differing resonant frequencies, so some polarization conversion is 

seen. (c). The two modes are roughly overlapping in resonant frequency, but have very different 

linewidths, leading to some polarization conversion but a 0 exactly on resonance where 

destructive interference occurs.   
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We further explore the relationship between the two modes and the total polarization conversion 

efficiency by keeping the two modes at the same resonant wavelength and with the same 

linewidth, only changing their relative amplitudes. As can be seen in Fig. S6(a), when the two 

modes are identical in every way, the polarization conversion is 0 at all wavelengths (black curve) 

due to perfect destructive interference.  By dropping the amplitude of one of the modes (pink) in 

Fig. S7(a), we obtain some polarization converting signal. This signal increases further and 

further with decreasing amplitude of the pink mode (Fig. S7(b)) until finally reaching the exact 

value of the contribution from the blue mode (Fig. S7(c)), since there is no longer any 

contribution from the pink mode. The phase response of both oscillators is plotted in Fig. S7(d), 

and is the same for (a-c). As expected, despite the π phase difference between the two curves, 

complete destructive interference only happens when the two amplitudes are identical (as in Fig. 

S6(a)).   

 

Fig. S7. (a) - (c). Polarization conversion due to the x- or y-oriented mode only (blue and pink 

curves, respectively, and due to both (black curve). The strength of the y-oriented (pink) mode is 

decreased between panels (a), (b), and (c), increasing the value of the overall polarization 

conversion. (d). Relative phase of the contributions to the cross-polarization of the two modes. 

Effect of a finite substrate 
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The majority of the simulations shown in this report (including all of Fig. 2(a, b, c), Fig. 3(f, g, h), 

and Figs. S2, S3, and S4) involve metallic antennas placed on top of a silicon substrate, which 

takes up an infinite half-space, with the other half-space being air. In all of our experiments, 

however, the substrate is not infinite; instead, it is a 280µm-thick double-side polished silicon 

wafer. The finite extent of the substrate in the experiment significantly changes the spectrum of 

our metallic nanostructures. Because light can be reflected from both interfaces of the silicon 

wafer, a Fabry-Perot-type cavity is formed within the wafer, and the light which is trapped 

within this cavity affects the scattered fields from the antennas.  

It is possible to account for this effect in FDTD simulations by simply introducing the finite 

substrate into the geometry. However, due to the differences in scale between the antennas (tens 

to hundreds of nanometers) and the substrate thickness (hundreds of microns), these simulations 

are exceptionally time- and resource-consuming. As a result, it is impractical to replace all of the 

simulations in Figs 2, 3, etc with ones taking into account the finite substrate. Instead, we 

performed one such simulation to correct the simulated spectrum of Fig. 2(e) and demonstrate 

how the substrate generally alters the spectrum of our antennas. 

The resulting polarization-conversion spectrum is re-plotted in Fig. S8(a). The main effect of the 

substrate is the broadening of the antenna resonances and the washing out of the dip in the 

polarization-conversion spectrum. This effect is beneficial because it increases the effective 

bandwidth of our antennas, and can be explained as follows.  

 

A substrate with finite thickness behaves as a Fabry-Perot resonator, which enhances the 

scattering efficiency of the antennas by feeding back some of the energy which would have 

otherwise been scattered away. In proximity of the resonance frequency of antennas, the 

scattering by the antennas is maximized, and since it is a loss channel for the Fabry-Perot 

resonator, the intensity build-up within the substrate is minimized. Therefore, the scattering 

enhancement provided by the Fabry-Perot modes is also minimized. At frequencies away from 

the antenna resonances the scattering cross-section of the antennas decreases, allowing more 

energy to be stored in the substrate. Consequently, this provides a larger enhancement to 

scattering from the antennas.  
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This effect serves to flatten out the scattering spectrum of our antennas, washing out features 

such as the dip around 4.5µm expected in presence of an infinite substrate (Fig. S8(a)). In the 

simulated spectrum that takes into account the effect of finite substrate thickness (Fig S8(a) black 

curve), the Fabry-Perot fringes have been low-pass filtered to reproduce the effect of the finite 

numerical aperture (0.4) of the objective in the experimental setup, along with the finite spectral 

resolution of the measurement. Due to the large order of the cavity (the thickness is much larger 

than the wavelength), small numerical apertures are sufficient to filter out most of the Fabry-

Perot fringes. However, low-pass filtering does not eliminate the overall scattering enhancement 

provided by the Fabry-Perot modes. As shown in Fig. 2, this calculated spectrum matches well 

with the experimental data. For completeness, we show in Fig. S8(b) the expected spectrum for 

zero numerical aperture, where the Fabry-Perot fringes are shown, as well as the spectrum 

normalized to the average intensity (Figure S8(c)), which shows that the energy density inside 

slab (represented by the relative amplitude of the Fabry-Perot fringes) is minimized in the 

vicinity of the antenna resonances. 

 

Fig. S8 (a) Polarization conversion spectrum from a V-antenna array (reproduced from Fig. 

S2(e)) as calculated by FDTD with a 280µm-thick substrate (black) and an infinite substrate 

(blue). The finite substrate curve was smoothed with a low-pass filter. (b) Raw polarization 

conversion spectrum from the simulation without the filter. (c) The curve in (b) divided by its 

low-pass-filtered version which shows the relative amplitude of the fringes. 

V-antenna amplitude and phase plots at a constant frequency  

In the main text, it was stated that there were two complementary approaches to studying 

resonant behavior: fixing the resonant frequency and sweeping over the operating frequency, and 

the converse. The latter approach is difficult to take experimentally or with full-wave simulations 

because generating plots such as those in Fig. 2(a, b) involves the fabrication, measurement, and 

simulation of a different geometry for every value plotted on the horizontal axis. However, there 
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exist techniques for calculating the amplitude and phase response by much more efficient means 

than full-wave simulations. In an upcoming work, we implemented the method of moments 

(MoM) for the efficient calculation of the resonant behavior of V-shaped antennas [S5]. In Fig. 

S8, we show preliminary calculations using the MoM of the amplitude and phase response of the 

scattered far-field in the normal direction to the interface, sweeping over geometrical parameters 

h and ∆ (a, b) and over the wavelength and ∆ (c, d). 

 

 

Fig. S9 Approximate response of V-shaped antennas using the Method of Moments (MoM). (a, b) 

Amplitude and phase maps giving the phase and amplitude response of V-antennas in cross-

polarization at a fixed arm length h ~ 600 nm, sweeping over the opening angle ∆ and the 

incident wavelength. (b,c) Amplitude and phase maps at a constant wavelength = 6 µm, 

sweeping over the arm length h and the opening angle ∆. 
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These plots show that in general, the two approaches of analyzing V-antenna resonances are 

equivalent. Note that the maps in Fig. S9(a, b) corresponds roughly to those in Fig. S3(b, c), 

which were generated by FDTD. The maps are qualitatively the same, with the differences being 

due to the phonon resonance in the native oxide at 8-9 µm and near-field coupling to neighboring 

antennas, which were not taken into account in the MoM calculation. Additional, the MoM 

calculation included a thin-wire approximation (width << length), which does not strictly apply 

to our antennas, especially for shorter antenna lengths.  
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