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We examined the antibody responses of pediatric patients infected with community-associated Staphylococcus aureus
isolates. The data show that patients infected with Panton-Valentine leukocidin (PVL)-positive strains developed a
dominant immunoglobulin G anti-PVL antibody response that correlates with markers of inflammation.

Staphylococcus aureus is one of the most common bacteria
causing skin and soft tissue infections as well as invasive infec-
tions, e.g., osteomyelitis, septic arthritis, infective endocarditis,
and complicated pneumonia, in humans (14). Over the past
decade, the USA300 S. aureus pulsed-field type has become
the dominant S. aureus lineage causing community-associated
methicillin-resistant S. aureus (CA-MRSA) infections world-
wide (3–8, 13, 15, 16, 20); this lineage encodes the Panton-
Valentine leukocidin (PVL), a cytotoxin that has been associated
with severe S. aureus infections in humans (3–8, 13, 15, 16, 20).
We examined the anti-PVL antibody responses in patients diag-
nosed with S. aureus infections (Table 1) and compared these
responses to those against other USA300 virulence factors.

Sera for antibody analysis were collected at the time of
admission from pediatric patients with either skin and soft
tissue infections (SSTI), invasive bone infections (osteomyeli-
tis), or pneumonia. Sera from healthy 4- to 6-year-old children
(collected in 1991) served as negative controls.

The serum antibody responses to the following S. aureus
recombinant factors were measured: extracellular fibrinogen-
binding protein from amino acid positions 35 to 165 (Efb35-165)
(10, 11), MHCII analog protein from amino acid positions 50
to 237 (Map1950-237) (12), LukF-PV25-325 and LukS-PV29-312

(9), clumping factor B from amino acid positions 201 to 542
(ClfB201-542) (19), collagen-binding adhesin 35 from amino
acid positions 29 to 334 (CNA3529-334) (22), or the
pGEX-2T (GE Life Sciences, Piscataway, NJ) vector for
fibronectin-binding protein A from amino acid positions 620
to 881 (FnbpA620-881) (17). In addition, LukD27-327, LukE40-311,
gamma hemolysin A from amino acid positions 30 to 309
(HlgA30-309), HlgB27-325, and HlgC30-315 were cloned and
expressed for this study. Alpha toxin was purchased from
List Biological Laboratories (Campbell, CA), and the
LukS-PV signal peptide (formyl-Met-Val-Lys-Lys-Arg-Leu-
Leu-Ala-Ala-Thr-Leu-Ser-Leu-Gly-Ile-Ile-Thr-Pro-Ile-Ala-
Thr-Ser-Phe-His-Glu-Ser-Lys-Ala-OH) and �3-phenol soluble

modulin (�3-PSM; formyl-Met-Glu-Phe-Val-Ala-Lys-Leu-Phe-
Lys-Phe-Phe-Lys-Asp-Leu-Leu-Gly-Lys-Phe-Leu-Gly-Asn-Asn-
OH) were synthesized by AnaSpec, Inc. (San José, CA) (21).
These factors were chosen as representative members of the ad-
hesin, toxin, and immunomodulator families. The collagen adhe-
sin CNA (not encoded in the USA300 genome) was selected as a
negative control.

Specific antibody responses were characterized by using al-
kaline phosphatase-conjugated (1:5,000) goat anti-human
whole immunoglobulin G (IgG) antibodies; IgA antibodies; or
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TABLE 1. Demographic characteristics of children with
S. aureus infections

Characteristic

Result for children with:

Invasive
infectionsa SSTIb

Mean age � SE (yr) 6.58 � 1.03 7.74 � 0.92

No. (%) of isolates
pvl positive 21 (64) 24 (69)
pvl negative 9 (33) 2 (6)
NDc 3 (9) 9 (25)

MRSA 13 (40) 20 (57)
MSSA 20 (60) 6 (17)
ND 0 (0) 9 (26)

Previous infection
Yes 10 (30) 19 (54)
No 21 (64) 7 (20)
Unknown 2 (6) 9 (26)

Race
Caucasian 15 (46) 15 (43)
Black 7 (21) 11 (31)
Hispanic 6 (18) 8 (23)
Otherd 5 (15) 1 (3)

a Invasive infections were defined as infections of the bone (n � 28), myositis
(n � 3), and pneumonia (n � 2).

b SSTIs were defined as abscesses (n � 26), cellulitis (n � 2), and lymphade-
nitis (n � 4).

c ND, not determined.
d Other, three Asian and two unknown.
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mouse isotype-specific anti-human IgG1, IgG2, IgG3, IgG4, or
IgM antibodies (Zymed Laboratories, San Francisco, CA). Im-
mulon-1B microtiter plates (Dynatech Laboratories, Chantilly,
VA) were coated overnight at 4°C with 1 �g of each recombi-
nant S. aureus antigen, and enzyme-linked immunosorbent as-
says (ELISAs) were carried out as described previously by
using a 1:1,000 dilution of patient serum (2).

The levels of IgG antibodies to LukS-PV and LukF-PV were
significantly higher (P � 0.01) in children with invasive infections
(median optical density [OD], 0.98; OD range, 0.12 to 3.00) than
in children with SSTI (median OD, 0.47; OD range, 0.09 to 2.60)
(Fig. 1A). A similar trend (P � 0.06) for the levels of IgG anti-
bodies to alpha toxin was noted in the two groups, but the levels
of antibodies to alpha toxin were lower than those to LukS-PV in
each group (Fig. 1A). No reactivity to the LukS-PV signal peptide
or �3-PSM was detected. In patients with invasive infections, the
levels of IgG antibodies to LukS-PV correlated with the number
of days prior to admission that the patient was ill (r � 0.44, P �
0.023) and the C-reactive protein (CRP) values at the time of
admission (r � 0.42, P � 0.03).

There was a trend for the anti-LukS-PV IgG antibody levels
to correlate with the erythrocyte sedimentation rate (ESR) at
admission (r � 0.35, P � 0.08). In contrast, the levels of
antibodies to alpha toxin did not correlate with the duration of
illness prior to admission or the CRP value at admission, but a
trend for a correlation with the ESRs at admission was noted
(r � 0.39, P � 0.09). There was no correlation between the
anti-LukS-PV or anti-alpha toxin IgG antibody response and
the patient’s age or between the anti-LukS-PV and anti-alpha
toxin IgG antibody responses.

The anti-Map IgG antibody levels in patients with invasive
infections (median OD, 0.64; OD range, 0.09 to 2.98) were also
significantly greater (P � 0.002) than those in patients with
SSTI (median OD, 0.25; OD range, 0.13 to 1.91). The anti-Efb
IgG antibody levels were lower than the levels of the other IgG
antibodies and were not different between the patient groups.
The levels of IgA antibodies to the protein panel were not
significantly different between groups, and IgA antibodies were
present at lower levels than the IgG antibodies (data not
shown). Antibody responses to CNA and ClfB were not de-
tected in the patients (Fig. 1A).

As described above, patients from all groups had various
responses to most of the virulence factors tested. Patients with
pvl-positive osteomyelitis had anti-LukF-PV and anti-LukS-PV
IgG antibody responses that were more dominant than those
of patients diagnosed with pvl-negative osteomyelitis or pvl-
positive SSTI. This was examined further by comparing the
anti-LukF-PV and anti-LukS-PV IgG antibody responses of
each patient to their respective IgG responses to alpha toxin,

FIG. 1. Antibody reactivities to S. aureus virulence proteins.
ELISA plate wells coated with S. aureus proteins were incubated with
a 1:1,000 dilution of patient serum and were then probed with a 1:5,000
dilution of alkaline phosphatase-conjugated anti-IgG antibody. The
plates were developed for 30 min in the dark and then read at 405 nm.
The data are expressed as the means � standard errors for triplicate
wells per patient. (A) IgG responses to Efb, Map, alpha toxin, LukF-
PV, LukS-PV, ClfB, CNA35, and FnbpA in patients with different
disease presentations. (B) Log difference in anti-PVL antibody titers.
The data are expressed as the log difference between the mean OD
readings obtained for individual patients described above. Statistical

differences were determined by the unpaired t test with Welch’s cor-
rection; and differences between groups are indicated by the corre-
sponding symbols: †, P � 0.02; §, P � 0.02; **, P � 0.004; §§, P � 0.04;
††, P � 0.001; *, P � 0.001. (C) Antibody reactivities to S. aureus
toxins. ELISA plate wells were coated with 1 �g/well of either HlgA,
HlgB, HlgC, LukF-PV, LukS-PV, LukD, LukE, or alpha toxin. The
data are expressed as the means � standard deviations for triplicate
wells per patient. PVL�, PVL positive; PVL�, PVL negative; STI,
soft tissue infection; Osteo, osteomyelitis.
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Map, and Efb (factors that consistently elicited measurable
responses). Patients with pvl-positive osteomyelitis on average
had statistically higher IgG anti-LukF-PV and anti-LukS-PV
responses (approximately fivefold greater than their responses
to alpha toxin, Map, or Efb) (Fig. 1B). In contrast, patients
infected with pvl-negative isolates had alpha-toxin, Map, and
Efb responses higher than their respective anti-LukF-PV and
anti-LukS-PV responses (Fig. 1B). These data suggest that
patients infected with PVL-positive isolates develop a domi-
nant anti-PVL response at the expense of other factors.

The IgG isotype (i.e., IgG1, IgG2, IgG3, and IgG4) reactivities
against the virulence proteins described above were determined to
define the differences in Ig responses between groups; however, no
significant differences were observed (data not shown).

Since the dominant antibody responses observed were to-
ward LukF-PV and LukS-PV, we examined the possibility that
the magnitude of this response was due to the presence of
cross-reactive antibodies generated against structurally similar
factors, e.g., other pore-forming toxins, by testing patient sera
from high and low anti-PVL IgG antibody responders for re-
activity to either LukD, LukE, alpha toxin, HlgA, HlgB, or
HlgC. Sera from five patients with S. aureus (pvl-positive) os-
teomyelitis responded exclusively to LukF and LukS and had
some reactivity to HlgB (Fig. 1C). Serum obtained from pa-
tients with infections caused by pvl-negative isolates or from
controls were nonresponsive to the toxins tested (Fig. 1C),
indicating that the anti-LukF and anti-LukS responses were
primarily due to a specific humoral response to these antigens.

Although the protein panel tested for Ig reactivity represents
a small fraction of the total target antigens with the potential
of eliciting a humoral response against S. aureus, the antigens
selected were chosen because they are virulence factors in
humans and in animal models of disease (1, 9, 12, 14, 18). This
report is the first describing the antibody responses to selected
S. aureus antigens in pediatric patients with either SSTI or
invasive infections caused by CA-MRSA isolates of the
USA300 lineage. Patients with invasive infections developed
more dominant and specific anti-LukF-PV and anti-LukS-PV
responses than patients with SSTI. The titers of the antibodies
to these determinants correlated with markers of inflamma-
tion, the significance of which remains to be understood.

These studies were supported in part by startup funds to E.L.B., a
gift from the Hamill Foundation to M.G.B., and a grant from the
Vivian Smith Foundation to S.L.K.
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ADDENDUM IN PROOF

After this paper was accepted for publication, we cloned and expressed
a new LukE construct (amino acids 29 to 311) that we tested for antibody
reactivity as described for Fig. 1C. Sera collected from patients infected
with PVL-negative isolates did not react significantly to this construct,
LukE29-311. However, serum from patients infected with PVL-positive
isolates bound to LukE29-311 at levels similar to those observed for LukS.
These observations do not change the conclusions derived from the data
presented. Rather since only patients infected with PVL-positive isolates
responded to LukE, whereas patients infected with PVL-negative isolates
(which also express LukE but not either LukE nor LukS) did not have
antibodies reactive to either LukF or LukS, the results obtained with this
expanded construct suggest that antibodies raised against LukS cross-
reacted with LukE, not vice versa.
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