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r(x) := F (x) � g, the Gau�{Newton method or modi�cations [2]. In essence theseschemes rely on a �rst order model; F is approximated byF (x+ h) � F (x) + F 0[x]h (1.2)and the present approximation x is corrected to x + h by setting F (x + h) = g. Ifthe problem is ill{posed, as almost all inverse coe�cient problems are, then certaindi�culties occur. The ill{posedness stems from the fact that the map F is compact,a property inherited by the derivative F 0. Thus the inversion of the map F 0[x]hwill require regularisation and this is typically accomplished by �nding an invertibleapproximant of F 0 or suitably restricting the class of allowable solutions x, and,possibly, combining this with a stopping rule governing the iteration process.A second degree model would seek to determine the correction h to the current valuex from the Taylor polynomialF (x+ h) � F (x) + F 0[x]h + 12F 00[x](h; h): (1.3)In the least squares setting, the second derivative of � involves the residual multipliedby the individual hessians. This can lead to diminishing returns if the residual issmall.In the optimisation literature there have been many schemes and implementationsthat utilise the second derivative in approximating solutions of (1.1). However, thesehave tended to be less popular than schemes that require at most a single derivative,see for example [2]. In particular, it is rare in the inverse problems literature to seethe use of derivatives higher than the �rst. However, some results in the case ofill{conditioned problems in Rn are known from approaches using an approximationof the second derivative [23].In the general theory, there are two main reasons cited for avoiding the use of schemesrequiring the second derivative. The �rst is that if the residual is small, then thesecond derivative is also small; thus near convergence the contributions of the termsinvolving the higher order derivatives is negligible. This is particularly pronouncedwhen the nonlinearity in the function F is mild. The second is based on the factthat in many applications the increased convergence rate of the higher order schemedoes not repay the computational e�ort of computing the Hessian matrices.As we will show in this paper, these objections are to some extent unfounded formany classical inverse problems in partial di�erential equations. As noted, suchproblems are frequently highly ill{posed and require some regularisation procedure,typically by constraining some aspect of the solution being sought. In consequence,the data, even if accurate, may arise from a function not in the designated con-straint class and so the residual will never be zero. In the presence of noise, moreregularisation will be required further restricting the degree to which the residualcan be reduced. Indeed, it has been observed over a wide variety of problems that2



iterative solution algorithms should usually terminate the iteration procedure beforethe residual reaches the minimum possible by the method [5].For many undetermined coe�cient problems in partial di�erential equations whereone is trying to invert the map F from the unknown coe�cient c to the data g, it ispossible to represent the derivative F 0 as the solution of a di�erential equation withsimilar form to that specifying the map F . In this case advantage can be taken ofthe e�ort already performed in the computation of the direct map F to computeF 0 relatively cheaply. A similar situation also holds for the second derivative of themap. In the examples we use to illustrate the scheme, both of the �rst and secondderivatives can be computed at less than the cost of another direct solve.Even in those situations where derivatives cannot be evaluated without consider-able additional computation or where either the nonlinearity is relatively weak orthe data error small, there is potential advantage in using our second degree scheme.The advantage of using a \frozen" Newton method, where the derivative is held atan initial guess throughout the iteration process has been demonstrated in a widevariety of inverse coe�cient problems. By choosing a su�ciently simple coe�cient,for example a constant, it is sometimes possible to explicitly compute the rele-vant derivatives. In this situation one is also able to better estimate the degree ofregularisation required for stable inversion. Even if this explicit calculation is notfeasible, the method can provide computational advantages. One disadvantage ofthis approach is that inevitably more iterations are required. However, this can becompletely o�set by using a second degree scheme that freezes both the �rst andsecond derivative at a known solution. Indeed, in this case one can often get e�ec-tive numerical convergence with less computational e�ort from the second degreescheme using frozen derivatives than one can by using the full Newton method.There is a further di�culty in using a second degree model; to update the correctionh in (1.3) requires the solution of a quadratic equation to be (regularised and)solved at each iteration step. To avoid this, we use the following predictor{correctorprocedure. Let x0 denote a starting guess and let ~h be computed by a Newton step,F 0[xn] ~h = g � F (xn): (1.4)Then the next iteration xn+1 = xn + h is de�ned from the second degree Taylorremainder by the solution of the linear equationT [xn]h := F 0[xn]h + 12F 00[xn](~h; h) = g � F (xn): (1.5)Of course, in each of (1.4) and (1.5) we must address the regularisation issue.Some advantages are seen at once in one dimension. We can combine both stepsand obtain the iteration schemexn+1 = H[f ](xn) := xn � f(xn)f 0(xn)(f 0(xn))2 � 12f 00(xn)f(xn) : (1.6)3



to approximate a root of f : R ! R. This scheme can handle several functionslike f(x) = exp(ax) � 1 with large a > 0 and a small but negative starting guess,where the classical Newton method slows down or fails. In fact, (1.6) has beenknown for some considerable time; its essence was used by Halley to extract rootsof polynomials to high accuracy [7]. The connection with derivatives was only madesome decades later and it was full century and a half before the iteration functionformulation of (1.6) was adopted. For a historical survey of the method in onedimension see [22]. Even in one dimension the two stage predictor-corrector meansof solving the second degree Taylor approximation of f (1.4){(1.5), seems not tohave been considered, although other relations to Newton's scheme have been noted.For example, it has been observed that N [f=pf 0] = H[f ] where N [f ] is the usualNewton iteration function applied to f .We are not claiming that the second degree method is a more stable algorithm orindeed that it o�ers superior �nal reconstructions. The lack of compactness in Fthat is inherited by F 0 is also inherited by the second derivative and so the additionalterm cannot be expected to signi�cantly change the ill{conditioning of the problem.In some cases the second degree method with frozen derivatives involved a slightlybetter{conditioned inversion in the corrector step than in the predictor (which isthe only one that would be used in a �rst degree model). However, we did �ndadvantages in the �nal reconstruction and often a signi�cant improvement in thenumber of iterations (and in the computational e�ort) required before the stoppingcondition terminated the iteration process.In the next section of the paper we shall show that the scheme (1.4), (1.5) gives ageneral solver for well{posed nonlinear equations as long as the second derivative isavailable. Its application to ill{posed problems requires regularisation of both thepredictor and the corrector step and of course we also need a stopping criterion toensure a reliable approximation. The main part of section 2 will show that usingTikhonov's regularisation for the linear equations and a certain stopping rule willlead to convergence of the scheme under similar conditions as the regularised Newtonmethod [8] or the Landweber iteration [10].Retaining the predictor-corrector approach to the second degree method leaves manypossible variations to be considered. For example, we will hold the derivative op-erators constant at the value obtained from the starting guess and refer to suchschemes and their components as \frozen Newton", \frozen predictor", \frozen cor-rector" etc. We focus on the \full" and the \frozen" schemes. In a last short sectionsome other possible modi�cations are discussed.The subsequent sections are devoted to the analysis of our second degree methodas applied to four standard undetermined coe�cient problems. By this means wehope to bring out what we see as the main features of the method and using thiscollection of problems we will address the issues raised earlier in the introduction. Insection 3 we apply the scheme to a problem where a parameter has to be determined4



from multiple input sources and show that the convergence condition of section 2holds. The excellent performance of the second degree method with frozen deriva-tives compared to full Newton is demonstrated. In section 4 we consider the classicalinverse Sturm{Liouville problem and we will derive an explicit formula based on ourpredictor{corrector scheme where the derivatives are taken about the initial constantpotential. We will show that this gives an excellent approximation to even relativelylarge potentials from the initial guess, that is, without recourse to computing eventhe direct map F (q). In section 5 we consider the problem of recovering the supportof an unknown source in Poisson's equation from Cauchy boundary data. In thiscase we see that the very mild nonlinearity involved makes the use of the seconddegree scheme less compelling. Finally, in section 6 inverse obstacle scattering isinvestigated. We show that both the �rst and second derivatives can be computedhere from a scattering problem of identical nature to that for the computation of F .Thus the additional overhead in implementing the scheme (1.4), (1.5) is relativelylow and in consequence there is considerable computational advantage in using thesecond degree method.2 A second degree methodFor ill{posed problems a regularisation strategy of the scheme (1.4), (1.5) is required.We will suggest such a method and in fact show convergence with respect to noiselevel, but we �rst consider well{posed problems; presenting a proof of convergenceanalogous to the established procedure for the classical Newton method [25].Theorem 2.1 Let X; Y be Banach spaces and x̂ 2 U � X denote a solution ofF (x) = g. Assume F 0[x̂] admits a bounded inverse and F 0 and F 00 are uniformlybounded in U . Then there exists � > 0 such that the iteration (1.4), (1.5) withstarting guess x0 2 B(x̂; �) = fx 2 X : kx̂� xk < �g converges quadraticly to x̂. Ifadditionally the second derivative is Lipschitz continuous, i.e.kF 00[x](h; ~h)� F 00[y](h; ~h)k � Lkx� yk khk k~hkfor all x; y 2 U with h; ~h 2 X and a constant L > 0, thenkxn+1 � x̂k � ckxn � x̂k3holds for n = 0; 1; 2; : : : with a constant c > 0.Proof: The proof consists of three parts. First we prove that an iteration step iswell de�ned in a neighbourhood of x̂. Then we continue in showing that the iteratesremain in such a neighbourhood. The third part establishes the estimates which arerequired for the convergence result. 5



From Newton's method we know, if �0 > 0 is su�ciently small, that (F 0[x])�1 existsfor x 2 B(x̂; �0), is uniformly bounded in this neighbourhood, and depends con-tinuously on x 2 B(x̂; �0). Thus T [x] de�ned in (1.5) depends continuously on x.Additionally we observe that T [x̂] = F 0[x̂]. Again by a perturbation argument wecan reduce �0 such that (T [x])�1 exists in B(x̂; �0) and is uniformly bounded (replacexn by x and xn�1 by x̂ in (2.1)). This shows that an iteration step (1.4), (1.5) iswell de�ned if xn is su�ciently close to x̂.Next we show that the iteration remains in a neighbourhood of x̂. Let � > 0 denotean upper bound of kT (x)�1k and kF (x)�1k in B(x̂; �0). We choose 0 < � � �0=3such that kT [x]� T [x̂]k � 12� for kx� x̂k � 3� and 4�C 00� < 1, where C 00 denotesan upper bound of kF 00[x]k = supkhk=k~hk=1fkF 00[x](h; ~h)kg for x 2 B(x̂; �0).Now we de�ne 0 < � < � with kg� F (x)k � �� for all x 2 B(x̂; �). Let ~xn = xn�1 +(F 0[xn�1])�1(g � F (xn�1) be the predictor. Then x0 2 B(x̂; �) yields k~x1 � x0k � �and kx1 � x0k � �: Considering the Neumann series inT [xn] = T [xn�1]�I + (T [xn�1])�1(T [xn]� T [xn�1])� (2.1)leads to k(T [xn])�1k � k(T [xn�1])�1k1� k(T [xn�1])�1k=(2�) � 2�:From the inequalitieskxn+1 � xnk = k(T [xn])�1(g � F (xn))k� k(T [xn])�1k kF (xn)� F (xn�1)� T [xn�1](xn � xn�1)k� C 00� �kxn � xn�1k2 + k(F 0[xn�1])�1(g � F (xn�1))k kxn � xn�1k�� 12kxn � xn�1kinduction shows that kxn+1 � xnk � �. This also holds for the predictor step ~xn+1(replace T [xn]�1 by F 0[xn]�1). Moreover, we concludekxn+1 � x̂k � nXk=0 kxk+1 � xkk+ kx0 � x̂k = � nXk=0 12k + � � 3�:Quadratic convergence of the scheme is obvious bykx̂� xn+1k = kx̂� xn � (T [xn])�1(g � F (xn))k (2.2)� ��kF (x̂)� F (xn)� F 0(xn)(x̂� xn)� 12F 00(xn)(x̂� xn; x̂� xn)k+12kF 00(xn)(x̂� xn � (F 0[xn])�1(g � F (xn)); x̂� xn)k�6



and the quadratic convergence of the Newton method, i.e. kx̂� ~xn+1k � ckx̂� xnk2with c > 0.To show a cubic convergence rate we proceed as in the case of the standard Newtonmethod. For x; y 2 B(x̂; �0), by the Hahn{Banach theorem we de�ne a boundedlinear operator A 2 Y � with kAk = 1 andA�F (y)� F (x)� F 0[x](y � x)� 12F 00[x](y � x; y � x)�= 


F (y)� F (x)� F 0[x](y � x)� 12F 00[x](y � x; y � x)


:De�ning g(t) := A(F (x+t(y�x)) we observe that g : [0; 1]! C is twice di�erentiableand jg00(t) � g00(s)j � Ljt � sj kx � yk3: Since g0 and g00 are continuous, we obtainfrom g(t) = g(0) + g0(0)t� Z t0 g00(s)(s� t) dsthat kF (y)� F (x)� F 0[x](y � x)� 12F 00[x](y � x; y � x)k= jg(1)� g(0)� g0(0)� 12AF 00[x](y � x; y � x)j= ����Z 10 �g00(s)� AF 00[x](y � x; y � x)�(1� s) ds����� Z 10 Lky � xk3s(1� s) ds = L6 ky � xk3:From equation (2.2) followskx̂� xn+1k � � �L6 + c C 002 � kx̂� xnk3: 2Our goal is to apply the method in the case of noisy data g� with kg�� gk � � for agiven noise level � > 0 and an ill{posed problem, i.e. roughly speaking F and F 0[x̂]do not allow a continuous inverse [5]. There are several ways to regularise equation(1.4) and (1.5). From now on we assume X and Y to be Hilbert spaces. Then onepossibility is to apply Tikhonov regularisation to each iteration step�(T [x�n])�T [x�n] + �2I� (x�n+1 � x�n) = g� � F (x�n) (2.3)where T [x�n] is now de�ned byT [x�n]h = F 0[x�n]h+ 12F 00[x�n](~h; h)7



and the regularised predictor step~h = ((F 0[x�n])� F 0[x�n] + �1I)�1(F 0[x�n])�(g� � F (x�n)):Here x�n denotes the n-th iteration arising from noisy data g�.For simplicity, the regularisation parameters �1 and �2 > 0 are chosen to be constantduring the iteration since we only present numerical results using constant parame-ters. More sophisticated parameter strategies are certainly possible (see [8] in caseof the Newton method). In common with other iterative schemes, the regularisationof each iteration step is not in itself su�cient. In a generalisation of the discrepancyprinciple (see [8, 10]) we require a stopping rule, terminating the iteration ifkg� � F (x�n)k � �� � kg� � F (x�j)k (2.4)is satis�ed for all j 2 f0; : : : ; n�1g, where � > 1 denotes an additional regularisationparameter.Our proof of convergence of the above scheme requires an assumption on the non-linearity of the operator F . As for the Landweber iteration [10] and the Newtonmethod [8] we assume thatkF (y)� F (x)� F 0[x](y � x)k � Cky � xk kF (y)� F (x)k (2.5)with C > 0 is satis�ed in a neighbourhood U � X of a solution x̂ of F (x) = g. Underthis condition the following convergence result shows the regularising property of thescheme.Theorem 2.2 Let X; Y be Hilbert spaces and assume F satis�es (2.5) and kF 0k �C 0, kF 00k � C 00 are uniformly bounded on U . Let �1 > 0 and x0 2 U denotesa starting guess such that R0 = kx0 � x̂k < �=(C + C0C002�1 ) with 0 < � < 1 andfx 2 X : kx� x̂k � R0g � U . Moreover, we assume�2 > �1� ��C 0 + C 0C 002�1 ( supx2B(x̂;R0) kg � F (x)k+ �)�2:Then,a) if g� = g, the sequence xn computed by (2.3) is well de�ned and converges toa solution x� of F (x) = g.b) if kg� � gk � � and � > 1 + CR0��R0(C + C0C002�1 ) ;there exists n(�) 2 N0 such that condition (2.4) is satis�ed. Moreover, theapproximations x�n(�) converge to the solution x� if the noise level � tends tozero. 8



The proof of this theorem is closely related to that for the Levenberg{Marquardtscheme presented in [8]. We �rst show the following monotonicity result.Lemma 2.3 Let 0 < � < 1 < 
 with �2 > �1��kT [xn]k2 and x̂ 2 U be a solution ofF (x) = g. We assumekg� � F (xn)� T [xn]ĥnk � �
kg� � F (xn)k (2.6)with ĥn = x̂� xn. Thenkx̂� xn+1k2 � kx̂� xnk2 � 2(
 � 1)�
 kg� � F (xn)k kvnk (2.7)and kx̂� xn+1k2 � kx̂� xnk2 � 2(
 � 1)�2�2
 kg� � F (xn)k2 (2.8)are satis�ed, where vn is de�ned by vn = (T [xn](T [xn])� + �2I)�1(g� � F (xn)).Proof: We use the notation T = T [xn], ~g = g� �F (xn) and h = xn+1� xn. Fromthe Tikhonov equation (2.3) we obtain~g � Th = �2(TT � + �2I)�1~g; and h = T �(TT � + �2I)�1~g:With the abbreviation A = (TT � + �2I) we computekh� ĥnk2 = khk2 � 2(A�1~g; T ĥn) + kĥnk2= khk2 � 2(A�1~g; ~g) + 2(A�1~g; ~g � T ĥn) + kĥnk2= khk2 � 2(T �A�1~g; T �A�1~g)� 2�2(A�1~g; A�1~g)+2(A�1~g; ~g � T ĥn) + kĥnk2= �khk2 � 2�2kA�1~gk2 + 2(A�1~g; ~g � T ĥn) + kĥnk2:From �2 � �1��kTk2 we obtain�k~gk � �kAkkA�1~gk � ��1� �� �2 + �2� kA�1~gk = �2kA�1~gkand using (2.6) this implieskĥnk2 � kh� ĥnk2 = khk2 + 2�2kA�1~gk2 � 2(A�1~g; ~g � T ĥn))� 2�2kA�1~gk2 � 2(A�1~g; ~g � T ĥn))� 2��� �
�k~gk kA�1~gk:9



Inequality (2.7) follows and from k~gk � kAk kvnk � �2� kvnk we conclude (2.8). 2Applying this lemma using noise{free data implies that ĥn constitutes a Cauchysequence and the limit x� is a solution of the problem. For polluted data the lemmais used to show that the iterates are close to the iterates from the noise{free caseprovided the stopping condition does not apply. This is the basic idea of the followingproof of the regularisation properties.Proof of Theorem 2.2. a) Assume � = 0 and de�ne 
 = ��C + C0C002�1 �R0 > 1. Thenthe assumption 2.5 implieskg � F (x0)� T (x0)ĥ0k � �C + C 0C 002�1 �kĥ0k kg � F (x0)k = �
kg � F (x0)k (2.9)by k((F 0[x0])�F 0[x0] + �1I)�1k � 1=�1 (where ĥn = x̂ � xn is de�ned as in theprevious Lemma). Lemma 2.3 yields kx1 � x̂k � kx0 � x̂k and by induction itfollows that kxn+1 � x̂k � kxn � x̂k for all n 2 N :Now we continue by showing that ĥn de�nes a Cauchy sequence in X. Let m;n 2 Nwith m > n and de�ne l 2 fn; : : : ; mg bykg � F (xl)k � kg � F (xj)k; for j 2 fn; : : : ; mg:By the de�nition of T [xj] we obtainkT [xj]ĥlk = kT [xj]ĥj � T [xj](xl � xj)k� kg � F (xj)� T (xj)ĥjk+ kF (xl)� F (xj)� T [xj](xl � xj)k+ kg � F (xl)k� �C + C 0C 002�1 ��kx̂� xjk+ kxl � xjk�kg � F (xj)k+ kg � F (xl)k (2.10)� (3�+ 1)kg � F (xj)k: (2.11)De�ning vj as in the previous lemma implies xj+1 = xj + (T [xj])�vj: From (2.11)and the lemma we obtainj(ĥl � ĥn; ĥl)j = ����� l�1Xj=n((T [xj])�vj; ĥl)����� � l�1Xj=n kT [xj]ĥlk kvjk� (3�+ 1) l�1Xj=n kg � F (xj)k kvjk� (3�+ 1)
2(
 � 1)� �kx̂� xnk2 � kx̂� xlk2�10



which yieldskĥl � ĥnk2 = 2(ĥl � ĥn; ĥl) + kĥnk2 � kĥlk2� �(3�+ 1)
2(
 � 1)� + 1� �kx̂� xnk2 � kx̂� xlk2� :Since the analogue result holds for kĥm � ĥlk, we concludekxm � xnk2 = kĥm � ĥnk2� 2�(3�+ 1)
2(
 � 1)� + 1��kx̂� xnk2 � kx̂� xmk2� :By monotonicity this shows convergence for n!1.It remains to show that the limit x� of xn is a solution. Lemma 2.3 yieldsNXn=0 kg � F (xn)k2 � �2
2(
 � 1)�2 �kx̂� x0k2 � kx̂� xN+1k2� :Thus, the sum is bounded for N !1 and we obtain limn!1 kg � F (xn)k = 0. Conti-nuity implies F (x�) = g.b) Now assume � > 0 and de�ne xn to be the computed solution using exact dataand x�n the solution computed from noisy data g�. If n(�) > 0, i.e. kg��F (x0)k > ��,we obtain from the assumption on the Taylor remainderkg� � F (x0)� T (x0)(x̂� x0)k� (1 + Ckx̂� x0k)� + �C + C 0C 002�1 �kx̂� x0k kg� � F (x0)k� �1� + C� R0 + CR0 + 12C 0C 00�1 R0�kg� � F (x0)k:The choice of � shows that 
 := ��1 + �(1 + �)C + C0C00�2�1 � kx̂� x0k > 1 and thusLemma 2.3 implieskx̂� x�nk2 � kx̂� x�n�1k2 � 2(
 � 1)�2�2
 kg� � F (x�n�1)k2: (2.12)The de�nition of n(�) leads ton(�)� 2�2 � n(�)�1Xj=0 kg� � F (x�j)k2 � �2
2(
 � 1)�2kx̂� x0k2;11



which shows that n(�) is �nite.We can easily show by induction the continuous dependence x�n ! xn for �xed n 2 Nand � ! 0. Now two cases have to be considered.First, we assume that the sequence n(�) has a �nite accumulation point, i.e. withoutloss of generality n(�) = N for � � �N . Then followslim�!0 x�n(�) = lim�!0 x�N = xN :Moreover, by the de�nition of n(�) we know kg� � F (x�n(�))k � ��: Taking the limit� ! 0 implies F (xN) = g, and we conclude lim�!0 x�n(�) = xN = x�:In the second case we assume that a subsequence of n(�) is unbounded and obtainfrom (2.12) that kx� � x�n(�)k � kx� � x�mk for all m � n(�). For � > 0, choose msu�ciently large such that kx� � xmk � �. Without loss of generality we choose�m > 0 with m � n(�) and kxm � x�mk � � for all � < �m and we concludekx� � x�n(�)k � kx� � xmk+ kxm � x�mk � 2�:Combining both cases proves the assertion. 23 A parameter identi�cation problemConsider the problem of determining the unknown conductivity a(x) from�(au0)0 = fj; 0 < x < 1; u(0) = u(1) = 0: (3.1)We assume the input source functions are of the form fj(x) = sin j�x, j 2 N , andfor a given value of a we denote by uj(x; a) the solution of the direct problem solving(3.1). The additional data needed to recover a is gj = u0j(0; a).Let F : U ! ~l2 be the map a 7! fu0j(0; a)g1j=1, where U � fa 2 H1[0; 1] : a(t) �� > 0; a(0) = 1 = a(1)g and ~l2 denotes the Hilbert space of sequences fcjg1j=0 withP1j=1 jcj j2j2 < 1. As in example 11.1 of [5], we observe that the condition (2.5) issatis�ed which ensures convergence of the second degree method by Theorem 2.2.The function uj(x; 1) can be explicitly computed, uj(x; 1) = sin(j�x)=j2�2. Thisallows us to compute the required derivatives for the �rst and second degree schemesutilising derivative operators held �xed at a = 1.The Fr�echet derivative (F 0[a]h)j is represented by the value of fvj(0; a; h)g where vjsolves �(av0j)0 = (hu0j)0; 0 < x < 1; vj(0) = vj(1) = 0; (3.2)(see [3]). Integrating this equation from 0 to x gives�a(x)v0j(x) + a(0)v0j(0) = h(x) cos(j�x)=j� � h(0)=j�12



and so, in the case a = 1 and h = sin(k�x) by once again integrating between x = 0and x = 1 and using the boundary conditions on vj we see that(F 0[1]h)j = v0j(0; 1; h) = 1j� Z 10 h(x) cos(j�x) dx= 1j� Z 10 sin(k�x) cos(j�x) dx =: cjkThe values cjk are computed to becjk = k(1� (�1)k+j)j�2(k2 � j2) ; j 6= k and cjj = 0:Now the predictor ~h is taken to be the solution of the equations(F 0[1]~h)j = gj � u0j(0; a)where ~h(x) has the series expansion ~h(x) = PNn=1 ~hsn sin(n�x). This can be solveduniquely for the sequence f~hsng to obtainv0j(x; 1; ~h) = � 1j� ~h(x) cos(j�x) + gj � u0j(0; a): (3.3)A further di�erentiation of (3.1) with respect to a at a = 1 gives�w00j (x) = (~hv0j(x; 1; h) + hv0j(x; 1; ~h))0 0 < x < 1; wj(0) = wj(1) = 0 (3.4)(see [5]) and the value of w0j(0; 1; ~h; h) represent the second derivative of u.Integrating (3.4) in x leads to�w0j(x) + w0j(0) = ~h(x)v0j(x; 1; h) + h(x)v0j(x; 1; ~h):If we take h(x) = sin k�x, then by a further integration from x = 0 to x = 1 usingthe boundary conditions on wj, (3.3) and the series expansion for ~h it follows thatw0j(0; 1; ~h; h) = 1j�� Z 10 ~h(x) dx Z 10 h(x) cos j�x dx + Z 10 h(x) dx Z 10 ~h(x) cos j�x dx�2 Z 10 ~h(x)h(x) cos j�x dx�= NXm=1 ~hsm�1� (�1)mm� cjk � 2j� Z 10 sin(m�x) sin(k�x) cos(j�x) dx�+1� (�1)kk� (gj � u0j(0; 1))13



= � 12j�h~hsk+j + sgn(k�j)~hsjk�jji+ cjk NXm=1 1� (�1)mm� ~hsm+1� (�1)kk� (gj � u0j(0; a)):The �rst degree model with frozen derivatives at a = 1 now requires at each iterationstep the solution of the equationJ~hs = (gj � u0j(0; an))j=1:::N (3.5)with the update an+1 = an + ~h, where Jjk = v0j(0; 1; sink�x). The second degreemethod additionally seeks the solution hs = (hk)k=1:::N of�J + 12H(~h)�h = (gj � u0j(0; an))j=1:::N (3.6)where Hjk(~hs) = w0j(0; 1; ~h; sin k�x). The next iteration is then de�ned by an+1(x) =an(x) +PNk=1 hsk sin k�x.Table 1: Comparison of three Iteration Schemes.Frozen Newton Full Newton Second degreen kan � ak Rn kan � ak Rn kan � ak Rn0 1.2484 0.08042 1.2484 0.08042 1.2484 0.080421 0.8409 0.01693 0.8414 0.01687 0.2873 0.004322 0.6649 0.01702 0.3916 0.00524 0.2568 0.000673 0.5686 0.00864 0.2220 0.00053 0.2304 0.000744 0.4807 0.00934 0.2109 0.00001 0.2222 0.000285 0.4289 0.00488 0.2110 0.00000 0.2167 0.000186 0.3757 0.00568 0.2110 0.00000 0.2142 0.000097 0.3442 0.00290 0.2110 0.00000 0.2127 0.000058 0.3097 0.00359 0.2110 0.00000 0.2120 0.000029 0.2903 0.00175 0.2110 0.00000 0.2115 0.0000110 0.2672 0.00233 0.2110 0.00000 0.2113 0.00000We implemented frozen versions of both the Newton and the second degree method,regularising equation (3.5) and (3.6) only by restricting the number of basis elementsto N = 10, (although we could also have used Tikhonov's method). Taking theactual solution a(x) = (1 + x sin(2�x))�1, a run is presented in Table 1, whichshows the fast convergence of the frozen second degree method in the beginningeven compared to the full Newton scheme. In this example we used the startingguess a = 1 and computed numerical data using a Runge-Kutta scheme on a coursemesh, estimating that resulting output was accurate to within about 1%. The tablerecords the L2 norm error kan � ak2 and the residual Rn := ku0j(0; an) � dk2 foreach of these methods. Figure 1 shows the �nal reconstruction obtained, where thedotted line corresponds to the exact solution. This was essentially identical in allthree methods. 14
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Figure 1: Identi�cation of a(x) = (1 + x sin(2�x))�14 The inverse Sturm-Liouville problemA classical inverse problem is the reconstruction of the potential q(x) from theequation �y00 + qy = �ny given the eigenvalues with respect to certain boundaryconditions [16]. The celebrated result of Borg showed that if, say, y(0) = 0 then thecomplete sequence of eigenvalues f�ng and f�ng corresponding to the two boundaryconditions y(1) = 0 and y0(1) = 0 su�ce to determine the potential q. Further,in the symmetric case q(x) = q(1 � x) the single sequence of Dirichlet eigenvaluesf�ng su�ces. We shall consider this latter problem here using an extension of themethods of [21] to incorporate the second degree method.From the results of [21] a reformulation of the inverse Sturm-Liouville problem is toidentify the potential q as the solution of an overposed boundary value problem forthe Goursat problemutt � uxx + q(x)u = 0 for 0 < t � x < 1 (4.1)with u(x; 0) = 0; u(x; x) = 12 Z x0 q(s) ds (4.2)and subject to the data on x = 1, u(1; t) = g(t). We shall denote the solutionof (4.1) and (4.2) for a given q by u(x; t; q). As shown in [21], the function g canbe constructed from the eigenvalue data and is the unique solution of the integralequation R 10 g(t) sinp�nt dt = � sinp�n for each n = 1; 2; : : : . The asymptoticsof the �n guarantees that this is easily and stably solved for g(t). Some preliminaryanalysis shows also that one can reduce the problem to the situation of a potential15



with zero mean, that is R 10 q = 0 and thus the function g(t) can be taken to be oddabout the origin and g(1) = 0.We now must consider the mapping taking potentials onto the data. In fact it ismore convenient to choose the map such that F : L2[0; 1] ! L2[0; 1] is de�ned byF [q](t) = ut(1; t) = g0(t).One can compute the derivative of the map F , and in particular the derivative heldat the zero potential F 0[0]h gives valuable insight to the problem. In fact, as shown in[21], the frozen Newton method gives remarkably good results. An easy calculationshows that F 0[q]h must be given as the solution u0(x; t; q; h) of the Goursat problemu0tt � u0xx + q(x)u0 = �hu for 0 < t � x < 1with u0(x; 0) = 0; u0(x; x) = 12 Z x0 h(s) dsevaluated on the line x = 1. Now if q = 0 then it follows from uniqueness of solutionsto (4.1) and (4.2) that u(x; t; 0) must be identically zero. Thus u0(x; t; 0; h) mustsatisfy the equation u0tt � u0xx = 0 for 0 < t � x < 1and this is easily computed in closed form asu0(x; t; 0; h) = 12 Z x+t2x�t2 h(s) ds: (4.3)Now it follows that u0t(1; t; 0; h) = 12(h(1+t2 )+h(1�t2 )) and the symmetry assumptionon our potentials allows us to conclude that u0t(1; t; 0; h) = h(1+t2 ).The frozen Newton scheme now becomesqn+1(s)� qn(s) = g0(2s� 1)� ut(1; 2s� 1; qn) (4.4)for s 2 [0; 1] and where u(1; t; q) is extended as an odd function.In a similar fashion we can compute the second derivative F 00[0](h1; h2) as the solu-tion of the Goursat problemu00tt � u00xx = f(x; t) for 0 < t � x < 1 (4.5)with u00(x; 0) = 0 and u00(x; x) = 0 and the function f equal tof(x; t) = �h1(x)u0(x; t; 0; h2)� h2(x)u0(x; t; 0; h1): (4.6)We must compute u00t (1; t; 0; h1; h2). In view of our representation (4.3) for u0 we canwrite (4.6) in the form2f(x; t) = �h1(x) Z x+t2x�t2 h2(s) ds� h2(x) Z x+t2x�t2 h1(s) ds: (4.7)16



and in this case the solution of (4.5) at x = 1 becomes2u00(1; t; 0; h1; h2) = Z 1�t1�t2 Z s1�t�sf(s; r) dsdr + Z 1+t21�t Z ss+t�1f(s; r) dsdr+ Z 11+t2 Z 1+t�ss+t�1f(s; r) dsdr:This gives2u00t (1; t; 0; h1; h2) = � Z 1�t0 f(1� t; r) dr � Z 1�t1�t2 f(s; s+ t� 1) ds+12 Z 1+t23t�12 f(1+t2 ; r) dr + Z 1�t0 f(1� t; r) dr� Z 1+t21�t f(s; s+ t� 1) ds� 12 Z 1+t23t�12 f(1+t2 ; r) dr+ Z 11+t2 f(s; 1 + t� s) ds� Z 11+t2 f(s; s+ t� 1) ds:Using f(x;�t) = �f(x; t) and both cancelling and combining terms yields2u00t (1; t; 0; h1; h2) = � Z 11�t2 f(s; s+ t� 1) ds+ Z 11+t2 f(s; 1� s+ t) ds=: �(t) + �(�t):In implementing the predictor step as a frozen Newton update, we must solve anequation of the form h1(t) = ~g0(t) at each iteration where ~g(t) = 12(g(2t � 1) �u(1; 2t � 1; qn)), which implies ~g(t) = �~g(1 � t). In the initial approximation wehave simply ~g(t) = g(2t� 1)=2. Using (4.7) and setting h = h2 we �nd�(t) = Z 11�t2 h(s) Z s� 1�t21�t2 ~g0(r) dr ds+ Z 11�t2 ~g0(s) Z s� 1�t21�t2 h(r) dr ds= Z 11�t2 �~g(s� 1�t2 )� ~g(1�t2 )�h(s) ds+�~g(s) Z s� 1�t21�t2 h(r) dr����s=1s= 1�t2 � Z 11�t2 ~g(s)h(s� 1�t2 ) ds= Z 11�t2 [~g(s� 1�t2 )� ~g(1�t2 )]h(s) ds17



+~g(1�t2 ) Z 1�t20 h(s) ds� Z 1+t20 ~g(s+ 1�t2 )h(s) dswhere we have used the fact that ~g(1) = 0. Now the assumed symmetry of h yields�(t) = Z 11�t2 ~g(s� 1�t2 )h(s) ds� Z 1+t20 ~g(s+ 1�t2 )h(s) ds= Z 1+t20 �~g(1+t2 � s)� ~g(s+ 1�t2 )�h(s) ds:Then2u00t (1; t; 0; h1; h2) = Z 1�t20 �~g(1+t2 � s)~g(1�t2 � s)� ~g(s+ 1�t2 )� ~g(s+ 1+t2 )�h(s) ds+ Z 1+t21�t2 �~g(1+t2 � s)� ~g(s+ 1�t2 )� h(s) ds:Using the symmetry of the function ~g the last integral must be zero. Thus ourcorrector formula when the derivatives are evaluated at q = 0 is given by the Volterraequation~g0(t) = h(t) + 14 Z t0 �~g(1� t� s) + ~g(t� s)� ~g(1 + s� t)� ~g(t+ s)�h(s) ds (4.8)where ~g(t) = 12(g(2t � 1) � u(1; 2t � 1; q)) and we use an odd extension of both gand u(1; :; q).Convergence of the Newton scheme based on (4.1) and (4.2) is quite rapid, even withthe frozen derivative version (4.4) is used [21]. As an illustration of the ability ofthe second degree method to improve an initial approximation we show in �gure 2the results of using the predictor (a Newton step from q = 0) and then the correctedversion (the second degree method).The actual potential is the function q(x) = 50 sin(3�x) � e�5x, x 2 [0; 1=2], and thereconstruction uses the �rst 10 Dirichlet eigenvalues. These eigenvalues were quiteaccurate and the information contained in them was su�cient to recover the actualpotential (shown as a dotted curve) to within about one percent as measured in theL2 norm. The �gure on the left was obtained by using formula (4.4) with q0 = 0.Note that since u(1; t; 0) = 0 this means we have simply q1(x) = g0(2x � 1). The�gure on the right used (4.8) where, since q0 = 0, ~g(x) = 12g(x). This Volterraintegral equation of the second kind is easily inverted to recover h and hence theapproximation q1.The initial updated approximation is remarkably good using only the purely pre-dicted step { the ratio (1 � kq1 � ~qk2)=k~qk2 = 0:83. In other words we get about18
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Figure 2: Reconstruction after a single step from q = 0.83% of the reconstruction in the �rst step without having even to compute a valueof the direct map u(1; x; q). However the superiority of the correcting term in (4.8)is quite apparent for now (1� kq1 � ~qk2)=k~qk2 = 0:97 and this is quite close to the�nal reconstruction possible from the limited data.The point to be made here is that for the very little additional cost of solving (4.8),as opposed to taking only the �rst term Neumann approximation of the Volterraequation, we gain a substantially improved reconstruction This extra e�ort is cer-tainly much less than would be necessary to perform a direct computation to obtainu(1; t; q). In fact in most cases, a single further iteration of the second degree methodwill su�ce. That is, we can e�ectively reconstruct the potential q from eigenvaluedata by solving the Volterra equation (4.8) twice and the Goursat problem (4.1),(4.2) once.5 An inverse potential problemLet 
 � RN be a smooth bounded domain with an included subdomain D � 
.Then the problem consist in the recovery of the shape of D, i.e. the boundary @D,from the knowledge of the Neumann boundary valuesF (@D) = @u@� ����@
19



of the solution u of the homogeneous Dirichlet problem4u = �D in 
 and u = 0 on @
; (5.1)where �D denotes the characteristic function. This inverse problem is well knownto be severely ill{posed. The existence of a unique solution u 2 H2(
) is wellestablished (see e.g. [6]) and also the inverse problem is discussed by several authors(see e.g. [14], [12], [13]).For our numerical purpose we assume 
 to be the unit disk in R2 and suppose D isstarlike with respect to the origin, i.e. @D is a closed curve represented byx(t) = q(t)� cos tsin t � ; t 2 [0; 2�];with 0 < q(t) < 1 su�ciently smooth. In particular this set of admissible boundariesensures uniqueness of the inverse problem. The proof is due to Novikov and can befound in [14].An application of Green's second formula yieldsZD v dx = Z
4u v dx = Z@
 @u@� v ds (5.2)for all harmonic functions v in 
. Choosing polar coordinates we compute from theidentity (5.2) by v 2 f1; rn cosnt; rn sinntg the Fourier coe�cients of @u@� on @
,(F (q))c;sn = 1�Z 2�0 @u(x(t))@� � cosntsinnt � dt = 1(n+ 2)�Z 2�0 qn+2(t)� cosntsinnt � dt:(5.3)This equation also allows the determination of the Fourier coe�cients of the Fr�echetderivative of F with respect to variations of q by(F 0[q]h)c;sn = 1�Z 2�0 qn+1(t)h(t)� cosntsinnt � dt; (5.4)and we continue in computing the second derivative to(F 00(~h; h))c;sn = (n + 1)� Z 2�0 qn(t) h(t) ~h(t)� cosntsinnt � dt: (5.5)Equation (5.4) suggests a simple and fast frozen Newton scheme for the numericalsolution of the inverse problem can be obtained by �xing the derivative at a circleof radius r0 and computing a new update ~qj+1 fromF 0[qr0 ](~qj+1 � qj) = g � F (qj)with measured data g � @u@� on @
 (see also [12]).20



We consider boundaries in a �nite dimensional subspace represented by trigono-metric polynomials, h(t) = 12h0 +PNn=1 hcn cosnt + hsn sinnt. This leads to a �nitedimensional linear equation J~~h = g � F (qj) (5.6)for the 2N + 1 Fourier coe�cients of ~h = ~qj+1 � qj collected in ~~h. The Jacobianmatrix J turns out to be diagonal with Jnn = rn+10 if 0 � n � N and Jnn = rn�N+10if N + 1 � n � 2N .We can also consider the second derivative evaluated at this circle qr0. We use ~hcomputed by the frozen Newton step (5.6) as the predictor and obtain from equation(5.5) the Fourier coe�cients(F 00(~h; h))c;sn = (n+ 1)rn02 ~h08<: h0hcnhsn 9=;+(n+ 1)rn02� NXj=1 ~hcj Z 2�0 h(t)8<: cos jtcos((n+j)t) + cos((n�j)t)sin((n+j)t) + sin((n�j)t) 9=; dt+~hsj Z 2�0 h(t)8<: sin jtsin((n+j)t)� sin((n�j)t)cos((n�j)t)� cos((n+j)t)9=; dt
=
8>>>>>>>>>>><>>>>>>>>>>>:
12 NXj=0 ~hcjhcj + ~hsjhsj(n+ 1)rn02 �~hcnh0 + NXj=1 �~hcn+j + ~hcjn�jj�hcj + �~hsn+j � sgn(n�j)~hsjn�jj�hsj�(n+ 1)rn02 �~hsnh0 + NXj=1 �~hsn+j + sgn(n�j)~hsjn�jj�hcj + �~hcjn�jj � ~hcn+j�hsj�

9>>>>>>>>>>>=>>>>>>>>>>>; :
Thus, if we de�ne the Hessian matrix by the following summation of blocks ofToeplitz and Hankel matrices

H = D0BBBBBBBBB@
~h0 ~hcj ~hsj~hcn ~hcjn�jj + ~hcn+j ~hsn+j � sgn(n� j)~hsjn�jj~hsn ~hsn+j + sgn(n� j)~hsjn�jj ~hcjn�jj � ~hcn+j

1CCCCCCCCCA ;
21
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Figure 3: Reconstructions from noise{free datawhere D denotes a diagonal matrix with Dnn = n+12 rn0 if 0 � n � N and Dnn =n�N+12 rn�N0 if N +1 � n � 2N , the frozen corrector step is given by the solution ofthe linear equation �J + 12H�~h = g � F (qj): (5.7)A perturbation argument shows that this equation is uniquely solvable, if the pre-dictor ~h is su�ciently small. Since ~h is de�ned by (5.6) we obtain the behaviourHnj = O(r�j�10 ) with respect to the radius r0. Thus, applying H on ~h damps the jmode by this factor. The same asymptotic formula holds for the frozen Newton stepin (5.6). Therefore we cannot expect a signi�cant change in the condition numberwith respect to r0 and N by adding the Hessian matrix in the second degree method.The numerical experiments presented below used arti�cial data, which were com-puted by a boundary integral equation approach to the direct problem (see [17]).In modelling noise we added a random vector of 5% of the L2-norm approximationof these highly accurate data. Fortunately, a good starting guess (represented bythe dotted curve) is available using v = 1 in (5.2), which shows that the volume ofD is given by the mean of the data. Therefore we used as a starting curve a circlebounding a disk of this volume centered at the origin.Without any additional regularisation the simple frozen iteration schemes (5.6) and22
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Figure 4: Reconstructions from noisy data(5.7) allow the use of frequencies up to N � 4, which is only su�cient to representobjects D which do not contain much structure. Therefore we consider Tikhonov'sregularisation of (5.6) and (5.7) as suggested in section 2 using N = 10 in allnumerical experiments presented below.Figure 3 shows the reconstruction of a kite shaped object from noise{free data usingthe regularisation parameters � = 10�4 for the frozen Newton scheme and �1 =10�5; �2 = 10�4 for the second degree method. We observe a good reconstructionby the second degree method on the �rst iteration step. The �gures show thesereconstruction after the �rst and the 10th iteration. The residual error duringiteration (the full line) and the error in the reconstruction with respect to the trueboundary curve (dashed line) are given in the �gure on the right.The di�erences in the performance of the two schemes, using the predictor step only(frozen Newton method) and the frozen second degree approach, decreases if we con-sider much smaller objects. The reasons seems to be that the higher regularisationwhich is then required cancels the positive e�ect of considering the second deriva-tive. This is also observed in case of data polluted by high levels of noise. In Figure4 we show the best, the mean, and the worst reconstruction with respect to theerror in the boundary curves from a hundred di�erent runs with 5% random noisein the data and the same regularisation parameters as before. The �gures show the23



reconstructions, when the stopping condition applies (here kg � F (qj)k=kgk � 0:07was chosen). The performance in the worst case suggests more regularisation. In-creasing the Tikhonov parameters lead to smaller di�erences in the two methodsand to more stable but poorer results. Decreasing the Tikhonov parameters andincreasing the stopping value can often lead to quite good reconstructions, but thishighly dependent on the actual data set used and on average the results show moreinstability.The same performance with respect to appropriate regularisation parameters occursfor the full iteration methods using the derivatives at qj. A more signi�cant di�erencein using the full second degree method is observed in an inverse scattering problemconsidered in the following section.6 An inverse scattering problemAs a �nal example we consider the scattering of time{harmonic incident planeacoustic waves by a sound{soft obstacle D in two dimensions. Let D � R2 bea bounded domain with smooth boundary @D and connected complement R2nD.Assuming a wave number k > 0 the scattering problem is modeled by a solutionu 2 C2(R2nD) \ C(R2nD) of the Helmholtz equation4u+ k2u = 0 in R2nD: (6.1)In R2nD we have the decomposition u = us+ui, where ui(x) = eikx�d is the incidentplane wave with direction d 2 S1, and us denotes the radiating �eld satisfyingSommerfeld's condition, limr=jxj!1 r� 12�@us@r � ikus� = 0 (6.2)uniformly in the directions x=jxj 2 S1. Supposing a sound{soft obstacle leads to theDirichlet boundary condition u = 0 on @D: (6.3)For a detailed analysis of this problem including existence of a unique solution of(6.1){(6.3) by boundary integral equations we refer to [4].The radiation condition implies the asymptotic behaviourus(x) = eikjxjpjxj �u1(x̂) +O� 1jxj��uniformly in x̂ = x=jxj. The function u1 is the far �eld pattern or scatteringamplitude of us. The inverse problem under consideration consists in determiningthe shape of D from measurements of the far �eld pattern. We de�ne the far �eld24



operator F : X ! L2(S1) which maps a set X of admissible boundaries on the far�eld patterns of the scattering problem for a �xed wave number k and an incidentdirection d 2 S1. The inverse problem can be written as the nonlinear and ill{posedequation F (@D) = u1:Recent investigations show that the linearisation of this operator using a representa-tion of the derivative of F leads to e�cient iterative regularisation schemes solvingthe inverse scattering problem (see e.g. [9, 13, 15, 18, 19]). All of these methods arebased on a representation of the Fr�echet derivative in the sense of a bounded linearoperator F 0[@D] withlimkhkC1!0 1khkC1 kF (@Dh)� F (@D)� F 0[@D]hk = 0for variations h 2 (C1(@D))2 of the boundary. The value of the derivative is givenby the far �eld pattern F 0[@D] h = u01of the solution u0 of the exterior Dirichlet boundary value problem,4u0 + k2u0 = 0 in R2nD (6.4)u0 = �h� @u@� on @D; (6.5)where � denotes the unit outward normal at @D, u the solution of the scatteringproblem, and h� = h � � the normal component of h [15].The existence of suitably de�ned higher order derivatives can be established [20, 24].Here we are interested in a representation of the second derivative for an e�cientimplementation of the second degree approach. The following theorem states thisresult and is proven in the appendix.Theorem 6.1 Let @D be in the class C3. The operator F is two times di�erentiableat @D with second derivative F 00[@D](h1; h2) = u001 The function u001 is the far �eldpattern of the radiating solution u00 2 H1loc(R2nD) of the exterior Dirichlet problem4u00 + k2u00 = 0 in R2nD; (6.6)u00 = �h1;� @u02@� � h2;� @u01@�+(h1;�h2;� � h1;�h2;� )�@u@�+�h1;� (� � r(h2;�)) + h2;� (� � r(h1;�))�@u@� on @D; (6.7)25



where u is the solution of the scattering problem, u0j (j = 1; 2) is the solution of theboundary value problem (6.4),(6.5) with respect to the variation hj and � denotesthe curvature of @D.Here H1loc(R2nD) denotes the convex space of function, locally in H1, i.e. in theSobolev space H1(
) for any bounded subset 
 � R2nD. We denote by h� = h � �the tangential component of h and � �r is the tangential gradient. We should remarkthat the regularity assumptions on @D and h1; h2 seem to be necessary to ensure therepresentation (6.6), (6.7). Under this assumption we obtain u 2 H3(
), and fromthe boundary value problem (6.4), (6.5) this implies that u0 2 H2(
) and �nallyu00 2 H1(
) (see [6]).Unfortunately, we were not able to verify condition (2.5) for a speci�cation of theset of admissible boundaries in a Hilbert space which would imply convergence ofthe iterative schemes. However, we did implement the second degree method usingthe representation (6.6) and (6.7).From the iteration (1.4), (1.5) and the above representation, we observe that we doneed a solver for the exterior Dirichlet problem which allows the computation ofthe far �eld patterns u1, u01, u001 and the Neumann boundary values @u@� , @u0@� . Weconsider us represented by a mixed single{ and double{layer potentialus(x) = Z@D �@�(x; y)@�y � ik�(x; y)�'(y) dsy; x 2 R2nDwith a density ' 2 C(@D) and the fundamental solution of the Helmholtz equation�(x; y) = i4H(1)0 (kjx� yj); x 6= y(see [4]). The jump conditions imply that us is a solution of the exterior boundaryvalue problem provided the density ' solves the Fredholm equation(I +K � ik S)' = 2f on @D; (6.8)where f 2 C(@D) denotes the boundary value on @D and the weakly singularintegral operators are de�ned byK'(x) = 2 Z@D @�(x; y)@�y '(y) dsy and S'(x) = 2 Z@D �(x; y)'(y) dsy x 2 @D:Having solved (6.8) the far �eld pattern can be computed by evaluatingu1(x̂) =r k8� e�i�4 Z@D (�y � x̂+ 1) e�ikx̂�y'(y) dsy; jx̂j = 1; (6.9)and the Neumann boundary values by@us@� = 12(ik I � ik K 0 + T )' (6.10)26



with the weakly singular operatorK 0'(x) = 2 Z@D @�(x; y)@�x '(y) dsy; x 2 @Dand the singular operatorT'(x) = 2 @@�x Z@D @�(x; y)@�y '(y) dsy; x 2 @D:For an implementation of the second degree method we have to specify the set ofadmissible boundaries. Here we assume starlike obstacles, i.e. the boundary can berepresented by @D = �x = r(t)�cos tsin t� : t 2 [0; 2�)�with a 2�{periodic positive function r 2 C3(R). By the n-th iteration rn the nextstep is de�ned by rn+1 = rn + h from solving the linear equations (1.4) and (1.5).Now we assume variations of rn only in a �nite dimensional setting representedby a trigonometric polynomial, h(t) = 12h0 +PNj=1 hcj cos(jt) + hsj sin(jt). Thenan iteration step consists in solving the direct scattering problem with boundaryrepresented by rn by the integral equation (6.8) and computing the far �eld patternF (rn) and the Neumann boundary values. Next we compute the 2N +1 derivativesu0 in the direction of the basis function again using the integral equation (6.8) withf = �h� @u@� . This leads to the construction of the Jacobian matrix J and we solvefor the predictor step (J�J + �1R)~~h = J�(g � F (rn)) (6.11)to obtain the Fourier coe�cients ~~h of ~h. Here the matrix R is diagonal with entriesRjj = 1 + j2 for j = 0; : : :N and Rjj = 1 + (j � N)2 for j = N + 1; : : : ; 2N corre-sponding to the cosine and the sine modes in ~h. This approximates the Tikhonovregularisation with respect to the H2 norm and shows a slightly better performancein suppressing oscillations in the reconstruction. Now using ~h (suppressing the imag-inary part) we can compute the corrected h by solving again 2N +1 direct problemsfor the second derivative in the direction of any basis function. This leads to a linearsystem (T �T + �2R)~h = T �(g � F (rn)) (6.12)for the Fourier coe�cients of h. Since the system is complex valued we again consideronly the real part and use the update rn+1(t) = rn(t) + Re(h(t)).Note that the e�ort of computing the derivatives is small since we only have tochange the right hand side of the integral equation (6.8). The Newton method ofcourse only required using the prescribed predictor step. We also emphasize that wechoose trigonometric polynomials for simplicity. The use of di�erent basis functionscan be of advantage in certain cases (see [4]).27
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Figure 5: Reconstructions from noise{free dataIn the examples used to illustrate the ideas the integral equation (6.8) is solved byNystr�om's method at 64 discretisation points on @D using quadrature rules whichtake into account the weakly singular kernels (see [4]). K 0 is also computed bysuch a quadrature rule. The hypersingular operator T is evaluated by trigonometricinterpolation as suggested in [17]. Using the trapezoidal rule for integrating the far�eld pattern the approach allows fast and accurate solutions of the direct problem.The dimension of the trigonometric polynomials for the reconstruction was chosento be 21 (N = 10) in all examples.To illustrate the performance of the second degree method we consider the wavenumber k = 1 and a rounded rectangle de�ned byx101 + �23x2�10 = 1as the actual scatterer. This is one of the examples we tested, where a signi�cantdi�erence to the Newton method occurred. In some experiments the performanceof both methods was very similar, but we never observed a case where the New-ton method reached a signi�cantly better reconstruction than the second degreeapproach.Accurate arti�cial data computed by a di�erent boundary integral equation basedon the representation theorem were used. Figure 5 shows the result after the �rst28
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Figure 6: Reconstructions from noisy dataiteration and after 20 steps. The full line represents the reconstruction, the dashedline the actual scatterer and the dotted line the starting guess. Observe that the arti-�cial indentation constructed by the Newton method in the initial iterations cannotbe completely corrected. The second degree method avoids this artifact entirely.This di�erence cannot be seen in the relative residual error ku�1 � F (rn)k=ku�1kplotted as the solid line curve on the bottom. The dashed error curve shows theapproximation of the L2{error of the di�erence in the reconstruction and the originalboundary.For such noise{free testing the regularisation parameters were �xed with � = 0:01for the Newton method and �1 = 0:001, �2 = 0:01 for the second degree scheme.Increasing the parameter in the Newton method can smooth the indentation butwith the price of getting poorer reconstructions in the shadow region. The incidentdirection d of the plane wave is marked by an arrow in the �gures. Of course,if we use more information by adding further incident waves we can improve thereconstructions in both methods.As is usual in such problems, the choice of the regularisation parameter is moredelicate in the case of noisy data. Figure 6 shows reconstructions from a moredi�cult initial guess when 10% random noise was added to the data. We modelnoisy data by adding a random vector of 10% of its approximated L2 norm. The29



results presented in �gure 6 show the reconstruction closest to the mean value of theerror from 100 runs with varying random noise. We have chosen � = 0:5, �1 = 0:05and �2 = 0:5 which was su�cient for all tests with this noise level. Note thatthe second degree iteration starts slower. This is compensated after a few iterationsteps. The second picture in each method was stopped when the relative residualerror was less than 15%. The number of iterations required is provided at the topof the pictures.7 Some variations on the basic schemeIn the predictor{corrector scheme (1.4), (1.5) it is the second inversion that utilisesthe second degree model, the �rst step in (1.4) is required mainly to obtain the valueof ~h in order that (1.5) be a linear operator in h. This suggests that we might have
exibility in modifying the predictor step and indeed we considered several options.However, none of these appeared to improve on the scheme (1.4), (1.5).First, at the nth iteration step we can simply take ~h = hn�1, namely the value for hused at the previous iteration. This has the advantage of simplicity and not requiringan inversion of (1.4) along with attendant concerns about correct regularisation. Inpractice this approach worked poorly. The rapid initial convergence of the schemeguaranteed that the value of the perturbation h varied signi�cantly from the previousiteration and so the predicted value ~h was invariably of too large a norm.Second, we can use a Landweber update for the predictor step. This would amountto replacing (1.4) by ~h = �(F 0[xn])�(g� � F (xn))with a scaling parameter � > 0. If an inequality like (2.9) is still satis�ed thenconvergence could also be obtained. The e�ect of a Landweber step is quite di�erentfrom that of a Newton one. The former tends to preferentially improve the lowfrequencies of the solution whereas the latter tends to improve the high frequencies.This might seem an ideal choice since the predictor and corrector would then haveproperties that might be bene�cially complementary. A drawback is the need tocompute the adjoint operator of F 0. This is sometimes easier to obtain than thederivative itself, but we are forced to compute F 0 anyway on the way to computingF 00 as required by (1.5). From tests of this approach we usually could not observeany advantage since a better regularisation e�ect could be compensated by choosinglarger values for �1 and �2. As a another suggestion along these lines, we canincorporate the second degree method into a Levenberg-Marquardt scheme applyingit to one or both the predictor or corrector step.We can also modify the corrector step in a variety of ways. One of the most obvi-ous, and again borrowed ideas from the numerical solution of ordinary di�erentialequations, is to iterate the corrector step. This means we use h computed again in30



the same equation (1.5) as a predictor and determine a (hopefully) better update.Sometimes slightly better reconstructions can be obtained by this idea but we rarelyfound it worth the (slight) additional computational cost.For Newton's method, Bakushinski [Ba] showed that adding an additional penaltyterm of the form �j(xj�x0) to the inversion step can act as a further regularisation.For a scheme using Tikhonov regularisation this isxj+1 = xj � ((F 0[xj])�F 0[xj] + �jI)�1�(F 0[xj])�(F [xj]� g) + �j(xj � x0)�:He showed a convergence result for this method and established a stopping criterionfor dealing with noisy data. The additional term penalises the solution for di�eringby too much from the initial guess. While this can stabilise an otherwise divergentsequence one can often achieve the same e�ect simply by increasing the Tikhonovparameter �j. The Bakushinski-modi�ed scheme usually requires substantially moreiterations than the unmodi�ed one. The idea can be applied to either the predictoror, we would expect with greater possible advantage, to the corrector. Of course wecould implement this additional penalty in both steps.Both (1.4) and (1.5) require regularisation for stable inversion, but we can usequite di�erent regularisation schemes in the predictor and the corrector. We havenoticed that good results are often obtained by using a smaller value of regularisationparameter in the predictor step than in the corrector, in fact a smaller value thanwould be necessary to stabilise the scheme using only the predictor (or Newton'smethod). This is only a statement that the second degree step is able to \correct"relatively minor levels of instability arising from the �rst stage. There is nothing toprevent the use of say spectral-cut o� in one step and Tikhonov in the other, andindeed such a combination may be of value for certain types of problems.Finally, we comment on the case where the derivatives in (1.4) and (1.5) evaluated ata general point x cannot be computed without considerable computational expense.Assuming that the computation is possible either analytically or numerically atsome value x̂ (possibly corresponding to a constant coe�cient or simple geometry)then we can view the frozen predictor-corrector scheme described above as a quasi-Newton method with the second degree term \correcting" the \predicted" derivative.Applying a �rst order Taylor approximation to F 0 we obtain F 0[x]h = F 0[x̂]h +F 00[x̂](x� x̂; h). If we use again a Newton step as the predictor then this would leadto an alternative quasi Newton scheme di�ering from the frozen version of (1.5) dueto the absense of the factor of 12 . On the real line we arrive at the iteration schemexn+1 = xn � f(xn)f 0(xn)(f 0(xn))2 � f 00(xn)f(xn) : (7.1)instead of (1.6). The scheme (7.1) is also known in the literature. It appears to beoriginally due to Schr�oder (see [ST]) and was designed to handle multiple roots. Thissuggests there may well be alternative correctors with quite di�erent properties and31



in fact their applicability may extend beyond the use as quasi-Newton approximantsto the �rst derivative.Appendix: Proof of Theorem 6.1Let us start with some general remarks on the second derivative of an operatorwith respect to a domain. The problem in de�ning a second derivative lies in thede�nition of the �rst derivative in direction \h1" on a perturbed boundary @Dh2 =fx+h2(x) : x 2 @Dg. We consider two su�ciently small variations of the boundary@D described by vector �elds h1; h2 2 C3(@D). Without changing the notation weshall use h1; h2 2 C3(fjxj < Rg) for extensions, which are assumed to have a supportin a neighbourhood of @D. If we allow an arbitrary extension of h1 (as in the proofof the frist derivative, [15]), we would obtain (@Dh2)h1 = fx+h2(x)+h1(x+h2(x)) :x 2 @Dg. But this is not symmetric and the variation of @Dh2 is depending on h2.If we consider a set of admissible domains �xed by a certain type of parametrisation(for instance starlike, see below), the variation of the perturbed domain is given by(@Dh2)h1 = fx+ h2(x) + h1(x) : x 2 @Dg;which leads to a linear space of variations. Under such an assumption the existenceof heigher order derivatives for boundary integral operators is established in [20]. Adi�erent approach is suggested in [24]. From the previous observation we de�ne thesecond derivative by a bounded bilinear operator satisfyinglimkh2k!0 1kh2k supkh1k=1 


F 0[@Dh2 ]~h1 � F 0[@D]h1 � F 00[@D](h1; h2)


 = 0; (A.1)where ~h1 = h1 �  2 with the inverse function  2 of the di�eomorphism '2(x) =x+ h2(x) using a su�ciently small extension of h2 with compact support. Then weobtain from the �rst order approximation ~h1 = h1�Jh1h2+O(kh2k2) and continuityof F 0 with respect to the boundary that the second derivative satis�esF 00[@D](h1; h2) = (F 0[@D]h1)0h2 � F 0[@D](Jh1h2): (A.2)We use the notation Jh for the Jacobian matrix of a vector �eld. The �rst termon the left means the domain derivative in direction h2 of the �rst derivative u01with respect to the direction h1. The second term is already known and is describedby the far �eld pattern of a radiating solution v of the Helmholtz equation withboundary condition v = �(Jh1h2 � �)@u@� .In [24] it is shown that F 00 de�ned by (A.2) ensures a second order expansion ofF . Here we will prove a representation of F 00 and that F 00 is the second Fr�echetderivative in the sense of (A.1), which con�rms the existence result in [20].We have to determine the �rst term in (A.2). Let us consider the weak formulationof the scattering problem (6.1){(6.3). Green's formula yieldsZ
 �rurv � k2uv� dx� h�u; vi = Z@
�@ui@� � �ui� v ds (A.3)32



for all v 2 H = fw 2 H1(
) : wj@D = 0g, where 
 = RN nD \ fx 2 RN : jxj < Rg(N = 2; 3) with R > 0 such that D � fjxj � Rg. Hs(
) denotes the usual Sobolevspaces of order s 2 R. The radiation condition is incorporated in equation (A.3) bya non local boundary condition on jxj = R described by the Dirichlet-to-Neumannoperator � : H1=2(fjxj = Rg) ! H�1=2(fjxj = Rg) with �u = @w@� , where w is theradiating solution of the exterior Dirichlet problem, (4+k2)w = 0 in RN nfjxj � Rgand w = u on the boundary. Thus, the scattered part us of a solution of (A.3) can beextended to a radiating solution us 2 H1loc(RN nD) of the Helmholtz equation. Thedual pairing h :; : i in H�1=2(@D)�H1=2(@D) is de�ned by the bounded extension ofhf; vi = Zjxj=R fv ds for f 2 L2(fjxj = Rg) and v 2 H1=2(fjxj = Rg):With this notation we de�ne the sesquilinear formL(u; v) = Z
 �rurv � k2uv� dx� h�u; vi:Then the scattering problem is equivalent toL(u; v) = (f; v); for all v 2 Hwith (f; v) = Zjxj=R�@ui@� � �ui� v ds:Moreover, this variational equation is uniquely solvable for any f 2 H�1(
), [15].With an extension of h1 and h2 we can de�ne the material derivativewi = u0i + hi � ru 2 H;where u0i denotes the domain derivative de�ned by (6.4), (6.5). A slight modi�cationof the proof presented in [15] (see also [11]) shows that wi 2 H is the derivative ofu in 
 in the sense of1khikC1 k~uhi � u� wikH1 ! 0; if khikC1 ! 0: (A.4)Here we use the notation ~uhi = uhi(x+hi(x)) with the solution uhi of the scatteringproblem with boundary @Dhi = fx+ hi(x) : x 2 @Dg. The material derivative wi isthe unique solution ofL(wi; v) = Z
 hruAirv + k2uv div(hi)i dx (A.5)for all v 2 H with Ai = Jhi + J>hi � div(hi)I and the Jacobian matrix Jhi of theextension of hi. 33



Now we proceed as follows. For �xed h1 we consider the variation of w1 with respectto h2. Therefore we introduce the notation w1;h2 which is the material derivative inthe direction h1 replacing D by D2 = fx + h2(x) : x 2 Dg. From the sesquilinearform L acting on this function we obtain by certain estimates the existence of aderivative with respect to h2. Finally we can split this derivative in w01 = (u01)0 + gwith a radiating solution of the Helmholtz equation (u01)0 and a locally supportedfunction g. Computing the boundary values of g leads to the boundary value problemrepresenting the domain derivative (u01)0.The de�nition (A.5) of w1 leads toZ
h2 �rw1;h2 � rv � k2w1;h2v� dx� h�w1;h2; vi= Z
h2 �ruh2A1rv + k2uh2v div(h1)� dx:We de�ne the di�eomorphism 'i(x) = x + hi(x) mapping 
 onto 
hi assuming hiis su�ciently small (i = 1; 2). In order to avoid the dependence of the domain ofintegration on h2 a change of variables leads toZ
 hr ~w1;h2 �J 2J> 2 det(J'2)�rv � k2 ~w1;h2v det(J'2)i dx� h� ~w1;h2; vi= Z
 hr~uh2 �J 2 ~A1J> 2 det(J'2)�rv + k2~uh2v d̂iv(h1)det(J'2)i dx;for all v 2 H, where ~w(x) = w('2(x)), ~A1(x) = A1('2(x)) and  2 denotes the inversefunction of '2. By equation (A.5) it follows that the di�erence to the materialderivative w1 isL( ~w1;h2 � w1; v) (A.6)= Z
 hr ~w1;h2 �I � J 2J> 2 det(J'2)�rv � k2 ~w1;h2v(1� det(J'2))i dx+ Z
 hr~uh2 �J 2 ~A1J> 2 detJ'2 � A1�rv + k2~uh2v �d̂iv(h1)det(J'2)� div(h1)� i dx+ Z
 hr(~uh2 � u)A1rv + k2(~uh2 � u)v div(h1)i dx:Elementary calculations provide the estimateskdet(J'i)� 1� divhik1 = O(khik2C1)kJ jJT idet(J'i)� I + Aik1 = O(khik2C1)k]divh1det(J'2)� div(h1)� div(h1)div(h2)�r(divh1) � h2k1 = O(kh2k2C1)kJ 2 ~A1JT 2det(J'2)� A1 � A1divh2 + Jh2A1 + A1J>h2 � A01(h2)k1 = O(kh2k2C1);34



where the matrix A01(h2) is de�ned by its elements (A01(h2))k;l = r((A1)k;l) � h2.By the di�erence (A.6) a perturbation argument as in [15] yields that w1 2 Hdepends continuously on h2. Moreover, this continuity implies through the aboveestimates that w1 is locally di�erentiable with respect to h2 in the sense of (A.4)and the derivative w01 satis�esL(w01; v) = Z
 hrw1A2rv + k2w1v div(h2)i dx� Z
 hru�Jh2A1 + A1J>h2 � A1div(h2)� A01(h2)�rvi dx+k2 Z
 hr(divh1) � h2 + div(h1)div(h2)iuv dx+ Z
 hrw2A1rv + k2w2v div(h1)i dx (A.7)for all v 2 H. We observe that the right hand side of this equation has a supportin the neighbourhood of @D. Therefore there exists a splitting w01 = (u01)0 + g, witha radiating solution (u01)0 of the Helmholtz equation in RN nD which is identical tow01 in the exterior of the support of h1 and h2. Since w01 2 H vanishes on @D, theDirichlet boundary values of (u01)0 are determined by g.Consider the �rst and the last integral in the variational equation (A.7). By theidentityrw �Jh + JTh � div(h) I�rv (A.8)= div [(h � rw)rv + (h � rv)rw � (rw � rv)h]� (h � rv)4 w � (h � rw)4 vand using the boundary conditions w1 = v = 0 on @D and the divergence theoremwe obtainZ
 �rwjAirv + k2wjv div(hi)� dx= Z
 divh(hi � rwj) � rv + (hi � rv)rwj � (rwj � rv)hii dx� Z
 h(hi � rwj)4 v + (hi � rv)4wji dx+ k2 Z
 wjv div(hi) dx= Z
 �r(hi � rwj)rv � k2(hi � rwj)v� dx� Z
(hi � rv)4 (u0j + hj � ru) dx� k2 Z
(hi � rv)wj dx= L(hi � rwj; v)� Z
(hi � rv)�4 (hj � ru) + k2(hj � ru)� dx35



for i 6= j, since u0j is a solution of the Helmholtz equation. Equation (A.7) yieldsL(w01 � h1 � rw2 � h2 � rw1; v) (A.9)= � Z
 hru(Jh2A1 + A1J>h2 � A1divh2 � A01(h2))rvi dx+k2 Z
 �r(divh1) � h2 + div(h1)div(h2)�uv dx� Z
(h1 � rv)�4 (h2 � ru) + k2(h2 � ru)� dx� Z
(h2 � rv)�4 (h1 � ru) + k2(h1 � ru)� dx:In extension of equation (A.8) we compute the identityru �JhA+ AJTh � (divh)A� (A0(h)) �rv= div �(h � ru)Arv + (h � rv)A>ru� ((A>ru) � rv)h��(h � ru)div(Arv)� (h � rv)div(A>ru):Applying this equation in the �rst integrand on the right hand side of (A.9) impliesby the divergence theoremZ
 hru �Jh2A1 + A1J>h2 � A1div(h2)� A01(h2)�rvi dx (A.10)= Z
 divh(h2 � ru)A1rv + (h2 � rv)A1ru� ((A1ru) � rv)h2i dx� Z
 h(h2 � ru)div(A1rv) + (h2 � rv)div(A1ru)i dx= Z
 hr(h2 � ru)A1rv � (h2 � rv)div(A1ru)i dx(note that Aj is symmetric). It follows from the Helmholtz equation applied to uthat div(A>1ru �r(h1 � ru)) = k2div(h1)u + k2h1 � ru: Applying this identity tothe second term of (A.10) and the equation (A.8) to the �rst term, we obtain bythe divergence theorem and the boundary conditions thatZ
 �ru(Jh2A1 + A1J>h2 � A1divh2 � A01(h2))rv� dx= Z
 divh(h1 � r(h2 � ru))rv + (h1 � rv)r(h2 � ru)� (r(h2 � ru) � rv)h1i dx36



� Z
(h1 � r(h2 � ru))4 v dx � Z
(h1 � rv)4 (h2 � ru) dx� Z
(h2 � rv)�4 (h1 � ru) + k2div(h1)u+ k2h1 � ru� dx= Z
r(h1 � r(h2 � ru)) � rv dx� Z
 h(h1 � rv)4 (h2 � ru) + (h2 � rv)4 (h1 � ru)i dx�k2 Z
(h2 � rv)u div(h1) + (h1 � ru)(h2 � rv) dx:We insert this equation in (A.9) and obtain using the boundary condition u = v = 0on @D L(w01 � h1 � rw2 � h2 � rw1; v)= k2 Z
 �r(divh1) � h2 + div(h1)div(h2)�uv dx� Z
r(h1 � r(h2 � ru)) � rv dx+k2 Z
(h2 � rv)u div(h1) dx� k2 Z
(h1 � rv)(h2 � ru) dx:= � Z
r(h1 � r(h2 � ru)) � rv dx�k2 Z
 h(h2 � ru)v div(h1) + (h1 � rv)(h2 � ru)i dx= �L (h1 � r(h2 � ru); v) :The last identity shows by the invertibility of the sesquilinear form thatw01 = (u01)0 + h1 � rw2 + h2 � rw1 � h1 � r(h2 � ru)in H1(
), where (u01)0 can be extended to a radiating solution of the Helmholtzequation in RN nD. Thus, on the boundary @D we obtain(u01)0 = �h1 � ru02 � h2;� @w1@� : (A.11)Note that this domain derivative of u01 depends only on the normal component ofh2. 37



In deriving the boundary condition for the second derivative u00 de�ned by (A.2) wehave to subtract from (A.11) the boundary value ��>Jh1h2 @u@� of the domain deriva-tive of u with respect to the direction Jh1h2. Let us consider the two dimensionalcase. By the boundary condition of u02 we obtainu00 = �h1;� @u02@� � h2;� @u01@� + h1;�� � r(h2;� @u@� )� h2;� @(h1 � ru)@�+��>Jh1� h2;� + �>Jh1� h2;��@u@� :The following Lemma and the identity � � r(@u@� ) = �Hu�, which follows from u = 0on the boundary, we continue in computingu00 = �h1;� @u02@� � h2;� @u01@� + �h1;�h2;� @u@�+h1;�� � r(h2;�)@u@� + �>Jh1� h2;� @u@� :By orthogonality holds �>Jh1h2;� = h2;� � r(h1;�)� h2;�h1;� (�>J��) and we obtainu00 = �h1;� @u02@� � h2;� @u01@� + �h1;�h2;� @u@�+hh1;�� � r(h2;�) + h2;�� � r(h1;�)� (�>J��)h1;�h2;�i@u@� :Since for the curvature holds � = �>J�� we conclude the boundary condition (6.7).Similar we can obtain from (A.11) the boundary condition in R3 . Note that theabove proof shows the second Fr�echet derivative of u1 for instance for starlikedomains. Finally we complete the proof by the following Lemma.Lemma A.1 Let u 2 C2(RnnD) (n = 2; 3) be a solution of 4u + k2u = 0 withuj@D = 0. Then �>Hu� = �(n� 1)�@u@� on @Dis satis�ed, where Hu is the Hessian matrix of u and � denotes the (mean) curvatureof the boundary @D.Proof: We start with the two dimensional case: Let � be a local parametrisationof the boundary in a neighbourhood of a point x0 = �(0) 2 @D with j _�(0)j = 1.Then at x0 we compute from �(x0) = ( _�2(0);� _�1(0))>�>Hu� = ( _�2)2@2u@x21 + ( _�1)2@2u@x22 � 2 _�1 _�2 @2u@x1@x2 :38



On the other hand, di�erentiating the boundary condition u(�(v)) = 0 twice leadsto 0 = ( _�1)2@2u@x21 + ( _�2)2@2u@x22 + 2 _�1 _�2 @2u@x1@x2 + @u@x1 ��1 + @u@x2 ��2:The sum of both, the Helmholtz equation, and the boundary condition implies�>Hu� = ru � �� = ��@u@� :The case of three spatial dimensions is similar: Let �(v1; v2) denote a local parametri-sation of @D in a neighbourhood of �(0; 0) = x0 2 @D with���� @�@v1 (0; 0)���� = ���� @�@v2 (0; 0)���� = 1; @�@v1 (0; 0) � @�@v2 (0; 0) = 0and �(x0) = @�@v1 (0; 0)� @�@v2 (0; 0):A lengthy but straightforward calculation shows�>Hu� = 4u� � @�@v1�> Hu @�@v1 � � @�@v2�> Hu @�@v2= �� @�@v1�> Hu @�@v1 � � @�@v2�> Hu @�@v2at x0 by the Helmholtz equation and the boundary condition uj@D = 0.From the boundary condition we also observe ru � @�@vj = 0, j = 1; 2. Di�erentiatingagain with respect to vj leads to� @�@vj�> Hu @�@vj +ru � @2�@v2j = 0:Now we consider the mean curvature at x0 and obtain2� = @�@v1 � @�@v1 + @�@v2 � @�@v2 = �� � �@2�@v21 + @2�@v22 �Combining the last three equations yields�>(x0)Hu(x0)�(x0) = �2�(x0)@u@� (x0)which �nishes the proof. 39
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