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Ferromagnetic Ising systems with competing interactions are considered in the presence of a random field.
We find that in three space dimensions the ferromagnetic phase is disordered by a random field which is consid-
erably smaller than the typical interaction strength between the spins. This is the result of a novel disordering
mechanism triggered by an underlying spin-glass phase. Calculations for the specific case of the long-range
dipolar LiHoxY1−xF4 compound suggest that the above mechanism is responsible for the peculiar depen-
dence of the critical temperature on the strength of the random field and the broadening of the susceptibility
peaks as temperature is decreased, as found in recent experiments by Silevitchet al. [Nature (London)448,
567 (2007)]. Our results thus emphasize the need to go beyondthe standard Imry-Ma argument when studying
general random-field systems.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

Introduction.— The random-field Ising model (RFIM)
plays a central role in the study of disordered systems and
has been applied to problems across disciplines ranging from
disordered magnets to random pinning of polymers, as well as
water seepage in porous media.

At and below the lower critical dimensiondℓ = 2, the fer-
romagnetic (FM) phase is unstable to an infinitesimal random
field (RF) [1, 2]. At higher space dimensions the disordering
of the FM phase requires the RF strengthh to be of the or-
der of the spin-spin interaction strengthJ . Yet, the effect of
the RF on the transition between the FM and paramagnetic
(PM) phases—for systems with both short-range and dipolar
interactions—has been source of vast experimental and theo-
retical scrutiny [3–5]. Over the past three decades the RFIM
has been studied experimentally via dilute antiferromagnets in
a field (DAFF) [6], as both the RFIM and the DAFF seem to
share the same universality class. More recently it has been
shown that in anisotropic dipolar magnets the RFIM can be
realized in the FM phase: By applying a transverse field to a
dilute dipolar ferromagnet, such asLiHoxY1−xF4, one trans-
forms the spatial disorder to a longitudinaleffectiveRF [7–9].
This opens the doors for advancing our understanding of the
RF problem [10], as well as new applications, such as tunable
domain-wall pinning [11] in magnetic materials.

Silevitchet al. recently studied the FM-to-PM transition in
the presence of RFs inLiHoxY1−xF4 [12]. Remarkably, they
found thatTc depends linearly on the transverse field (and thus
on h [7, 9]) and that the susceptibility peak diminishes and
broadens as temperature decreases. InMn12−ac, which is
a realization of the RFIM with all FM interactions, a strong
suppression ofTc as a function ofh was found as well [13],
but with what appears to be a quite different functional depen-
dence at smallh.

Here we study the interplay between FM and spin-glass
(SG) phases in a dipolar Ising model with competing inter-
actions in the presence of a RF. We find a novel disordering

mechanism of the FM phase when a RF is applied and the
system is in close proximity (e.g., via dilution) to a SG phase.
This disordering mechanism lies between the Imry-Ma and
standard disordering mechanisms: The disordering of the FM
phase occurs at a finite RF, which is considerably smaller than
the typical spin-spin interaction, and the disordered phase [de-
noted henceforth as “quasi-SG” (QSG)] consists of not FM
but glassy domains. AtT = 0 we predict the existence of a
FM-to-QSG transition and determine forLiHoxY1−xF4, an-
alytically and numerically, the phase boundary as a function
of the Ho concentrationx and RF strengthh. At finite tem-
perature our theory agrees with experiments [12], suggesting
that the existence of competing interactions and the proximity
to the SG phase dictate the broadening of the susceptibility
peaks at low temperature and the peculiar dependence ofTc

on h. Our theoretical analysis of the SG phase follows the
scaling approach of Fisher and Huse [14]—its validity sup-
ported by the agreement we find with our numerical results.
The nature of the SG phase in a RF, however, is controversial
[15–30], but of no concern here.

Theoretical analysis.— We first studyLiHoxY1−xF4 at
T = 0. For dilutionsx > xc the system is FM, whereas for
x0 < x < xc the system is a SG. Below we show numerically
thatxc ≈ 0.3. To date, it is unclear ifx0 > 0 [31, 32]. For
x ≈ xc we define the energy per spin of the lowest FM state of
the system asfFM(x), and the lowest energy of the SG state
asfSG(x). Note thatfFM(x) is the ground-state energy of the
FM phase whenx > xc andfSG(x) represents the ground-
state energy of the SG phase forx0 < x < xc. At x = xc

fFM(xc) = fSG(xc), and forx ≈ xc, to first order inx − xc,
fSG(x) − fFM(x) = α(x − xc) + . . .. We consider the FM
phase forx > xc in an applied RF of mean zero and standard
deviationh. For smallh, the FM state in three dimensions
cannot gain energy from the field, because domain flips are not
energetically favorable. However, for spin glasses the lower
critical (Imry-Ma) dimension is infinity [14]. In particular, in
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3D the energy of the system can be lowered by flipping do-
mains, creating a QSG phase with a finite correlation length.
Thus, forx ∼ xc the energy of the SG state will become
lower than the energy of the FM state at a finite RF, which
is still considerably smaller than the typical spin-spin interac-
tion J . More generally, any 3D Ising system with competing
interactions having at zero RF a FM ground state and a SG
state at a somewhat higher energy will be disordered through
a transition to the QSG phase at a finite RF whose magnitude
depends on the proximity to the SG phase and can be much
smaller thanJ . Because in systems likeLiHoxY1−xF4 the
effective RFs are a result of quantum fluctuations [7, 33], this
phase transition is a particular case of a quantum phase tran-
sition where the quantum fluctuations of the spins are small,
involving only the spin’s ground and first excited states [34],
but where thecollective effectof all spins is strong enough to
drive the transition.

The value of the critical RF can be estimated us-
ing the short-range Hamiltonian [35] in a RFHEA =
−
∑

〈ij〉 JijSiSj +
∑

i hiSi. Jij represent nearest-neighbor
Gaussian random bonds between spinsSi with zero mean
and standard deviationJ , andhi are Gaussian RFs of av-
erage strengthh [36]. The SG ground state is unsta-
ble to an infinitesimal RF, creating domains of typical size
(J/h)1/(3/2−θ) (θ ≈ 0.19) [37]. The energy reduction per
spin due to the RF is thusf(h) = h(J/h)(−3/2)/(3/2−θ).
The total energy reduction per spin is of the same order, be-
cause the energy cost to flip domains is much smaller. Con-
sidering now a FM system with competing interactions, e.g.,
LiHoxY1−xF4 at x > xc where ath = 0 the system is FM
with fSG > fFM, the critical fieldhc(x) can be computed
from f(h = hc) = fSG − fFM, i.e.,f(h = hc) = α(x− xc).
One obtains

hc(x) = α′(J)(x− xc)
(3/2−θ)/(3−θ) , (1)

whereα′(J) = α(3/2−θ)/(3−θ)J (3/2)/(3−θ); see Fig. 1. For
h > hc(x) there are finite domains within which glassy or-
der persists. The domain size decreases with increasing field,
where ath ≈ J the system resembles a paramagnet. As
x → xc, the disordering field approaches zero. For large
x − xc andh ≈ J there is a crossover to the standard be-
havior where the disordering is a result of single-spin energy
minimization; i.e., the intermediate QSG regime disappears.

We now consider finite temperatures and analyze the de-
pendence of the FMTc (at x > xc) on the effective RF. Let
us denote the lowest free energies per spin of the FM phase
(ordered forT < TFM, disordered forT > TFM) and a com-
peting disordered QSG phase asFFM(x, T ) andFQSG(x, T ),
respectively. Because the entropy of the QSG phase is domi-
nated by regions at the boundaries between domains [14], the
main effect of the RFs is to lower the QSG energy. Thus,
FQSG(x, T )− FFM(x, T ) = −A(T − TFM) +B(x − xc)−

h/ξ
3/2
QSG [here, forh = 0, FQSG(xc, Tc) = FFM(xc, Tc)].

For h < h∗ ≡ B(x − xc)ξ
3/2 and T = TFM we ob-

tainFQSG(x, T ) > FFM(x, T ), and the transition occurs be-
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FIG. 1: (color online) Comparison of the zero-temperature numerical
and analytical [Eq. (1)]h-x phase diagrams for the diluted dipolar
Ising model [Eq. (2)].hc(x) ∼ (x − xc)

0.466, with θ ≈ 0.19 [37].
The analytical prediction agrees well with the numerical data (α′ is
a fitting parameter).

tween an ordered FM phase and a disordered PM phase dom-
inated by FM fluctuations. However, forh > h∗ we obtain
Tc(h) − Tc(0) = A−1

[

B(x− xc)− h/ξ3/2
]

, where the FM
phase is disordered by a PM phase dominated by fluctuations
of domains having SG correlations over distanceξ. Thus, at
h = h∗, Tc(h) has a crossover from a roughly quadratic de-
pendence on the RF (known for a ferromagnet in a RF [38]) to
a linear dependence. This result is supported by our numerics.

Comparing to the experiments in Ref. [12], our results are
consistent withTc(h) being linear whenh ≪ J , with devia-
tions from linearity ash → 0. Note that in Ref. [12]Tc(h) is
linear down to the lowest RFs studied if one definesTc by the
asymptotic behavior of the susceptibility at high temperatures.
However, ifTc(h) is defined by the peak position of the sus-
ceptibility, deviations from linearity are observed at lowfields
[39].

Numerical details.— LiHoxY1−xF4 at low temperatures
and in an external transverse magnetic field is well described
by [9, 40]

H=
∑

i6=j

Jij
2
ǫiǫjSiSj +

Jex
2

∑

〈i,j〉

ǫiǫjSiSj +
∑

i

hiǫiSi . (2)

Hereǫi = {0, 1} is the occupation of the magneticHo3+ ions
on a tetragonal lattice (lattice constantsa = b = 5.175Å and
c = 10.75Å) with four ions per unit cell [41, 42],Si ∈ {±1},
hi represent Gaussian RFs with zero mean and standard de-
viation h, whereh is measured in[K]. The magnetostatic
dipolar couplingJij between twoHo3+ ions is given by:
Jij = D(r2ij − 3z2ij)/r

5
ij , whererij = |ri − rj |, ri is the

position of theith Ho3+ ion andzij = (ri − rj) · ẑ is the
component parallel to the easy axis.D/a3 = 0.214K [43] and
the nearest-neighbor exchange isJex = 0.12K [41, 44]. We
use periodic boundary conditions with Ewald sums [42, 45].
At zero field and no dilution, we findTc = 1.5316(2)K, in
agreement with experimental results whereTc = 1.530(5)K
[46].
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FIG. 2: (color online) Correlation lengthξL/L as a function ofT for x = 0.32. (a)h = 0. There is a clear crossing forTc = 0.340(3) [44] for
different system sizesL. (b) Scaling of the data forh = 0. The solid line represents the optimal scaling function (polynomial approximation).
(c) h = 0.06. There is no transition.
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FIG. 3: (color online)T -h phase diagram ofLiHoxY1−xF4 for different concentrationsx. Circles represent data from finite-temperature
simulations, squares data from zero-temperature simulations (see Fig. 1). (a)x = 0.32. (b) x = 0.44 (dilution used in the experiments of
Ref. [12]). Horizontal lines denote lines of constant temperature and varyingh, as done experimentally [12] in susceptibility measurements.
The top line has a direct FM-PM transition. The bottom two lines represent paths crossing the QSG phase where a broadeningof the sus-
ceptibility peak and its diminishing with the enhancement of the RF at the crossover to the PM phase as temperature is decreased occur. (c)
x = 0.65. In all panels, dotted line segments represent the conjectured phase boundary.

For the zero-temperature simulations (Fig. 1) we use jaded
extremal optimization [47, 48]. Here,τ = 1.6, 1.8 and2 with
an aging parameterΓ = 0.05 for at least226 steps. Ground
states are found with high confidence forL ≤ 10 andh = 0,
andL ≤ 8 with smallh 6= 0. The phase boundary is identified
via the Binder ratiog = (1/2)(3 −

[

m4
]

av
/
[

m2
]2

av
), where

m = (1/N)
∑

i Si (N = 4xL3 is the number of spins and
[· · ·]

av
represents a disorder average.g ∼ G̃[L1/ν (x− xc)]

is a dimensionless function, allowing for the extraction ofxc

andν for a fixedh. Parameters are listed in the Supplementary
Material, Table I [49].

At finite temperatures we use parallel tempering Monte
Carlo [50]. Parameters are listed in Tables II, III and IV in the
Supplementary Material [49]. To determine the transitionsfor
a givenh andx we measure [51]

ξL =
1

2 sin(kmin/2)

√

[〈m2(0)〉
T
]
av

[〈m2(kmin)〉T]av
− 1 , (3)

wherem(k) = (1/N)
∑

i=1 Si exp(ik·Ri). Here〈· · ·〉
T

rep-
resents a thermal average, andRi is the spatial location of the
spinSi, andkmin = (2π/L, 0, 0). ξL/L ∼ X̃[L1/ν(T −Tc)];
i.e., at the transition (T = Tc) the argument of̃X is zero (up
to scaling corrections) and hence independent ofL [lines of
different system sizes cross [Fig. 2(a)]]. If, however, thelines

do not meet, no transition occurs [Fig. 2(c)]. To determine
Tc(h) we scale the data [Fig. 2(b)]. Using a bootstrapped
Levenberg-Marquardt minimization [52] allows us to deter-
mine the critical parameters with statistical errors; see Table
V of the Supplemental Material [49]. Note that for a givenx
the critical exponentν increases withh.

Figure 1 shows theh-x phase diagram ofLiHoxY1−xF4 at
zero temperature. We find excellent agreement with Eq. (1),
usingθ ≈ 0.19 [37], i.e.,hc(x) ∼ (x − xc)

0.466, andα′ a fit-
ting parameter (quality of fitQ = 0.89) [53]. Note, however,
that good fits are also possible for0.42 . z . 0.5 with an
optimal value ofz = 0.43(4) (Q = 0.82).

Figure 3 shows finite-temperature data for differentx. Fig-
ure 3(a) showsTc(h) for x = 0.32, i.e.,x− xc = 0.02 small.
Our results at finiteT corroborate our theoretical model with
h∗ ≈ 0.01, where forh < h∗, Tc is roughly independent ofh
(at such small fields the numerical resolution does not allow
a distinction between a constant and a parabolic dependence)
and forh > h∗, Tc(h) decreases linearly. The FM phase
fully disorders, at all temperatures, forh ≈ 0.055(5), a value
slightly larger than found from theT = 0 simulations, yet
much smaller than the interaction energy. Both the disorder-
ing of the FM phase at small fields and the linearity ofTc(h)
seem to persist up tox = 0.44 [Fig. 3(b)], the dilution used in
Ref. [12], albeit with a less pronounced crossover ath = h∗.
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Forx = 0.65 [far from the SG phase, Fig. 3(c)] the behavior
of Tc(h) changes to a quadratic dependence for allh < 0.3,
suggesting a standard FM-PM transition. Critical parameters
are listed in the Supplemental Material, Table V [49].

Phase diagram: Reentrance and experiment.—Our anal-
ysis forzeroRF suggests that the critical concentrationxc =
0.3 separating the FM and SG phases depends only slightly,
if at all, on temperature. Reentrance to a SG phase is either
missing or limited to a small concentration regime, in contrast
to previous suggestions [54].

At the same time, our results at finite RF at both zero and
finite temperature for all concentrations suggest that there is a
range of RFs where the system shows reentrance to a frozen
QSG phase at low temperatures [55]. The RF-temperature
phase diagram is shown in Fig. 3. Note also that the PM
phase is characterized by distinct correlations over the phase
diagram: FM fluctuating domains close to the FM phase at
h < h∗ [dashed line in Figs. 3(a) and 3(b)], and SG fluctuat-
ing domains close to the transition forh > h∗. This form of
the phase diagram is strongly supported by, and provides an
explanation for, the results of Ref. [12], Fig. 2. ForT > 0.3K
[inflection point in Fig. 3(b) above] there is a direct transition
from the FM to the PM [top horizontal arrow in Fig. 3(b)], as
is indeed marked experimentally by a sharp cusp in the mag-
netic susceptibility. ForT < 0.3K, however, as the transverse
field (and correspondingly the effective RF) is increased, the
FM phase changes into a frozen QSG phase and only then
to the PM phase [central horizontal arrow in Fig. 3(b)]. Ex-
perimentally, this effect is mirrored by a broad peak in the
susceptibility atT < 0.3K, in good agreement with the in-
flection point we find atx = 0.44. As temperature is further
reduced, the crossover between the frozen QSG phase and the
PM phase occurs at a larger RF [bottom horizontal arrow in
Fig. 3(b)], resulting in smaller glassy domains and the ex-
perimentally observed diminishing peak of the susceptibility
[7, 56].

Conclusions.— We propose a novel disordering mecha-
nism for 3D ferromagnets with competing interactions and an
underlying spin-glass phase, resulting in a disordering field
which is finite, yet can be much smaller than the interaction
strength. We explain various aspects of the experiments of
Ref. [12], including the peculiar linear dependence ofTc on
the applied transverse field and the diminishing and broad-
ening of the susceptibility peak with decreasing temperature.
We further find that at smaller concentrations (x = 0.32, close
to the spin-glass phase) the reduction ofTc with the RF be-
comes more pronounced. Our results strongly support the no-
tion that it is the interplay between the competing interactions
and the induced effective RF that dictate the behavior of the
LiHoxY1−xF4 ferromagnet at low concentrations. Our ana-
lytical results are generic to FM systems with competing in-
teractions. It would therefore be interesting to verify these re-
sults for other types of interactions and lattice structures[57].
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Supplementary Material: Andresen et al.

TABLE I: Simulation parameters forT = 0: System of sizeL = 6,
8, and10, field h and dilutionx are studied.xmin [xmax] is the
smallest [largest] concentration studied and∆x is the step size be-
tween measurements.Nsa is the number of disorder realizations.
h xmin xmax ∆x Nsa

0.000 0.280 0.350 0.010 5000
0.025 0.275 0.400 0.025 3000
0.050 0.300 0.400 0.025 3000
0.075 0.300 0.600 0.050 1500
0.100 0.400 0.800 0.100 1500

TABLE II: Simulation parameters at finite temperature andx =
0.32 for different fieldsh and system sizesL. The equilibra-
tion/measurement times are2b Monte Carlo sweeps.Tmin [Tmax]
is the lowest [highest] temperature used andNT is the number of
temperatures.Nsa is the number of disorder realizations.

x h L b Tmin Tmax NT Nsa

0.32 0.000 6 15 0.100 0.500 25 2000
0.32 0.000 8 17 0.100 0.500 25 2000
0.32 0.000 10 18 0.168 0.500 20 1000
0.32 0.000 12 18 0.240 0.500 15 1000
0.32 0.000 14 16 0.275 0.500 10 750
0.32 0.000 16 16 0.275 0.500 10 385
0.32 0.005 6 12 0.280 0.550 20 2000
0.32 0.005 8 13 0.280 0.550 20 3500
0.32 0.005 10 15 0.280 0.550 20 2000
0.32 0.005 12 17 0.280 0.550 20 1200
0.32 0.005 14 16 0.312 0.550 17 1200
0.32 0.010 6 15 0.050 0.500 30 1500
0.32 0.010 8 17 0.050 0.500 30 1100
0.32 0.010 10 18 0.230 0.500 15 1000
0.32 0.010 12 19 0.245 0.500 15 850
0.32 0.010 14 17 0.265 0.500 15 750
0.32 0.020 6 15 0.050 0.500 30 1500
0.32 0.020 8 18 0.050 0.500 30 1000
0.32 0.020 10 16 0.245 0.500 15 1000
0.32 0.020 12 19 0.245 0.500 15 600
0.32 0.020 14 17 0.274 0.500 13 7500
0.32 0.030 6 14 0.226 0.450 14 3000
0.32 0.030 8 17 0.212 0.450 15 2000
0.32 0.030 10 17 0.226 0.450 14 2000
0.32 0.030 12 19 0.226 0.450 14 600
0.32 0.035 6 13 0.218 0.450 20 3000
0.32 0.035 8 14 0.218 0.450 20 2000
0.32 0.035 10 15 0.218 0.450 20 2000
0.32 0.035 12 18 0.218 0.450 20 650
0.32 0.040 6 14 0.218 0.450 20 3000
0.32 0.040 8 16 0.218 0.450 20 2800
0.32 0.040 10 17 0.218 0.450 20 2000
0.32 0.040 12 17 0.218 0.450 14 1000
0.32 0.050 6 13 0.105 0.500 20 1500
0.32 0.050 8 16 0.150 0.500 20 1000
0.32 0.050 10 18 0.150 0.500 20 1000
0.32 0.050 12 19 0.150 0.500 20 1000
0.32 0.060 6 12 0.150 0.500 20 2000
0.32 0.060 8 16 0.150 0.500 20 2000
0.32 0.060 10 19 0.150 0.500 20 2000
0.32 0.060 12 20 0.150 0.500 20 1000
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TABLE III: Simulation parameters at finite temperature andx =
0.44. For details see Table II.
x h L b Tmin Tmax NT Nsa

0.44 0.000 6 10 0.500 1.000 30 1000
0.44 0.000 8 12 0.500 1.000 30 1300
0.44 0.000 10 13 0.500 1.000 30 2500
0.44 0.000 12 14 0.500 1.000 30 550
0.44 0.000 14 14 0.560 1.000 47 650
0.44 0.020 6 10 0.525 0.800 30 2000
0.44 0.020 8 12 0.525 0.800 30 2000
0.44 0.020 10 13 0.525 0.800 30 1000
0.44 0.020 12 14 0.525 0.800 30 1000
0.44 0.020 14 14 0.550 0.800 30 900
0.44 0.040 6 11 0.525 0.750 22 2000
0.44 0.040 8 12 0.525 0.750 22 2000
0.44 0.040 10 14 0.540 0.750 20 1000
0.44 0.040 12 15 0.550 0.750 20 1000
0.44 0.060 6 11 0.500 0.750 25 2000
0.44 0.060 8 13 0.500 0.750 25 2000
0.44 0.060 10 13 0.519 0.730 19 2000
0.44 0.060 12 14 0.519 0.730 19 1300
0.44 0.080 6 12 0.475 0.725 20 2000
0.44 0.080 8 13 0.475 0.725 20 2000
0.44 0.080 10 13 0.500 0.725 20 1200
0.44 0.080 12 14 0.509 0.725 19 1300
0.44 0.100 6 13 0.445 0.725 23 2000
0.44 0.100 8 14 0.445 0.725 23 2300
0.44 0.100 10 13 0.445 0.725 23 2200
0.44 0.100 12 15 0.475 0.725 20 880
0.44 0.120 6 13 0.425 0.725 30 2500
0.44 0.120 8 14 0.425 0.725 30 2200
0.44 0.120 10 15 0.425 0.725 30 1000
0.44 0.120 12 16 0.445 0.725 25 1000
0.44 0.130 6 13 0.375 0.750 20 2000
0.44 0.130 8 15 0.375 0.750 20 1000
0.44 0.130 10 16 0.375 0.750 20 1000
0.44 0.180 6 14 0.270 0.750 45 3000
0.44 0.180 8 16 0.270 0.750 45 1500
0.44 0.180 10 19 0.270 0.750 45 512
0.44 0.200 6 14 0.270 0.750 45 3000
0.44 0.200 8 16 0.270 0.750 45 2000
0.44 0.200 10 19 0.270 0.750 45 512

TABLE IV: Simulation parameters at finite temperature andx =
0.65. For details see Table II.
x h L b Tmin Tmax NT Nsa

0.65 0.000 6 10 0.500 1.400 20 1000
0.65 0.000 8 12 0.500 1.400 20 500
0.65 0.000 10 12 0.500 1.400 20 450
0.65 0.000 12 11 0.500 1.400 20 500
0.65 0.000 14 10 0.850 1.400 15 490
0.65 0.000 16 11 0.850 1.400 15 470
0.65 0.050 6 8 0.697 1.400 15 1000
0.65 0.050 8 10 0.697 1.400 15 500
0.65 0.050 10 9 0.800 1.400 20 500
0.65 0.050 12 11 0.697 1.400 15 300
0.65 0.050 14 10 0.900 1.400 15 500
0.65 0.050 16 11 0.920 1.400 16 280
0.65 0.100 6 8 0.820 1.400 20 750
0.65 0.100 8 9 0.820 1.400 20 500
0.65 0.100 10 10 0.820 1.400 20 500
0.65 0.100 12 11 0.820 1.400 20 800
0.65 0.100 14 12 0.820 1.400 20 380
0.65 0.150 6 8 0.820 1.400 20 1000
0.65 0.150 8 10 0.820 1.400 20 500
0.65 0.150 10 11 0.820 1.400 20 500
0.65 0.150 12 12 0.820 1.400 20 500
0.65 0.150 14 13 0.820 1.400 20 500
0.65 0.200 6 10 0.661 1.400 15 500
0.65 0.200 8 11 0.661 1.400 15 400
0.65 0.200 10 14 0.756 1.400 13 1300
0.65 0.200 12 15 0.756 1.400 13 1000
0.65 0.200 14 16 0.756 1.400 13 990
0.65 0.300 6 10 0.600 1.400 20 750
0.65 0.300 8 15 0.600 1.400 20 1000
0.65 0.300 10 17 0.600 1.400 20 550
0.65 0.300 12 19 0.600 1.400 20 530

TABLE V: Critical parameters estimated using a finite-size scaling
technique: For each concentrationx and field strengthh we compute
the critical temperatureTc and critical exponentν.

x h Tc ν
0.32 0.000 0.340(3) 0.83(3)
0.32 0.005 0.335(3) 0.89(3)
0.32 0.010 0.340(3) 0.81(3)
0.32 0.020 0.314(5) 1.04(7)
0.32 0.030 0.281(13) 1.23(17)
0.32 0.035 0.269(14) 1.31(19)
0.32 0.040 0.247(14) 1.41(15)
0.44 0.000 0.584(1) 0.75(1)
0.44 0.020 0.581(1) 0.70(1)
0.44 0.040 0.563(3) 0.77(2)
0.44 0.060 0.548(5) 0.86(3)
0.44 0.080 0.522(5) 0.99(4)
0.44 0.100 0.506(5) 1.01(4)
0.44 0.120 0.466(9) 1.39(12)
0.65 0.000 0.9597(8) 0.79(2)
0.65 0.050 0.9531(10) 0.76(2)
0.65 0.100 0.9264(14) 0.84(3)
0.65 0.150 0.8832(21) 0.91(4)
0.65 0.200 0.8312(41) 1.06(10)
0.65 0.300 0.6905(113) 1.11(12)


