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Abstract: The paper is concerned with the solution of nonlinear ill-posed prob-
lems by methods that utilise the second derivative. A general predictor corrector
approach is developed; one which avoids solving quadratic equations during the it-
eration process. Combining regularisation of each iteration step with an adequate
stopping condition leads to a general regularisation scheme for nonlinear equations.
Possible implementations and discussion of the performance of this method are il-
lustrated by applications to some well known inverse problems.
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1 Introduction

In inverse problems we are often concerned with solving the nonlinear equation

F(z) =g, (1.1)

where F' : U C X — Y is a differentiable operator between Hilbert spaces; those
relating the unknown z (in our viewpoint, a coefficient in a partial differential op-
erator) and the data g (typically some functional of the solution of the differential
operator measured as output of the system).

A classical numerical approach would be the Newton method, or if (1.1) is formulated

as a least squares problem to minimise the functional ¢ defined by ¢(z) = ;|| (z)|]3,

*Institut fir Angewandte Mathematik, Universitit Erlangen-Niirnberg, D-91058 FErlangen,
FRG.

tDepartment of Mathematics, Texas A&M University, College Station, Texas 77843-3368. This
author acknowledges thanks for partial support from the NSF.



r(z) := F(x) — g, the Gaufl-Newton method or modifications [2]. In essence these
schemes rely on a first order model; F' is approximated by

F(x +h) ~ F(x) + F'[x]h (1.2)

and the present approximation z is corrected to x + h by setting F(x + h) = g. If
the problem is ill-posed, as almost all inverse coefficient problems are, then certain
difficulties occur. The ill-posedness stems from the fact that the map F' is compact,
a property inherited by the derivative F'. Thus the inversion of the map F'[z]h
will require regularisation and this is typically accomplished by finding an invertible
approximant of F' or suitably restricting the class of allowable solutions x, and,
possibly, combining this with a stopping rule governing the iteration process.

A second degree model would seek to determine the correction A to the current value
x from the Taylor polynomial

Fla+h) ~ F() + Fllh o+ 5Pl (h, h). (1.3)

In the least squares setting, the second derivative of ¢ involves the residual multiplied
by the individual hessians. This can lead to diminishing returns if the residual is
small.

In the optimisation literature there have been many schemes and implementations
that utilise the second derivative in approximating solutions of (1.1). However, these
have tended to be less popular than schemes that require at most a single derivative,
see for example [2]. In particular, it is rare in the inverse problems literature to see
the use of derivatives higher than the first. However, some results in the case of
ill-conditioned problems in R are known from approaches using an approximation
of the second derivative [23].

In the general theory, there are two main reasons cited for avoiding the use of schemes
requiring the second derivative. The first is that if the residual is small, then the
second derivative is also small; thus near convergence the contributions of the terms
involving the higher order derivatives is negligible. This is particularly pronounced
when the nonlinearity in the function F' is mild. The second is based on the fact
that in many applications the increased convergence rate of the higher order scheme
does not repay the computational effort of computing the Hessian matrices.

As we will show in this paper, these objections are to some extent unfounded for
many classical inverse problems in partial differential equations. As noted, such
problems are frequently highly ill posed and require some regularisation procedure,
typically by constraining some aspect of the solution being sought. In consequence,
the data, even if accurate, may arise from a function not in the designated con-
straint class and so the residual will never be zero. In the presence of noise, more
regularisation will be required further restricting the degree to which the residual
can be reduced. Indeed, it has been observed over a wide variety of problems that



iterative solution algorithms should usually terminate the iteration procedure before
the residual reaches the minimum possible by the method [5].

For many undetermined coefficient problems in partial differential equations where
one is trying to invert the map F' from the unknown coefficient ¢ to the data g, it is
possible to represent the derivative F’ as the solution of a differential equation with
similar form to that specifying the map F'. In this case advantage can be taken of
the effort already performed in the computation of the direct map F' to compute
F' relatively cheaply. A similar situation also holds for the second derivative of the
map. In the examples we use to illustrate the scheme, both of the first and second
derivatives can be computed at less than the cost of another direct solve.

Even in those situations where derivatives cannot be evaluated without consider-
able additional computation or where either the nonlinearity is relatively weak or
the data error small, there is potential advantage in using our second degree scheme.
The advantage of using a “frozen” Newton method, where the derivative is held at
an initial guess throughout the iteration process has been demonstrated in a wide
variety of inverse coefficient problems. By choosing a sufficiently simple coefficient,
for example a constant, it is sometimes possible to explicitly compute the rele-
vant derivatives. In this situation one is also able to better estimate the degree of
regularisation required for stable inversion. Even if this explicit calculation is not
feasible, the method can provide computational advantages. One disadvantage of
this approach is that inevitably more iterations are required. However, this can be
completely offset by using a second degree scheme that freezes both the first and
second derivative at a known solution. Indeed, in this case one can often get effec-
tive numerical convergence with less computational effort from the second degree
scheme using frozen derivatives than one can by using the full Newton method.

There is a further difficulty in using a second degree model; to update the correction
h in (1.3) requires the solution of a quadratic equation to be (regularised and)
solved at each iteration step. To avoid this, we use the following predictor—corrector
procedure. Let zy denote a starting guess and let h be computed by a Newton step,

F'lz,)h =g — F(x,). (1.4)
Then the next iteration z,,1 = x, + h is defined from the second degree Taylor
remainder by the solution of the linear equation

T[xn)h = F'[z,]h + %F"[mn](ﬁ, h) =g — F(z,). (1.5)

Of course, in each of (1.4) and (1.5) we must address the regularisation issue.

Some advantages are seen at once in one dimension. We can combine both steps
and obtain the iteration scheme

(fl(rn))2 o %f”(rn)f(’rn)
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T = H[f](x,) := 2y — (1.6)



to approximate a root of f : R — R. This scheme can handle several functions
like f(x) = exp(az) — 1 with large @ > 0 and a small but negative starting guess,
where the classical Newton method slows down or fails. In fact, (1.6) has been
known for some considerable time; its essence was used by Halley to extract roots
of polynomials to high accuracy [7]. The connection with derivatives was only made
some decades later and it was full century and a half before the iteration function
formulation of (1.6) was adopted. For a historical survey of the method in one
dimension see [22]. Even in one dimension the two stage predictor-corrector means
of solving the second degree Taylor approximation of f (1.4) (1.5), seems not to
have been considered, although other relations to Newton’s scheme have been noted.
For example, it has been observed that N[f//f'] = H[f] where N|[f] is the usual
Newton iteration function applied to f.

We are not claiming that the second degree method is a more stable algorithm or
indeed that it offers superior final reconstructions. The lack of compactness in F
that is inherited by F' is also inherited by the second derivative and so the additional
term cannot be expected to significantly change the ill-conditioning of the problem.
In some cases the second degree method with frozen derivatives involved a slightly
better conditioned inversion in the corrector step than in the predictor (which is
the only one that would be used in a first degree model). However, we did find
advantages in the final reconstruction and often a significant improvement in the
number of iterations (and in the computational effort) required before the stopping
condition terminated the iteration process.

In the next section of the paper we shall show that the scheme (1.4), (1.5) gives a
general solver for well posed nonlinear equations as long as the second derivative is
available. Its application to ill posed problems requires regularisation of both the
predictor and the corrector step and of course we also need a stopping criterion to
ensure a reliable approximation. The main part of section 2 will show that using
Tikhonov’s regularisation for the linear equations and a certain stopping rule will
lead to convergence of the scheme under similar conditions as the regularised Newton
method [8] or the Landweber iteration [10].

Retaining the predictor-corrector approach to the second degree method leaves many
possible variations to be considered. For example, we will hold the derivative op-
erators constant at the value obtained from the starting guess and refer to such
schemes and their components as “frozen Newton”, “frozen predictor”, “frozen cor-
rector” etc. We focus on the “full” and the “frozen” schemes. In a last short section
some other possible modifications are discussed.

The subsequent sections are devoted to the analysis of our second degree method
as applied to four standard undetermined coefficient problems. By this means we
hope to bring out what we see as the main features of the method and using this
collection of problems we will address the issues raised earlier in the introduction. In
section 3 we apply the scheme to a problem where a parameter has to be determined



from multiple input sources and show that the convergence condition of section 2
holds. The excellent performance of the second degree method with frozen deriva-
tives compared to full Newton is demonstrated. In section 4 we consider the classical
inverse Sturm Liouville problem and we will derive an explicit formula based on our
predictor corrector scheme where the derivatives are taken about the initial constant
potential. We will show that this gives an excellent approximation to even relatively
large potentials from the initial guess, that is, without recourse to computing even
the direct map F'(g). In section 5 we consider the problem of recovering the support
of an unknown source in Poisson’s equation from Cauchy boundary data. In this
case we see that the very mild nonlinearity involved makes the use of the second
degree scheme less compelling. Finally, in section 6 inverse obstacle scattering is
investigated. We show that both the first and second derivatives can be computed
here from a scattering problem of identical nature to that for the computation of F'.
Thus the additional overhead in implementing the scheme (1.4), (1.5) is relatively
low and in consequence there is considerable computational advantage in using the
second degree method.

2 A second degree method

For ill-posed problems a regularisation strategy of the scheme (1.4), (1.5) is required.
We will suggest such a method and in fact show convergence with respect to noise
level, but we first consider well-posed problems; presenting a proof of convergence
analogous to the established procedure for the classical Newton method [25].

Theorem 2.1 Let X,Y be Banach spaces and & € U C X denote a solution of
F(z) = g. Assume F'[Z] admits a bounded inverse and F' and F" are uniformly
bounded in U. Then there exists § > 0 such that the iteration (1.4), (1.5) with
starting guess xq € B(2,0) = {x € X : || — z|| < §} converges quadraticly to T. If
additionally the second derivative is Lipschitz continuous, i.e.

|[F"[2](h, h) = F"[y](h, h)|| < Lllz =yl |[n] |Al]
for all x,y € U with h, h e X and a constant L > 0, then
st — 2 < clln — &l

holds for n =0,1,2,... with a constant ¢ > 0.

Proof: The proof consists of three parts. First we prove that an iteration step is
well defined in a neighbourhood of #. Then we continue in showing that the iterates
remain in such a neighbourhood. The third part establishes the estimates which are
required for the convergence result.



~1 exists

From Newton’s method we know, if 6’ > 0 is sufficiently small, that (F'[z])
for z € B(%,0'), is uniformly bounded in this neighbourhood, and depends con-
tinuously on x € B(#,0'). Thus T[z] defined in (1.5) depends continuously on z.
Additionally we observe that T[z] = F'[z]. Again by a perturbation argument we
can reduce ¢’ such that (T'[z]) " exists in B(%,d") and is uniformly bounded (replace
xp by @ and x,_y by & in (2.1)). This shows that an iteration step (1.4), (1.5) is

well defined if z,, is sufficiently close to .

Next we show that the iteration remains in a neighbourhood of . Let 3 > 0 denote
an upper bound of |T(z)"!|| and ||F(x)"!|| in B(z,¢'). We choose 0 < o < §'/3
such that || T[z] — T[z]|| < % for ||z — Z|| < 3a and 45C"a < 1, where C" denotes

an upper bound of [|[F"[z]|| = supy, 5= {1 F"[2](h, h)||} for x € B(%,d').
Now we define 0 < d < o with [|g — F/(z)| < 5 for all z € B(Z,0). Let &, = x,,_1 +

(F'[zn-1]) " Y(g — F(x,_1) be the predictor. Then zy € B(%,4) yields |71 — zy] < «
and ||z1 — x9|| < a. Considering the Neumann series in

Tlwn] = Tl 1) (1 + (Tlan 1)) (Tloa] — Tlaa 1)) (2.1)
s te [Tl )
Il 1< g,y i) <2

From the inequalities

[T — 2ol = [(T[2a]) " (g — F(za))]
< N(Tlaa) N IF (@) — F(n1) — Tl (@0 — 20-1)]
< C"B([[wn = 2aall® + [(F'lon-1]) (9 = Flan-))| lzn — 201
1
< 5”1‘71 - -Tn71||

induction shows that ||x,,1 — z,|| < a. This also holds for the predictor step Z,1
(replace T[x,]"" by F'[z,]~"). Moreover, we conclude

n n
N . 1
lnr =l <Y llown = aell + oz — 3l =@ ) o + o < 3o
k=0 k=0

Quadratic convergence of the scheme is obvious by

|12 = zaiill = |2 — 20 — (Tlza]) (g — F (@) (2.2)

< BIF@) ~ Flea) = Fa) (@~ 22) = 2 F" () (& — 0, — )|

IF @) (Fleal) (o~ Faa),d o))

6



and the quadratic convergence of the Newton method, i.e. ||# — Z,41]| < ¢]|]Z — 2,||?
with ¢ > 0.

To show a cubic convergence rate we proceed as in the case of the standard Newton
method. For z,y € B(z,d'), by the Hahn—-Banach theorem we define a bounded
linear operator A € Y* with ||A]| = 1 and

A(F() = Fle) - Plal(y - ) ~ 5Pl — 2.y - o))

— |Fe) - Fl@) - Fllty ) - %F"M(y )|

Defining g(t) := A(F(x+t(y—=x)) we observe that ¢ : [0, 1] — Cis twice differentiable
and |¢"(t) — ¢"(s)] < L|t — s| ||z — y||>. Since ¢’ and ¢" are continuous, we obtain
from

olt) = 9(0) + 0t~ [ g~ )

that
|F() ~ P(a) ~ Flal(y —2) — 5"y — .y — )]
= 19(1) -~ 9(0)  ¢'(0) ~ GAF"l)ly — wy )

/01 (g"(S) — AF"[z](y — 7,y — x)) (1 s)ds

' L
< [ Lly-alPs-s)ds = Lyl
0

From equation (2.2) follows

. L cC"\ .
o= ueall < 5§ + 55 ) 6 =l -

Our goal is to apply the method in the case of noisy data ¢° with ||g° — g|| < 6 for a
given noise level 6 > 0 and an ill posed problem, i.e. roughly speaking F' and F'[z]
do not allow a continuous inverse [5]. There are several ways to regularise equation
(1.4) and (1.5). From now on we assume X and Y to be Hilbert spaces. Then one
possibility is to apply Tikhonov regularisation to each iteration step

(T[2)) T(ad) + o) (a8, — 28) = ¢° — F(af) (2.3)

n n

where T[z?] is now defined by
1 -
T{d)h = 'l + 5 Pt (h )
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and the regularised predictor step

h= ((F'la))* F'lap) + o) (F'la))* (9" = Fa3)-

n
Here 2% denotes the n-th iteration arising from noisy data g°.

For simplicity, the regularisation parameters oy and oy > 0 are chosen to be constant
during the iteration since we only present numerical results using constant parame-
ters. More sophisticated parameter strategies are certainly possible (see [8] in case
of the Newton method). In common with other iterative schemes, the regularisation
of each iteration step is not in itself sufficient. In a generalisation of the discrepancy
principle (see [8, 10]) we require a stopping rule, terminating the iteration if

lg” = F(zp)] <76 < [lg” = F(a5)] (2.4)

is satisfied for all j € {0,...,n—1}, where 7 > 1 denotes an additional regularisation
parameter.

Our proof of convergence of the above scheme requires an assumption on the non-
linearity of the operator F. As for the Landweber iteration [10] and the Newton
method [8] we assume that

1F(y) = F(z) = F'lz](y — )l < Clly — [ |1F(y) — F()]] (2.5)

with C' > 0 is satisfied in a neighbourhood U C X of a solution Z of F'(z) = ¢g. Under
this condition the following convergence result shows the regularising property of the
scheme.

Theorem 2.2 Let X,Y be Hilbert spaces and assume F satisfies (2.5) and || F'|| <
C', ||IF"|| < C" are uniformly bounded on U. Let a; > 0 and xg € U denotes
a starting guess such that Ry = ||xg — z]| < p/(C + C;(i”) with 0 < p < 1 and
{reX ||z —2|| <R} CU. Moreover, we assume

CICII
(s g~ F(a)] +9))

20 z€B(&,Ry)

2

0w > L (C+
IL—p

Then,

a) if g¢° = g, the sequence x,, computed by (2.3) is well defined and converges to
a solution =* of F(z) = g.

b) if l|g° —gl| <9 and
1+ CR,

p—RU(C+ Cé/i//)i

there exists n(d) € Ny such that condition (2.4) is satisfied. Moreover, the

approzrimations 'sz(a) converge to the solution x* if the noise level 6 tends to

T >

ZEro.



The proof of this theorem is closely related to that for the Levenberg—Marquardt
scheme presented in [8]. We first show the following monotonicity result.

Lemma 2.3 Let 0 < p < 1 <y with ag > ﬁHT[:}:n]H2 and & € U be a solution of
F(z) =g. We assume

H P
lg° = F(xn) — Tlaa]h|| < ;HQ(S*F(%)H (2.6)
with iLn =2 —x,. Then
- \ 2(y = 1)p
[ (g [F A fllg‘S = F(z)[ [[vall (2.7)
and 2 1)
. . v—1)p
& = @nia||? < |2 — 2l = =g — F(z.)|” (2.8)
Q7Y

are satisfied, where v, is defined by v, = (T[x](Txa])* + aol) ' (¢° — F(xn)).
Proof: We use the notation T'= T[x,], § = ¢° — F(z,) and h = z,,,1 — x,,. From
the Tikhonov equation (2.3) we obtain
G—Th=0oy(TT* +ayl)'g, and h=T*TT*+ ayl) 'g.
With the abbreviation A = (TT* + «a,I) we compute
b —hal* = IAI* —2(A7' g, Thy) + |l
= [IAl* — 2(47'3.9) + 2(A 5,5 — Tha) + |7
= |[hlP* = 2(T" A7, T" A7 g) — 205(A7"g, A”'g)
+2(A7'3.9 — Thy) + [l
= —|[Al* =202 A7 G)? +2(A71G, § — Tha) + ||

From ay > ﬁHTH2 we obtain

~ 1~ p 1~ 1~
pllall < pll AllA 3] < p( a +a2> A~ gl = anf| A4

and using (2.6) this implies
Bal2 = [|h = Bl2 = [[R]|2 + 200]|A 2G| = 2(A G, § — Th))
> 2m||A g7 — 2(A g, G — Thy))

2(p = 2)lall 14l

\%

v

9



Inequality (2.7) follows and from ||g|| < [[A[| [lva]| < <*|vn]| we conclude (2.8). O

Applying this lemma using noise-free data implies that h, constitutes a Cauchy
sequence and the limit x* is a solution of the problem. For polluted data the lemma
is used to show that the iterates are close to the iterates from the noise—free case
provided the stopping condition does not apply. This is the basic idea of the following
proof of the regularisation properties.

P
(c+%<) Ry

201

> 1. Then

Proof of Theorem 2.2. a) Assume 0 = 0 and define v =

the assumption 2.5 implies

N Cl CII
lg — F(xo) = T(an)hal) < (€ +

o >||fm|| lg — F(z0)|| = §||g ~Flw)|| (2.9)

by [[((F'[zo))*F'[zo] + and) || < 1/ay (where h, = & — x, is defined as in the
previous Lemma). Lemma 2.3 yields ||z1 — Z|| < ||zo — #|| and by induction it
follows that

|tns1 — 2] < ||z — 2| for all n € N.

Now we continue by showing that h,, defines a Cauchy sequence in X. Let m,n € N
with m > n and define | € {n,...,m} by

lg— F@a)ll < llg = Flap)l, for j € {n,...,m}.
By the definition of 7'[z;] we obtain
Tl = |[T[w)hy = Tlag] (e — )|

< g — Fay) — Ty + 1F(22) — Flay) — Ty} — 2)]| + g — Fla)]

< (0+S) (e =all+ o= ol )y - el + g = Fa)ll - (210)
< Go+Dlg— Fla)ll (.11)

Defining v; as in the previous lemma implies ;. = z; + (T[z;])*v,;. From (2.11)
and the lemma we obtain

-1 -1
(b= b ) = | (T L)) o h) | < 1T L)l o
j=n j=n
-1
< Bo+1)) llg— Fla)l vl
j=n
Bp+ 1)y, . .
< o ([l =l = |2 — w?)

2(y —1)p

10



which yields
o — hall® = 2(h0 — oy ) + (o] * — [[ ] ?

(Bp+Dv

P 1) (3 wall® N ).
2(y = 1)p ( )

Since the analogue result holds for ||h,, — iy||, we conclude

||$m - anQ = ||ilm - }AZTLHQ

M & —anl]? — |2 — 2p)?
< 2 (S5 41 (Ja -l - - ).

By monotonicity this shows convergence for n — co.

It remains to show that the limit «* of x,, is a solution. Lemma 2.3 yields

Qo7 A .
ZHQ* |7 < W(Hx—onQ* 12— zni]?) .

Thus, the sum is bounded for N — oo and we obtain lim ||g — F(x,)|| = 0. Conti-
n— 00
nuity implies F'(z*) = g.

b) Now assume ¢ > 0 and define x,, to be the computed solution using exact data
and 2% the solution computed from noisy data ¢°. If n(5) > 0, i.e. ||g° — F(zo)|| > 79,
we obtain from the assumption on the Taylor remainder

lg® — Flao) — Tlao)(i — x0)]

CIC/I
< (14l =)o+ (€ + o) I = woll lg” — Flao)]
1 C C”C’”
< (G + 7B+ CRo+ 5= Ro) g~ Fao)]|.
T T
. pT
The choice of 7 shows that v := - > 1 and thus
T+ (14 7)C + S22 ) 3 — o
Lemma 2.3 implies
) ) 2(y — 1)p’
[ Y g e P | R X
Q27
The definition of n(J) leads to
)26 < ¢ 2 % & — a2,

11



which shows that n(d) is finite.

We can easily show by induction the continuous dependence 2?2 — z,, for fixed n € N
and 9 — 0. Now two cases have to be considered.

First, we assume that the sequence n(d) has a finite accumulation point, i.e. without
loss of generality n(d) = N for § < dy. Then follows

. 1) _1: 0o _
A Ty = YT = T

Moreover, by the definition of 7(d) we know [|g° — F/(x) )|l < 76. Taking the limit
d — 0 implies F(xy) = g, and we conclude lim;_,q xi(é) =ay = a*.

In the second case we assume that a subsequence of n(d) is unbounded and obtain
from (2.12) that [|z* — xfl(d)H < |lz* — 22 || for all m < n(§). For e > 0, choose m
sufficiently large such that ||z* — x,,|| < e. Without loss of generality we choose
6 > 0 with m < n(d) and ||z, — 2%,]] < € for all § < 4, and we conclude

l2* = 2l < llo* = @l + llm — 25, ]| < 2e.

Combining both cases proves the assertion. O

3 A parameter identification problem

Consider the problem of determining the unknown conductivity a(z) from
—(au')' = f;, O0<z <1, u(0) = u(1) = 0. (3.1)

We assume the input source functions are of the form f;(z) = sinjnz, j € N, and
for a given value of @ we denote by u;(z; a) the solution of the direct problem solving

(3.1). The additional data needed to recover a is g; = u(0; a).
Let F : U — [* be the map a — {u)(0;a)}32,, where U C {a € H'[0,1] : a(t) >
e >0, a(0) =1 =a(1)} and /% denotes the Hilbert space of sequences {132 with

> ey ‘3@‘2 < o0o. As in example 11.1 of [5], we observe that the condition (2.5) is

satisfied which ensures convergence of the second degree method by Theorem 2.2.

The function u;j(x;1) can be explicitly computed, u;(z,1) = sin(jmz)/j*r?. This

allows us to compute the required derivatives for the first and second degree schemes
utilising derivative operators held fixed at a = 1.

The Fréchet derivative (F'[a]h); is represented by the value of {v;(0;a; h)} where v,
solves
—(av}) = (huj), 0 <z <1, v;(0) = v,;(1) =0, (3.2)

(see [3]). Integrating this equation from 0 to x gives

~a(2)v}(x) + a(0)05(0) = h(x) cos(jma) [jm — h(0) /i

12



and so, in the case a = 1 and h = sin(k7x) by once again integrating between x = 0
and z = 1 and using the boundary conditions on v; we see that

1 [
(F'[1]h); = v;(0;1;h) = — [ h(z)cos(jmz)dw

JT Jo
1

= — [ sin(knz)cos(jrx) dr =: cj
JT Jo

The values c¢j;, are computed to be
k(L (-1)*)

5= i 4k and c¢;; = 0.
T B A

Now the predictor h is taken to be the solution of the equations
(F'[1Jh); = g; — u;(0;a)

where h(z) has the series expansion h(z) = Y., h? sin(nmz). This can be solved

uniquely for the sequence {h{} to obtain

5 1 -
vi(z;1;h) = ——h(x) cos(jrx) + g; — u;(0; a). (3.3)
g

A further differentiation of (3.1) with respect to a at a = 1 gives

—wj(r) = (in);(.r; 1) + hj(w; 1; h) 0<z<l, w;i(0) =w;(1) =0 (3.4)

(see [5]) and the value of w}(0; 1; h, h) represent the second derivative of u.

Integrating (3.4) in = leads to
—wj(x) +w(0) = h(x)vi(z; 1; h) + h(x)vi(z; 1; h).

If we take h(x) = sin k7, then by a further integration from x = 0 to x = 1 using
the boundary conditions on wj, (3.3) and the series expansion for h it follows that

_ 1 1 1 1 1T
wi(0;1;h,h) = — (/ h(z) d:r/ h(x) cos jmx dx + / h(x) d:r/ h(z) cos jmx dx
0 0 0 0

gm

1
2/ h(z)h(x) cos jrx d.r)
0

N 1
- 71— (=1 2
= mz_:l hs, (%cﬂc ~ 5 ), sin(mmx) sin(krz) cos(jmx) d:r)
1-(=1)*
t— (9 —uj(0;1))

13
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+#(gj — uj(0;a)).

The first degree model with frozen derivatives at a = 1 now requires at each iteration
step the solution of the equation

Jh' = (95 — u5(0,an))j=1..n (3.5)

with the update a,.; = a, + h, where Jir = v;(0; 1;sinkmz). The second degree
method additionally seeks the solution h® = (hy)r—1..n of

(7+ %H(E))h = (g — (0, 1))y (3.6)

where Hjp.(h*) = w’(0; 1; h;sin krx). The next iteration is then defined by a,1(z) =
an () + 320, hi sin kra.

Table 1: Comparison of three Iteration Schemes.

Frozen Newton Full Newton Second degree
n | [la, — al R, lan — all R, lan —all R,
0 1.2484 | 0.08042 | 1.2484 | 0.08042 | 1.2484 | 0.08042
1 0.8409 | 0.01693 | 0.8414 | 0.01687 | 0.2873 | 0.00432
2 0.6649 | 0.01702 | 0.3916 | 0.00524 | 0.2568 | 0.00067
3 0.5686 | 0.00864 | 0.2220 | 0.00053 | 0.2304 | 0.00074
4 0.4807 | 0.00934 | 0.2109 | 0.00001 | 0.2222 | 0.00028
5 0.4289 | 0.00488 | 0.2110 | 0.00000 | 0.2167 | 0.00018
6 0.3757 | 0.00568 | 0.2110 | 0.00000 | 0.2142 | 0.00009
7 0.3442 | 0.00290 | 0.2110 | 0.00000 | 0.2127 | 0.00005
8 0.3097 | 0.00359 | 0.2110 | 0.00000 | 0.2120 | 0.00002
9 0.2903 | 0.00175 | 0.2110 | 0.00000 | 0.2115 | 0.00001
10| 0.2672 | 0.00233 | 0.2110 | 0.00000 | 0.2113 | 0.00000

We implemented frozen versions of both the Newton and the second degree method,
regularising equation (3.5) and (3.6) only by restricting the number of basis elements
to N = 10, (although we could also have used Tikhonov’s method). Taking the
actual solution a(z) = (1 + zsin(27z))”', a run is presented in Table 1, which
shows the fast convergence of the frozen second degree method in the beginning
even compared to the full Newton scheme. In this example we used the starting
guess ¢ = 1 and computed numerical data using a Runge-Kutta scheme on a course
mesh, estimating that resulting output was accurate to within about 1%. The table
records the L* norm error |la, — alls and the residual R, := [Ju}(0;a,) — dl], for
each of these methods. Figure 1 shows the final reconstruction obtained, where the
dotted line corresponds to the exact solution. This was essentially identical in all
three methods.

14
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Figure 1: Identification of a(z) = (1 + zsin(2rz)) "

4 The inverse Sturm-Liouville problem

A classical inverse problem is the reconstruction of the potential ¢(z) from the
equation —y" + qy = A,y given the eigenvalues with respect to certain boundary
conditions [16]. The celebrated result of Borg showed that if, say, y(0) = 0 then the
complete sequence of eigenvalues {\,} and {u,} corresponding to the two boundary
conditions y(1) = 0 and y'(1) = 0 suffice to determine the potential g. Further,
in the symmetric case ¢(z) = ¢(1 — z) the single sequence of Dirichlet eigenvalues
{An} suffices. We shall consider this latter problem here using an extension of the
methods of [21] to incorporate the second degree method.

From the results of [21] a reformulation of the inverse Sturm-Liouville problem is to
identify the potential ¢ as the solution of an overposed boundary value problem for
the Goursat problem

Uy — Uge +q(x)u=0 for0<t<z<l (4.1)

with | e
u(z,0) =0, wu(z,z)= 5/0 q(s)ds (4.2)

and subject to the data on x = 1, u(1,t) = g¢(t). We shall denote the solution
of (4.1) and (4.2) for a given ¢ by u(x,t;q). As shown in [21], the function g can
be constructed from the eigenvalue data and is the unique solution of the integral
equation fol g(t)sin\/A,tdt = —sin\/A, for each n = 1, 2, ... . The asymptotics
of the )\, guarantees that this is easily and stably solved for g(¢). Some preliminary
analysis shows also that one can reduce the problem to the situation of a potential

15



with zero mean, that is fol ¢ = 0 and thus the function ¢(t) can be taken to be odd
about the origin and ¢(1) = 0.

We now must consider the mapping taking potentials onto the data. In fact it is
more convenient to choose the map such that F : L?[0,1] — L?[0, 1] is defined by

Flgl(t) = u,(1,1) = g'(t).
One can compute the derivative of the map F', and in particular the derivative held
at the zero potential F'[0]h gives valuable insight to the problem. In fact, as shown in

[21], the frozen Newton method gives remarkably good results. An easy calculation
shows that F'[¢g]h must be given as the solution u'(x,t; ¢; h) of the Goursat problem

uy —ub, +q(z)u’' = —hu for0<t<z<1

with
1

u'(2,0) =0, u'(z,z)= 5/ h(s)ds
0

evaluated on the line x = 1. Now if ¢ = 0 then it follows from uniqueness of solutions
to (4.1) and (4.2) that u(z,?;0) must be identically zero. Thus u'(x,¢;0;h) must
satisfy the equation

uy —ub, =0 for0<t<z<1

T
and this is easily computed in closed form as

x4+t
1[5
u'(z,t;0;h) = 3 h(s) ds. (4.3)

2

Now it follows that uj(1,#;0; h) = £ (h() +h(5E)) and the symmetry assumption
on our potentials allows us to conclude that uj(1,#;0; h) = h().

The frozen Newton scheme now becomes

qTL+1(S) - QTL(S) = g,(25 - 1) - ut(la 2s — 15 Qn) (44)
for s € [0,1] and where u(1,t;¢q) is extended as an odd function.

In a similar fashion we can compute the second derivative F"[0](h, he) as the solu-
tion of the Goursat problem

up, —ul, = f(z,t) for0<t<z<l1 (4.5)

with v (x,0) = 0 and u"(z,x) = 0 and the function f equal to
f(z,t) = —hy(2)u'(x,t;0; hy) — ho(x)u'(z, ;05 hy). (4.6)
We must compute u}(1,¢;0; hy, hy). In view of our representation (4.3) for v’ we can

write (4.6) in the form

x4+t x+t
2

2f (1) :—hl(:r)/ " hals) ds—hg(x)/ ha(s) ds. (A7)

r—t r—t

2 2
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and in this case the solution of (4.5) at # = 1 becomes

2u"(1,¢;0; hy, hs) / f(s,r dsdr+/ f(s,r)dsdr
1—t—s s+t—1
1+t—s
/ / (s,7) dsdr.
i 1
This gives
1-t 1-t
2u(1,t;0; hy, hy) = — f(1—t,r)dr— f(s,s+t—1)ds
0 1t
+1 v r)dr + f@
5 315 " /
=R 1 [
_/ f(s,s—l—t—l)ds——/ (L r)dr
1 1
+ f(s,14+t—s)ds— f(sys+t—1)ds.
=R =N
Using f(z, —t) = — f(x,t) and both cancelling and combining terms yields
1 1
2ui (1,05 hy, hy) = — » f(s,s+t—1)ds+ 1+tf(s,l—s—i—t)ds
= O(t) + O(—1).

In implementing the predictor step as a frozen Newton update, we must solve an
equation of the form hy(t) = g'(t) at each iteration where g(¢t) = 2(g(2t — 1) —
u(1,2t — 1;q,)), which implies g(t) = —g(1 — ¢). In the initial approximation we
have simply g(t) = ¢g(2¢t — 1)/2. Using (4.7) and setting h = hy we find

o() = /1 hs) /_ () dr ds+/1t 7(s) /_ h(r) dr ds

2 2 2




11—t 1+t

+§(%)/ﬂT h(s)ds—/oz §(s + L1)h(s) ds

where we have used the fact that g(1) = 0. Now the assumed symmetry of A yields

14t

o(t) = K g(s—%)h(S)dS—/02 g(s+H)h(s) ds

Then

2u (1,40, hy, hy) = /

0

Using the symmetry of the function g the last integral must be zero. Thus our
corrector formula when the derivatives are evaluated at ¢ = 0 is given by the Volterra
equation

7(1) = hit) + | / t (01—t =)+t —5) =30+ 5 — 1) 4t + ) ) h(s) ds (48)

where g(t) = 1(g(2t — 1) — u(1,2t — 1;¢)) and we use an odd extension of both g
and u(1,.;q).

Convergence of the Newton scheme based on (4.1) and (4.2) is quite rapid, even with
the frozen derivative version (4.4) is used [21]. As an illustration of the ability of
the second degree method to improve an initial approximation we show in figure 2
the results of using the predictor (a Newton step from ¢ = 0) and then the corrected
version (the second degree method).

The actual potential is the function ¢(z) = 50sin(37z) x e, x € [0,1/2], and the
reconstruction uses the first 10 Dirichlet eigenvalues. These eigenvalues were quite
accurate and the information contained in them was sufficient to recover the actual
potential (shown as a dotted curve) to within about one percent as measured in the
L? norm. The figure on the left was obtained by using formula (4.4) with ¢y = 0.
Note that since u(1,¢;0) = 0 this means we have simply ¢;(z) = ¢'(2z — 1). The
figure on the right used (4.8) where, since go = 0, g(z) = 3g(x). This Volterra
integral equation of the second kind is easily inverted to recover h and hence the

approximation ¢j.

The initial updated approximation is remarkably good using only the purely pre-
dicted step  the ratio (1 — [|¢g1 — ¢l[2)/]|q||]2 = 0.83. In other words we get about
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Using the predictor only Using the corrector

Figure 2: Reconstruction after a single step from ¢ = 0.

83% of the reconstruction in the first step without having even to compute a value
of the direct map u(1, z;¢q). However the superiority of the correcting term in (4.8)
is quite apparent for now (1 — |[¢g1 — ¢|2)/]|¢||2 = 0.97 and this is quite close to the
final reconstruction possible from the limited data.

The point to be made here is that for the very little additional cost of solving (4.8),
as opposed to taking only the first term Neumann approximation of the Volterra
equation, we gain a substantially improved reconstruction This extra effort is cer-
tainly much less than would be necessary to perform a direct computation to obtain
u(1,t; ¢). In fact in most cases, a single further iteration of the second degree method
will suffice. That is, we can effectively reconstruct the potential ¢ from eigenvalue
data by solving the Volterra equation (4.8) twice and the Goursat problem (4.1),
(4.2) once.

5 An inverse potential problem

Let © C RY be a smooth bounded domain with an included subdomain D C (.
Then the problem consist in the recovery of the shape of D, i.e. the boundary 0D,
from the knowledge of the Neumann boundary values

ou
oN
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of the solution u of the homogeneous Dirichlet problem
Au=X, in {2 and u=0 on 09, (5.1)

where X, denotes the characteristic function. This inverse problem is well known
to be severely ill-posed. The existence of a unique solution v € H?(Q) is well
established (see e.g. [6]) and also the inverse problem is discussed by several authors
(see e.g. [14], [12], [13]).

For our numerical purpose we assume €2 to be the unit disk in R? and suppose D is
starlike with respect to the origin, i.e. dD is a closed curve represented by

o) =att) (Souy )+ v 0.2,

sint

with 0 < ¢(#) < 1 sufficiently smooth. In particular this set of admissible boundaries
ensures uniqueness of the inverse problem. The proof is due to Novikov and can be
found in [14].

An application of Green’s second formula yields

/vdx:/Auvdx: %vds (5.2)
D Q

a0 8V

for all harmonic functions v in 2. Choosing polar coordinates we compute from the
identity (5.2) by v € {1,r" cosnt,r" sinnt} the Fourier coefficients of 2% on 0%,

s 1 [P 0u(z(t) [ cosnt B 1 s cos nt
(Fa)u" = ;/0 Ov { sin nt }dt  (n+ 2)7r/0 " () { sin nt }dt'
(5.3)

This equation also allows the determination of the Fourier coefficients of the Fréchet
derivative of F' with respect to variations of ¢ by

i =+ [ onn {5 Lo (5.4)

sin nt

and we continue in computing the second derivative to

iy = Mmoo { o L (5.5)

T sin nt

Equation (5.4) suggests a simple and fast frozen Newton scheme for the numerical
solution of the inverse problem can be obtained by fixing the derivative at a circle
of radius ry and computing a new update g;4, from

F'lary)(g41 — g5) = 9 — F(g;)

with measured data g ~ 2% on 09 (see also [12]).
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We consider boundaries in a finite dimensional subspace represented by trigono-

metric polynomials, h(t) = 3hy + Zgil h¢ cosnt 4+ h} sinnt. This leads to a finite

dimensional linear equation

-

Jh =g — F(q;) (5.6)

for the 2N + 1 Fourier coefficients of h = gj+1 — ¢; collected in h. The Jacobian
matrix J turns out to be diagonal with .J,,, = 7"6”'1 if0<n<Nand J,, = 7“ng+1
if N+1<n<2N.

We can also consider the second derivative evaluated at this circle ¢,,. We use h
computed by the frozen Newton step (5.6) as the predictor and obtain from equation
(5.5) the Fourier coefficients

(F"(h, b))% = wh} Zg
2 S
hn
R 2m cos jt
L+ 1 B
+% Z h;/ h(t) { cos((n+7)t) + cos((n—7j)t) » dt
-1 o sin((n+4)t) + sin((n—j)t)

sin jt

rl o 1cyc 1578 W
9 Z hihi + hjh;
=0
N
(77+ ]')rn 7c 1c 1c c 18 N7 s s
- % #0 (h‘nho + Z (hn+j + h‘n,j‘)h,j + (hn+j - Sgn(”*J)h\nijhj)
j=1
N
(n_'_]_),rn Is s N7 c Ic 7c s
L%O"nho + Z (hn+j + Sgn(”*ﬂ)h\nfﬂ)hﬂ' + ( n—jl — hn+j>hj) J
7=1

Thus, if we define the Hessian matrix by the following summation of blocks of
Toeplitz and Hankel matrices

ho he hs
he he, i+ hey, hy.; —sen(n— ki,

H - D I
hy | by +sgn(n — )b he, i —hey,
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Figure 3: Reconstructions from noise free data

where D denotes a diagonal matrix with D, = "T“ rg if 0 <n < N and D, =
T“TNH rd N if N +1 < n < 2N, the frozen corrector step is given by the solution of

the linear equation
1 .
<J+§H>h:gF(qj). (5.7)

A perturbation argument shows that this equation is uniquely solvable, if the pre-
dictor h is sufficiently small. Since h is defined by (5.6) we obtain the behaviour
H,; = O(ry? ") with respect to the radius ro. Thus, applying H on h damps the j
mode by this factor. The same asymptotic formula holds for the frozen Newton step
in (5.6). Therefore we cannot expect a significant change in the condition number
with respect to 7y and N by adding the Hessian matrix in the second degree method.

The numerical experiments presented below used artificial data, which were com-
puted by a boundary integral equation approach to the direct problem (see [17]).
In modelling noise we added a random vector of 5% of the L?-norm approximation
of these highly accurate data. Fortunately, a good starting guess (represented by
the dotted curve) is available using v = 1 in (5.2), which shows that the volume of
D is given by the mean of the data. Therefore we used as a starting curve a circle
bounding a disk of this volume centered at the origin.

Without any additional regularisation the simple frozen iteration schemes (5.6) and
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Figure 4: Reconstructions from noisy data

(5.7) allow the use of frequencies up to N < 4, which is only sufficient to represent
objects D which do not contain much structure. Therefore we consider Tikhonov’s
regularisation of (5.6) and (5.7) as suggested in section 2 using N = 10 in all
numerical experiments presented below.

Figure 3 shows the reconstruction of a kite shaped object from noise free data using
the regularisation parameters o = 10~* for the frozen Newton scheme and a; =
107°, ap = 107* for the second degree method. We observe a good reconstruction
by the second degree method on the first iteration step. The figures show these
reconstruction after the first and the 10th iteration. The residual error during
iteration (the full line) and the error in the reconstruction with respect to the true
boundary curve (dashed line) are given in the figure on the right.

The differences in the performance of the two schemes, using the predictor step only
(frozen Newton method) and the frozen second degree approach, decreases if we con-
sider much smaller objects. The reasons seems to be that the higher regularisation
which is then required cancels the positive effect of considering the second deriva-
tive. This is also observed in case of data polluted by high levels of noise. In Figure
4 we show the best, the mean, and the worst reconstruction with respect to the
error in the boundary curves from a hundred different runs with 5% random noise
in the data and the same regularisation parameters as before. The figures show the
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reconstructions, when the stopping condition applies (here ||g — F(g;)||/]lg]| < 0.07
was chosen). The performance in the worst case suggests more regularisation. In-
creasing the Tikhonov parameters lead to smaller differences in the two methods
and to more stable but poorer results. Decreasing the Tikhonov parameters and
increasing the stopping value can often lead to quite good reconstructions, but this
highly dependent on the actual data set used and on average the results show more
instability.

The same performance with respect to appropriate regularisation parameters occurs
for the full iteration methods using the derivatives at ¢;. A more significant difference
in using the full second degree method is observed in an inverse scattering problem
considered in the following section.

6 An inverse scattering problem

As a final example we consider the scattering of time—harmonic incident plane
acoustic waves by a sound soft obstacle D in two dimensions. Let D C R? be
a bounded domain with smooth boundary dD and connected complement R?\D.
Assuming a wave number k£ > 0 the scattering problem is modeled by a solution
u € C*(R2\D) N C(R?\D) of the Helmholtz equation

Au+ku=0 inR*\D. (6.1)

In R?\D we have the decomposition u = u® +u’, where u’(z) = **? is the incident
plane wave with direction d € S!, and u® denotes the radiating field satisfying

Sommerfeld’s condition,

. _ 1 ou’
lim r 2
r=|z|—o0 or

_ zk‘u) — 0 (6.2)

uniformly in the directions z/|z| € S'. Supposing a sound soft obstacle leads to the
Dirichlet boundary condition
u=0 ondD. (6.3)

For a detailed analysis of this problem including existence of a unique solution of
(6.1)-(6.3) by boundary integral equations we refer to [4].

The radiation condition implies the asymptotic behaviour

e = = {unte +0 (1)}

uniformly in & = z/|z|. The function uy is the far field pattern or scattering
amplitude of u®. The inverse problem under consideration consists in determining
the shape of D from measurements of the far field pattern. We define the far field
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operator F': X — L*(S') which maps a set X of admissible boundaries on the far
field patterns of the scattering problem for a fixed wave number k£ and an incident
direction d € S*. The inverse problem can be written as the nonlinear and ill-posed
equation

F(OD) = tge.

Recent investigations show that the linearisation of this operator using a representa-
tion of the derivative of F' leads to efficient iterative regularisation schemes solving
the inverse scattering problem (see e.g. [9, 13, 15, 18, 19]). All of these methods are
based on a representation of the Fréchet derivative in the sense of a bounded linear
operator F'[0D] with

1

lim ———||F(Dy) — F(OD) — F'[dD]h|| = 0
HhHol—>0||h||cl||( n) — F(OD) — F'[oDh|

for variations h € (C'(8D))? of the boundary. The value of the derivative is given
by the far field pattern
F'[OD] h = ul,

of the solution v’ of the exterior Dirichlet boundary value problem,

Au'+ Kk = 0 inR*\D (6.4)
)
W = —hua—z on D, (6.5)

where v denotes the unit outward normal at 9D, u the solution of the scattering
problem, and h, = h - v the normal component of h [15].

The existence of suitably defined higher order derivatives can be established [20, 24].
Here we are interested in a representation of the second derivative for an efficient
implementation of the second degree approach. The following theorem states this
result and is proven in the appendix.

Theorem 6.1 Let 0D be in the class C®. The operator F is two times differentiable
at 0D with second derivative F"[0D](hy, he) = ug, The function ul, is the far field
pattern of the radiating solution u" € H\. (R*\D) of the exterior Dirichlet problem

Au"+ K" = 0 in R*\D, (6.6)
ou' ou'
" — *h, V_Q - h . 1
" oy "
ou
hy,hoy — hy +ho ) K—
+(hy 2, 1,712, )Hay



where u 1s the solution of the scattering problem, u; (7 = 1,2) is the solution of the
boundary value problem (6.4),(6.5) with respect to the variation h; and r denotes
the curvature of 0D.

Here H.(R*\D) denotes the convex space of function, locally in H', i.e. in the
Sobolev space H'(2) for any bounded subset Q C R2\D. We denote by h, = h -7
the tangential component of h and 7-V is the tangential gradient. We should remark
that the regularity assumptions on @D and hq, hy seem to be necessary to ensure the
representation (6.6), (6.7). Under this assumption we obtain u € H?(Q), and from
the boundary value problem (6.4), (6.5) this implies that ' € H?(Q) and finally
u" € H'Y(Q) (see [6]).

Unfortunately, we were not able to verify condition (2.5) for a specification of the
set of admissible boundaries in a Hilbert space which would imply convergence of
the iterative schemes. However, we did implement the second degree method using
the representation (6.6) and (6.7).

From the iteration (1.4), (1.5) and the above representation, we observe that we do
need a solver for the exterior Dirichlet problem which allows the computation of
the far field patterns u,, v/ , u”. and the Neumann boundary values 2 22 We
consider u® represented by a mixed single and double layer potential

00 oo v’ v
0P _
u’(x) = / (M — 1k®(z, y)) o(y)ds,, =x€ RQ\D
oD al/y

with a density ¢ € C'(0D) and the fundamental solution of the Helmholtz equation

1
O(r,y) = JH (Klz —yl), 2 #y

(see [4]). The jump conditions imply that u® is a solution of the exterior boundary
value problem provided the density ¢ solves the Fredholm equation

(I+K—ikS)p=2f ondD, (6.8)

where f € C(0D) denotes the boundary value on 9D and the weakly singular
integral operators are defined by

0P
Kp(x) :2/ Mg&(y) ds, and Sp(z) :2/ O(z,y)e(y)ds, =€ dD.
aD

(78 oD

Having solved (6.8) the far field pattern can be computed by evaluating

[k = -
Uoo(E) = oy e s /a (vy - @+ 1) e *p(y)ds,, |i]=1, (6.9)
D

and the Neumann boundary values by

ou’®
ov

1
= Sk I — ik K' +T)y (6.10)
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with the weakly singular operator

K'p(z) = 2/ Mgp(g) dsy, x€dD
oD al/z

and the singular operator

_, 0 09 (z, y)
To(x) = 281/95 /ap o, o(y)ds,, x € 0D.

For an implementation of the second degree method we have to specify the set of
admissible boundaries. Here we assume starlike obstacles, i.e. the boundary can be

represented by
cost
oD = {r =r(t) <sint> it e [0,27r)}

with a 27 periodic positive function r € C*(R). By the n-th iteration 7, the next
step is defined by 7,41 = r, + h from solving the linear equations (1.4) and (1.5).

Now we assume variations of r, only in a finite dimensional setting represented
by a trigonometric polynomial, h(t) = 1hy + Z;\le h$ cos(jt) + hjsin(jt). Then
an iteration step consists in solving the direct scattering problem with boundary
represented by 7, by the integral equation (6.8) and computing the far field pattern
F(ry,) and the Neumann boundary values. Next we compute the 2N + 1 derivatives
u' in the direction of the basis function again using the integral equation (6.8) with
f= —h,,%. This leads to the construction of the Jacobian matrix .J and we solve

for the predictor step
(J*J + a1 R)h = J*(g — F(ry,)) (6.11)

to obtain the Fourier coefficients A of h. Here the matrix R is diagonal with entries
Rjj=1+j*forj=0,...Nand Rj; =1+ (j — N)*for j = N+1,...,2N corre-
sponding to the cosine and the sine modes in h. This approximates the Tikhonov
regularisation with respect to the H? norm and shows a slightly better performance
in suppressing oscillations in the reconstruction. Now using h (suppressing the imag-
inary part) we can compute the corrected h by solving again 2N + 1 direct problems
for the second derivative in the direction of any basis function. This leads to a linear
system .

(T*T 4+ asR)h = T*(g — F(rp)) (6.12)

for the Fourier coefficients of h. Since the system is complex valued we again consider
only the real part and use the update r,,(t) = r,(t) + Re(h(1)).

Note that the effort of computing the derivatives is small since we only have to
change the right hand side of the integral equation (6.8). The Newton method of
course only required using the prescribed predictor step. We also emphasize that we
choose trigonometric polynomials for simplicity. The use of different basis functions
can be of advantage in certain cases (see [4]).

27



Newton method: 1 Newton method: 20

2nd degree method: 1 2nd degree method: 20

~

~
| |

Figure 5: Reconstructions from noise free data

In the examples used to illustrate the ideas the integral equation (6.8) is solved by
Nystrom’s method at 64 discretisation points on 0D using quadrature rules which
take into account the weakly singular kernels (see [4]). K’ is also computed by
such a quadrature rule. The hypersingular operator 7T is evaluated by trigonometric
interpolation as suggested in [17]. Using the trapezoidal rule for integrating the far
field pattern the approach allows fast and accurate solutions of the direct problem.
The dimension of the trigonometric polynomials for the reconstruction was chosen
to be 21 (N = 10) in all examples.

To illustrate the performance of the second degree method we consider the wave
number £ = 1 and a rounded rectangle defined by

9 10

as the actual scatterer. This is one of the examples we tested, where a significant
difference to the Newton method occurred. In some experiments the performance
of both methods was very similar, but we never observed a case where the New-
ton method reached a significantly better reconstruction than the second degree
approach.

Accurate artificial data computed by a different boundary integral equation based
on the representation theorem were used. Figure 5 shows the result after the first
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Figure 6: Reconstructions from noisy data

iteration and after 20 steps. The full line represents the reconstruction, the dashed
line the actual scatterer and the dotted line the starting guess. Observe that the arti-
ficial indentation constructed by the Newton method in the initial iterations cannot
be completely corrected. The second degree method avoids this artifact entirely.
This difference cannot be seen in the relative residual error |[ul, — F(r,)|/||ul]l
plotted as the solid line curve on the bottom. The dashed error curve shows the
approximation of the L? error of the difference in the reconstruction and the original
boundary.

For such noise free testing the regularisation parameters were fixed with a = 0.01
for the Newton method and «; = 0.001, ay = 0.01 for the second degree scheme.
Increasing the parameter in the Newton method can smooth the indentation but
with the price of getting poorer reconstructions in the shadow region. The incident
direction d of the plane wave is marked by an arrow in the figures. Of course,
if we use more information by adding further incident waves we can improve the
reconstructions in both methods.

As is usual in such problems, the choice of the regularisation parameter is more
delicate in the case of noisy data. Figure 6 shows reconstructions from a more
difficult initial guess when 10% random noise was added to the data. We model
noisy data by adding a random vector of 10% of its approximated L? norm. The
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results presented in figure 6 show the reconstruction closest to the mean value of the
error from 100 runs with varying random noise. We have chosen o = 0.5, a; = 0.05
and oy = 0.5 which was sufficient for all tests with this noise level. Note that
the second degree iteration starts slower. This is compensated after a few iteration
steps. The second picture in each method was stopped when the relative residual
error was less than 15%. The number of iterations required is provided at the top
of the pictures.

7 Some variations on the basic scheme

In the predictor—corrector scheme (1.4), (1.5) it is the second inversion that utilises
the second degree model, the first step in (1.4) is required mainly to obtain the value
of h in order that (1.5) be a linear operator in h. This suggests that we might have
flexibility in modifying the predictor step and indeed we considered several options.
However, none of these appeared to improve on the scheme (1.4), (1.5).

First, at the nth iteration step we can simply take h = h,_1, namely the value for h
used at the previous iteration. This has the advantage of simplicity and not requiring
an inversion of (1.4) along with attendant concerns about correct regularisation. In
practice this approach worked poorly. The rapid initial convergence of the scheme
guaranteed that the value of the perturbation h varied significantly from the previous
iteration and so the predicted value h was invariably of too large a norm.

Second, we can use a Landweber update for the predictor step. This would amount
to replacing (1.4) by )
b= u(F'[e)) (6" — F(r.)

with a scaling parameter p > 0. If an inequality like (2.9) is still satisfied then
convergence could also be obtained. The effect of a Landweber step is quite different
from that of a Newton one. The former tends to preferentially improve the low
frequencies of the solution whereas the latter tends to improve the high frequencies.
This might seem an ideal choice since the predictor and corrector would then have
properties that might be beneficially complementary. A drawback is the need to
compute the adjoint operator of F’. This is sometimes easier to obtain than the
derivative itself, but we are forced to compute F’ anyway on the way to computing
F" as required by (1.5). From tests of this approach we usually could not observe
any advantage since a better regularisation effect could be compensated by choosing
larger values for a; and a,. As a another suggestion along these lines, we can
incorporate the second degree method into a Levenberg-Marquardt scheme applying
it to one or both the predictor or corrector step.

We can also modify the corrector step in a variety of ways. One of the most obvi-
ous, and again borrowed ideas from the numerical solution of ordinary differential
equations, is to iterate the corrector step. This means we use h computed again in
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the same equation (1.5) as a predictor and determine a (hopefully) better update.
Sometimes slightly better reconstructions can be obtained by this idea but we rarely
found it worth the (slight) additional computational cost.

For Newton’s method, Bakushinski [Ba] showed that adding an additional penalty
term of the form [3;(z; —xy) to the inversion step can act as a further regularisation.
For a scheme using Tikhonov regularisation this is

201 =y = (F'[as]) Flag] + ag )~ ()" (Flas] = g) + a(a; = w0)).

He showed a convergence result for this method and established a stopping criterion
for dealing with noisy data. The additional term penalises the solution for differing
by too much from the initial guess. While this can stabilise an otherwise divergent
sequence one can often achieve the same effect simply by increasing the Tikhonov
parameter «;. The Bakushinski-modified scheme usually requires substantially more
iterations than the unmodified one. The idea can be applied to either the predictor
or, we would expect with greater possible advantage, to the corrector. Of course we
could implement this additional penalty in both steps.

Both (1.4) and (1.5) require regularisation for stable inversion, but we can use
quite different regularisation schemes in the predictor and the corrector. We have
noticed that good results are often obtained by using a smaller value of regularisation
parameter in the predictor step than in the corrector, in fact a smaller value than
would be necessary to stabilise the scheme using only the predictor (or Newton’s
method). This is only a statement that the second degree step is able to “correct”
relatively minor levels of instability arising from the first stage. There is nothing to
prevent the use of say spectral-cut off in one step and Tikhonov in the other, and
indeed such a combination may be of value for certain types of problems.

Finally, we comment on the case where the derivatives in (1.4) and (1.5) evaluated at
a general point x cannot be computed without considerable computational expense.
Assuming that the computation is possible either analytically or numerically at
some value Z (possibly corresponding to a constant coefficient or simple geometry)
then we can view the frozen predictor-corrector scheme described above as a quasi-
Newton method with the second degree term “correcting” the “predicted” derivative.
Applying a first order Taylor approximation to F' we obtain F'[z]h = F'[z]h +
F"[&)(x —z,h). If we use again a Newton step as the predictor then this would lead
to an alternative quasi Newton scheme differing from the frozen version of (1.5) due
to the absense of the factor of % On the real line we arrive at the iteration scheme

_ f(an) [ (2n)
In+1 = &n — ! 2 " )
instead of (1.6). The scheme (7.1) is also known in the literature. It appears to be

originally due to Schrider (see [ST]) and was designed to handle multiple roots. This
suggests there may well be alternative correctors with quite different properties and

(7.1)
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in fact their applicability may extend beyond the use as quasi-Newton approximants
to the first derivative.

Appendix: Proof of Theorem 6.1

Let us start with some general remarks on the second derivative of an operator
with respect to a domain. The problem in defining a second derivative lies in the
definition of the first derivative in direction “h;” on a perturbed boundary 0D, =
{z+ hy(x) : x € dD}. We consider two sufficiently small variations of the boundary
D described by vector fields hy, hy € C*(0D). Without changing the notation we
shall use hy, hy € C*({|xz| < R}) for extensions, which are assumed to have a support
in a neighbourhood of dD. If we allow an arbitrary extension of h; (as in the proof
of the frist derivative, [15]), we would obtain (0Dy,)n, = {x+ ha(x) +hi(x+ he(z))
x € 0D}. But this is not symmetric and the variation of 9Dy, is depending on hs.

If we consider a set of admissible domains fixed by a certain type of parametrisation
(for instance starlike, see below), the variation of the perturbed domain is given by

(ath)hl = {T + hQ(T) + hl(’I‘) e aD},

which leads to a linear space of variations. Under such an assumption the existence
of heigher order derivatives for boundary integral operators is established in [20]. A
different approach is suggested in [24]. From the previous observation we define the
second derivative by a bounded bilinear operator satisfying

sup HF’[aDhQ]Bl — F'[aD]h, — F"[0D](hy, hs)

lim
1h>]1=0 | Ba | =1

‘ —0, (A1)

where h; = hy o 1y with the inverse function 1), of the diffeomorphism pa(x) =
x + hy(x) using a sufficiently small extension of hy with compact support. Then we
obtain from the first order approximation by = hy — Jy, ha+ O(||hy||?) and continuity
of F" with respect to the boundary that the second derivative satisfies

F"[8D](hy, hy) = (F'[0D]hy)'hy — F'[0D)(Jp, hs). (A.2)

We use the notation .J,, for the Jacobian matrix of a vector field. The first term
on the left means the domain derivative in direction hy of the first derivative u’_
with respect to the direction h;. The second term is already known and is described
by the far field pattern of a radiating solution v of the Helmholtz equation with
boundary condition v = — (J, hy - v) 3%,

In [24] it is shown that F"” defined by (A.2) ensures a second order expansion of
F. Here we will prove a representation of F” and that F” is the second Fréchet
derivative in the sense of (A.1), which confirms the existence result in [20].

We have to determine the first term in (A.2). Let us consider the weak formulation
of the scattering problem (6.1) (6.3). Green’s formula yields

/ (VuVT — k*ut) do — (Au,v) = / <8u — Aui> vds (A.3)
Q aa \ OV
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forallv € H={w e H'(Q) : w|sgp = 0}, where Q = R¥X\Dn{zr € RV : |z| < R}
(N = 2,3) with R > 0 such that D C {|z| < R}. H*(Q2) denotes the usual Sobolev
spaces of order s € R. The radiation condition is incorporated in equation (A.3) by
a non local boundary condition on |x| = R described by the Dirichlet-to-Neumann
operator A : H'2({|z| = R}) — H '?({|z| = R}) with Au = %2, where w is the
radiating solution of the exterior Dirichlet problem, (A +£%)w = 0 in RV \{|z| < R}
and w = u on the boundary. Thus, the scattered part u*® of a solution of (A.3) can be
extended to a radiating solution u* € H (R¥\D) of the Helmholtz equation. The

loc

dual pairing (.,.) in H=Y/2(0D) x H'/2(9D) is defined by the bounded extension of
(f,v) = / fvds for f € L*({|z| = R}) and v € H'?({|z| = R}).
|z|=R
With this notation we define the sesquilinear form
L(u,v) = / [VuVs — k*ut] dx — (Au,v).
0

Then the scattering problem is equivalent to

L(u,v)=(f,v), forallve H

ou’ ,
fyv :/ ( Au’)T)dS.
wo=[ (5

Moreover, this variational equation is uniquely solvable for any f € H (), [15].

with

With an extension of h; and h, we can define the material derivative
w; =u;+ h; - Vu € H,

where ] denotes the domain derivative defined by (6.4), (6.5). A slight modification
of the proof presented in [15] (see also [11]) shows that w; € H is the derivative of
u in €2 in the sense of

1

Thillor [in, — u—wil[g — 0, if |[hi]ler — 0. (A.4)

Here we use the notation @, = uy,(x + h;(z)) with the solution u,, of the scattering
problem with boundary 0Dy, = {x + h;(z) : © € 0D}. The material derivative w; is
the unique solution of

E(wi,v):/ [Vu AT+ K div(h)] de (A.5)
Q

for all v € H with A; = Jp,, + JhTZ_ — div(h;)I and the Jacobian matrix .Jp,, of the
extension of h;.
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Now we proceed as follows. For fixed h; we consider the variation of w; with respect
to hy. Therefore we introduce the notation w, 5, which is the material derivative in
the direction h; replacing D by Dy = {x + ho(z) : € D}. From the sesquilinear
form £ acting on this function we obtain by certain estimates the existence of a
derivative with respect to hy. Finally we can split this derivative in w] = (u})" + ¢
with a radiating solution of the Helmholtz equation (u})" and a locally supported
function g. Computing the boundary values of g leads to the boundary value problem
representing the domain derivative (u})’.

The definition (A.5) of w; leads to

/ [le,;m - Vv — kQU)l’h?ﬁ] dx — <Aw1’h2, U>
Qpy

— / [Vun, A1 VT + k*up, v div(hy)] da.
n,

We define the diffeomorphism ¢;(z) = = + h;(z) mapping Q onto Q, assuming h;
is sufficiently small (; = 1,2). In order to avoid the dependence of the domain of
integration on hy a change of variables leads to

/ [vmw (Ju, T, det(J,,)) VT — ki 5,7 det(Jm)} dr — (Ao gy, v)
Q

_ / [vahz (J,,,ZAJJQ det(Jw2)> V?‘)—i—k%lhﬁd%)det(,]w)} dz,
Q

for allv € H, where (x) = w(p,(z)), A;(x) = A (p2(2)) and 1y denotes the inverse
function of ¢y. By equation (A.5) it follows that the difference to the material
derivative w; is

L(W1,p, — w1, v) (A.6)

= / [vml,hz (I = Jy,Jy, det(Jy,)) VO — k*by 5, 0(1 — det(Jw))] dzx
Q

—_

+ / [va,m (JWAlJJQ detJ,, — Al) VT + ki, T (div(hl)det(,]w) - div(h1)> ] dz
Q

+ /Q [V(a,m — u) A Vo + K (ap, — u)miv(hl)] dz.
Elementary calculations provide the estimates
[det(Jy,) — 1 —divhillee = O(llhillcr)
Ty, Ty, det(Tp,) — T+ Aillo = O([[ille)
||d/i\\’ﬁ1det(JW) — div(hy) — div(hy)div(hy) — V(divhy) - hollee = O(||h2]|Z)
||J¢214~11J$2det(Jm) — Ay — Aydivhy + Jp, AL + AthT2 — Al ()|l = O(|hall2n),
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where the matrix A’ (hy) is defined by its elements (A} (h2)),; = V((A1)ka) - ho.

By the difference (A.6) a perturbation argument as in [15] yields that w, € H
depends continuously on hy,. Moreover, this continuity implies through the above
estimates that w; is locally differentiable with respect to hy in the sense of (A.4)
and the derivative w] satisfies

L(wy,v) = / [leAQVE—i-kaﬁdiv(hg)} dx
Q
_ / V(T Av+ AL, = Avdiv(hs) = A4(h2)) V3 da
Q
k2 / [V(divhl)-h,g-l-div(hl)div(hQ)} T dz
Q

Q

for all v € H. We observe that the right hand side of this equation has a support
in the neighbourhood of 9D. Therefore there exists a splitting w] = (u})" + ¢, with
a radiating solution (u})’" of the Helmholtz equation in RV \ D which is identical to
w) in the exterior of the support of h; and hy. Since w] € H vanishes on 9D, the
Dirichlet boundary values of (u})" are determined by g¢.

Consider the first and the last integral in the variational equation (A.7). By the
identity

Vuw (J + J, —div(h) I) Vv (A.8)
= div|[(h-Vw)VU+ (h-VU)Vw — (Vw - VU)h]| — (h-VU) Aw — (h-Vw) AT

and using the boundary conditions w; = v = 0 on @D and the divergence theorem
we obtain

/Q [Vw; A, Vo + k*wvdiv(h)] da
= /Q div [(h,i - Vw,) - VT + (hi - V)V, — (Y, V?‘))hi] dz
/Q [(h,i Vw,;) AT+ (hi - VT) ij} dr + kQ/Qwﬁdiv(hi) dz
= /Q [V(hi - Vw;)VT — k*(h; - Vw;)D] d
— /Q(hll - VD) A (uf + by - Vu) de — k? /Q(hZ - VO)w; dx
= L(hiVw,,v) — /Q(m VD) ( A (hy - V) + K2 (h; - vu)) dz
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for i # j, since uj is a solution of the Helmholtz equation. Equation (A.7) yields
L(w] — hy - Vwy — hy - Vwy, v) (A.9)
= —/ |:VU(J}12A1 + Al‘]l;z - AldthQ - All(hQ))V@] dx
0
i / (V(divhl) Dy +div(h1)div(h2))um
Jo
—/(hl-w)(A (hy - V) +k2(h2-Vu)> dz
0
—/(hQ-W)(A (h1 - V) +k2(h1-Vu)> dz.
0
In extension of equation (A.8) we compute the identity
Vu (JyA+ AJL — (divh)A — (A'(h)) ) Vo
= div [(h- Vu)AVv + (h- Vv)A Vu — ((A"Vu) - Vo)h]

—(h - Vu)div(AVv) — (h - Vo)div(A'Vu).
(

Applying this equation in the first integrand on the right hand side of (A.9) implies
by the divergence theorem

/ [vu (Jny A1 + A1 J) — Ardiv(he) — A (he)) V@} d (A.10)
Q
- / div[(h2 V)AL VT + (hy - V)ALV — (A V) W)hQ} dz
JQ
- / [(h,2 - Vu)div(A4, Vo) + (hy V?‘))div(A1Vu)} dz
Q

_ / [V (hy - Vu) A VT (hy - VO)div(4, V)| da

(note that A; is symmetric). It follows from the Helmholtz equation applied to u
that div(A] Vu — V(h; - Vu)) = k2div(hi)u + k?h, - Vu. Applying this identity to
the second term of (A.10) and the equation (A.8) to the first term, we obtain by
the divergence theorem and the boundary conditions that

/ [VU/(J}ZQAl + AlJl;FQ - Aldth,Q - All(h,g))VY_)] dx
Q
- / div[(hy - ¥ (hy - V) VT + (s - V)V (hy - V) — (V(ho - Vu) - VE)y |
Q
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—/(hl-V(hg-Vu))Ade —/(hl-V@)A(hQ-Vu)d:r

Q

- / (hy - VD) ( A (hy - V) + k2div(h))u + E2h, - vu) dz
Q
= / V(hy-V(hy-Vu))-Vudz
Q
/ [(h1 VD) A (hy - Vi) + (hy - VD) A (hy - vu)] dz
Q

—k° / (he - VO)udiv(hy) + (hy - Vu)(he - VO) dx.
Q

We insert this equation in (A.9) and obtain using the boundary condition u =v =0
on 0D

E(w'l - hl . VU)Q - h2 . le, U)

- kQ/ (V(divhl)-h2+div(h1)div(h2))umx

V(hy - V(hy - Vu)) - Vudz

JQ

+k° / (hy - VO)udiv(h,) dz — k* / (hy - VO)(hg - Vu) dz.
0

= — / V(hy-V(hy-Vu))-Vudz

[ [t Fupdiv(n) + (- 99) - ) d
Q
= ~L(h-V(hy-Vu),v).

The last identity shows by the invertibility of the sesquilinear form that
wll = (ull)l + hy - Vwy + hy - Vwy — hy - V(h2 . Vu)

in H'(Q2), where (u})" can be extended to a radiating solution of the Helmholtz
equation in R¥\ D. Thus, on the boundary D we obtain

I\/ ! 81,0
(u}) = —hy - Vul — hQ,,,a—yl. (A.11)

Note that this domain derivative of u} depends only on the normal component of
hs.
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In deriving the boundary condition for the second derivative u” defined by (A.2) we
have to subtract from (A.11) the boundary value —l/TJhlhgg—’,j of the domain deriva-
tive of u with respect to the direction Jy, hy. Let us consider the two dimensional
case. By the boundary condition of ui, we obtain

Ouy bt Vihs V@ h, V@(h,1 -Vu)

= P 81/) ov

Y ov ov
ou

(V I Thy s +v Jhlyhg,,> £

The following Lemma and the identity 7 - V(4%) = 7H,v, which follows from u = 0
on the boundary, we continue in computing

ou ou’ ou
noo_ —h v 2 —h 3 1 h )
" ) 28y
ou ou
+h1 a7 V(hg 1,)6— + VTJth h27—$.

By orthogonality holds v " Jy, ho; = hyr - V(hi,) — horhi (77 J,7) and we obtain

ou! ou! ou
"o _h v 2 _h v et h Vh, .
! o gy TRy
T ou
+ h‘l,TT . V(h,g’y) + h/2’7-7_ . V(hlyy) — (T JVT)hl,Th'Q,T 5

Since for the curvature holds k = 7" .J,7 we conclude the boundary condition (6.7).

Similar we can obtain from (A.11) the boundary condition in R*. Note that the
above proof shows the second Fréchet derivative of u., for instance for starlike
domains. Finally we complete the proof by the following Lemma.

Lemma A.1 Let u € C*(R*\D) (n = 2,3) be a solution of Au + k*u = 0 with
ulogp = 0. Then

v Hy = —(n — 1)/{5 on 0D

is satisfied, where H, is the Hessian matriz of u and k denotes the (mean) curvature
of the boundary 0D.

Proof: We start with the two dimensional case: Let ® be a local parametrisation
of the boundary in a neighbourhood of a point zy = ®(0) € 9D with |®(0)| = 1.
Then at x, we compute from v(z) = (2(0), —=®(0)) "

., 0%u ., 0% .. 0%u
"Hy = (9y)°— + (9,)?=— — 29, .
Y v=(2) Ox? + (@) O3 "2 921 0
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On the other hand, differentiating the boundary condition u(®(v)) = 0 twice leads

to
., 0%u ., 0%u . . O%u ou - ou -
= (D))= + (D9)* = + 20, D
0=(®1) ox? +(®2) 0z’ T+t 2 01,015 + 0x, 0xy

The sum of both, the Helmholtz equation, and the boundary condition implies

v Hyy =Vu- P = —ﬁ@.
ov

The case of three spatial dimensions is similar: Let ®(vy, v9) denote a local parametri-
sation of dD in a neighbourhood of ®(0,0) =z, € 9D with

o0d o0d 0P 0o

0| =|3r00| =1 S0 50,0 =0
and d o®
v(zo) = 671(0’0) X 672(0;0)-

A lengthy but straightforward calculation shows

0\ i

on\' o0 (00)T . 00

o o 0y 0y
o\ " T

(0w o0 (oeNT 0w
oy o 0vy 0y

at xy by the Helmholtz equation and the boundary condition u|gp = 0.

v Hy = Au(

From the boundary condition we also observe Vu - g_j; =0, 7 = 1,2. Differentiating
again with respect to v; leads to

o\ 9P R

+— | Hi7—+Vu-—=0.

dv; v, ovs

Now we consider the mean curvature at g and obtain

K

ov 0 Oov 0P <8QCI> 62<I>>

T 0u Ov, | Oy Ovy ? O
Combining the last three equations yields

v (x)Hy (20)v(20) = 2/{(.%0)%(.%0)

which finishes the proof.
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