arXiv:1104.1473v2 [cond-mat.mes-hall] 26 May 2011

The Scaling of the Anomalous Hall Effect in the Insulating Regime
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We develop a theoretical approach to study the scaling of anomalous Hall effect (AHE) in the
insulating regime, which is observed to be nyH x olA0~LT5 4y experiments over a large range of
materials. This scaling is qualitatively different from the ones observed in metals. Basing our theory
on the phonon-assisted hopping mechanism and percolation theory, we derive a general formula
for the anomalous Hall conductivity, and show that it scales with the longitudinal conductivity
as UfyH ~ o), with v predicted to be 1.38 < v < 1.76, quantitatively in agreement with the
experimental observations. Our result provides a clearer understanding of the AHE in the insulating

regime and completes the scaling phase diagram of the AHE.

PACS numbers: 75.50.Pp, 72.20.Ee, 72.20.My

The anomalous Hall effect (AHE) is a central topic in
the study of Ferromagnetic materials [I]. It exhibits the
empirical relation p,, = RoB,+ RsM, between the total
Hall resistivity and the magnetization M, and external
magnetic field B,. Here Ry and Rg are respectively the
ordinary and anomalous Hall coefficients. When trans-
formed to an anomalous Hall conductivity (AHC), afyH ,
three regimes are observed with respect to its dependence
on the diagonal conductivity, o.. In the metallic regime
the AHE J;“;{ is observed to be linearly proportional
to 0, for the highest metallic systems (0., > 105Q~1
cm™1) and roughly constant for the rest of the metallic
regime. This dependence indicates the different domi-
nant mechanisms in ferromagnetic metals. These are un-
derstood to be the skew scattering, side jump scattering,
and intrinsic deflection mechanisms. The intrinsic con-
tribution is induced by a momentum-space Berry phase
linked to the electronic structure of the multi-band SO
coupled system [T, 2]. The side jump scattering mecha-
nism gives the same scaling relation as the intrinsic con-
tribution, i.e. O'?yH_Sj o 0., and the skew scattering is
linear in the longitudinal conductivity, aff —F X 0.
While these mechanisms are now better understood, the
maximum scaling exponent of the AHC cannot exceed
unity in the metallic regime [IJ.

On the other hand, experiments in the insulating
regime exhibit an unexpected scaling relation of the AHC
U;‘yH o oL-40~LT5 " which remains unexplained and a ma-
jor challenge in understanding fully the phase diagram
of the AHE [4HI4]. The available microscopic theories of
metals fail in this regime since the condition kgl > 1 is
no longer satisfied for disordered insulators [I, [15]. The
few previous studies of the AHE in the insulating regime
focused on manganites and Gaj_,Mn,As; while the man-
ganites do not exhibit this scaling, the studies on insu-
lating Gaj_,Mn,As did not show this scaling [T6HIS].

In this Letter we study the scaling of the AHE in the in-
sulating strongly disordered amorphous regime, where at
low temperatures charge transport results from phonon-

assisted hopping between impurity localized states [19]
20]. We calculate the upper and lower limits of the
AHC, and show it scales with o, as afyH ~ o), with
v predicted to be 1.38 < v < 1.76, in agreement with
the experimental observations. This scaling remains the
same regardless of whether the hopping process is Mott-
variable-range-hopping or influenced by interactions, i.e.
Efros-Shkolvskii (ES) regime.
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FIG. 1: AHE in the insulating regime. In this regime charge
transport occurs via hopping between impurity sites.

To capture the Hall effect one requires the hopping
process between impurity sites (Fig. 1)) to break the time-
reversal (TR) symmetry. The two-site direct hopping
preserves TR symmetry, and therefore more than two
sites must be considered. The hopping through three
sites, as depicted in Fig. [2| is the minimum requirement
to model theoretically the ordinary Hall effect (OHE)
[21]. The total hopping amplitude is obtained by adding
the direct and indirect (through the intermediate k-site)
hopping terms from 7 to j sites. The two hopping paths
give rise to an interference term for the transition rate
which breaks TR symmetry and is responsible for the
Hall current in the hopping regime. For the OHE, the
interference is a reflection of the Aharonov-Bohm phase,
and for the AHE it reflects the Berry phase due to SO
coupling. Furthermore, the dominant contribution to the
Hall transport will be given by the one- and two-real-



phonon processes through triads (Fig. [2) [21].

Our theory is based on a minimal tight-binding Hamil-
tonian. With the particle-phonon coupling considered,
the total Hamiltonian H = H, + H. + Hp, with
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Here H), describes localized states, H. gives the particle-
phonon coupling with 7 the coupling constant, Hyy, is the
phonon Hamiltonian, « is the local on-site total angular
momentum index, and ¢; is the energy measured from
the fermi level. Here we consider that the magnetization
is saturated and thus assume M = Mé,. The hopping
matrix t;; is generally off-diagonal due to SO coupling
(see Supplementary Information (SI)). The localization
regime has the condition |tin j| < |&; — €] in average.
The specific form of the relevant parameters (¢;;, M, spin
operator T,g) are material dependent and do not affect

the scaling relation between o4 and o4,
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FIG. 2: (Color online) The hopping processes through triads
with up to two real phonons absorbed or emitted. (Top) Typ-
ical diagrams of the two-phonon direct and indirect hopping
processes. (Bottom) One-phonon direct process and typical
three-phonon (one real phonon) indirect hopping processes.

Considering the dominant contributions to the longi-
tudinal and Hall transports, we obtain the charge current
between ¢ and j sites in a single triad with applied volt-
ages [I7]: I;; = Gi;jVij + Gijk Vik + Vir), with G;; the di-
rect conductance and G, responsible for Hall transport.
The formula of I;; gives the microscopic conductances
in any single triad (see SI). To evaluate the macroscopic
AHC, we need to properly average it over all triads in
the random system. This is achieved with the aid of per-
colation theory, a fundamental tool to understand the
hopping transport.

We first map the random impurity system to a ran-
dom resistor network by introducing the connectivity be-
tween impurity sites with the help of a cut-off G.(T).

> tiajstlatis + Y M- Taptl,ip

When the conductance between two impurity sites sat-
isfles G;; > G., we consider the i, j sites are connected
with a finite resistor Z;; = 1/G;;. Otherwise, they are
treated as disconnected, i.e. Gj; — 0. The Hall effect
will be treated as a perturbation to the obtained resis-
tor network. The cut-off G, should be properly chosen
so that the long-range critical percolation paths/clusters
appear and span the whole material, and dominate the
charge transport in the hopping regime. The macroscopic
physical quantities will finally be obtained by averaging
over the percolation path/cluter.

The hopping coefficient generally has the form t;q, ;5 =

tgg) —aRij with a~! the localization length and R =

IR; — R | The direct conductance holds the form G;; =
Go(T)e _2“R7i_55(|em|+|€JB|+‘€“’_€JB| , and then the cut-
off can be introduced by G, = Goe Pé(T) Here BE.
is a decreasing function of T, indicating the material in
the insulating regime. The number of impurity sites con-
nected to a specific site 4 with_energy ¢; can be calcu-
lated by n(e;, &) = [de; [d®Rijp(ej, Ri)O(Gyj — Ge).
Here O(z) is the step function and the DOS p(e, B;) ~
% > ;0(e — ¢) is approximated to be spatially homo-
geneous. The number n(e;, &) can also be given by
n(ei &) =Y, Pnl€i, &), with P, (€;, &) being the proba-
bility that the n-th smallest resistor connected to the site
1 has the resistance less than 1/G,. The function P, reads

P’n,(fiagC) = ﬁ fon(
path/cluster appears when the average connections per
impurity site 7 = (n(e;)). reaches the critical value 7.,
where the definition of (...). is given in Eq. @ Suppose
a physical quantity F'(eq, ..., €mp; 71, ..., T ) being a m-site
function, requiring the i-th site to have at least 7; sites
connected to it. The averaging of F(e; ) reads

N /d61 /dem/d r12.. /dSFm—l,m
X HP i Ei
=1

where AMr is a normalization factor and the probabil-
ity function Py, (&) = pl€) > >y, Pr(€). The term
> k> Dr(€) entering the probability function has im-
portant physical reason. The configuration averaging is
not conducted over the whole impurity system, but over
the percolation cluster which covers only portion of the
impurity sites. Therefore the probability that an im-
purity site belonging to the percolation cluster must be
taken into account for probability function. Moreover,
this probability function also distinguishes the physical
origins of the AHC and o,,. For UfyH one has n; = 3,
and for o,, one has n; = 2. This indicates the averag-
ing of 0., is performed along the one dimensional (1D)
percolation path, while for AHE which is a two dimen-
sional (2D) effect, one shall evaluate AHC over all triads
connected in the 2D percolation cluster.

) g=wgn—ly [2]. The percolation

(F(&7))e

F(e1, s €m3; 715 ooy T ), (1)



Numerical solutions show the critical site connectiv-
ity is . = 2.6 ~ 2.7 for the appearance of a percolation
path/cluster in three dimensional materials [24, 25]. This
indicates the triads are sparsely distributed in the per-
colation cluster, as shown in Fig. The AHC can be
derived by examining the transverse voltage VyH (along
the y-axis) induced by the applied longitudinal current
Iy. Denote by N(x) the number of triads distributed
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FIG. 3: (Color online) Typical resistor network in the ma-
terial. The present situation indicates Vi_, and Vi in the
region from x — Ax to x + Ax are zero, where no triads form.

along the y-axis in the region around position 2 (Note M
is along the z-axis, hence we assume the system in this
direction to be uniform). The transverse voltage equals
the summation over the voltage drops of the N(x) triads:
V. (x) = ZN(I) V. The average Hall voltage V, can
be obtained in the limit N (z) — oo, which from Eq. (6]
we find (see SI for details)

Zaﬁ’y [Im( io,j BB kA, ux)Tz(Jk)]
2) (2
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with L the correlation length of the network. Note the
configuration integral given by Eq. (@ is first derived for
the AHC in this letter. This is an essential difference from
the former theory by Burkov et al [I7], where the con-
figuration averaging applies to the whole system rather
than to 2D percolation cluster. With our formalism the
key physics that Hall currents are averaged over perco-
lation clusters can be studied, which is a crucial step to
understand the insulating regime of the AHE phase dia-
gram. The above configuration integral cannot be solved
analytically. In the following we study the upper and
lower limits of the AHC by imposing further restrictions
in Eq. . with which the range of the scaling relation
between O'AH and o, can be determined.

The lower (upper) limit of the AHC can be formulated
by keeping only the maximum (minimum) term in the
denominator and the minimum (maximum) term in the

> kT

AH
— 3L02, 2
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numerator. Furthermore, for simplicity we first approxi-
mate the DOS to be constant although this approxima-
tion is relaxed later. As a result, with further simplifica-
tion (see SI) we find

AH B max max
{er 77311}12 —3LO’ T< ijk >C<€ijk >C7 (3)
mazx/min

where (R;’;i")c = €a<R”+R"’“7R““>C\RU,RM<RW (emin)  —

zgk:
0.58(|€ei|+|ej|+|ej—€er|—|ei—er
e (leil+lejl+le; [—lei [Ye leal<le;|<lexl> <Rijk >c and
<6maac

ik )e hold the same form for the calculation but the
restrictions change to be R;j, R > Rix, and |e;| > |¢j] >

lex|, respectively. The coefficient #0 represents the

max/min
maxmimum,/minimum element in the matrix tg;-)). It is
instructive to point out the underlying physics of the two
limits. In the hopping regime, charge transport may pre-
fer a short and straight path in the forward direction
with larger resistance than a long and meandrous path
with somewhat smaller resistance [2}[19]. This picture in-
troduces an additional restriction complementary to the
percolation theory for charge transport. What bonds
in a triad play the major role for the current flowing
through it is determined by the optimization of the resis-
tance magnitudes and spatial configuration of the three
bonds. A quantitative description can be obtained by
phenomenologically introducing an additional probabil-
ity factor to restrict the charge transport [2, [19]. Here
we only need to adopt this picture to present the two
extreme situations corresponding to {a }mm Jmaz- To
get the upper limit we assume that for each triad of the
percolation cluster the two bonds with smaller direct con-
ductance dominate the charge transport, i.e. the product
of two smallest conductances minimize the denominator,
and take the maximum value for the numerator of Eq.
(2). The opposite limit corresponds to the situation that
the two bonds with larger conductances in each triad
dominate the charge transport.

For a constant DOS, one obtains straightforwardly the
number n(e;) and then the probability P, (e;). Substi-
tuting them into Eq. we finally obtain (R7"), ~

ijk /¢ —
0.1568¢ max ~ »0.4833¢&. min 0.0863¢
e “ <Rzgk >C = € “ <€Z]k > ¢

~ e , and
(€07)e == 13858 (see SI for details). The longitudi-
nal conductivity is obtained based on the 2-site func-
tion G;; which should be no less than G. in a perco-
lation path. The result of o,, equals G. divided by
the correlation length of the network and takes the form
Oz = 00(T)e P4 where oo(T) gives at most a power-
law on T |2, [22]. Comparing this form with the AHC, we
reach {UfyH}min/mm ~ 03 Talbgde/t with 4, = 1.76 and
~p» = 1.38. This leads to the scahng relation, the central
result of this Letter, between J " and o4, of the AHE
in the insulating regime:

AH ¥
Ogy X Ogg

1.38 < v < 1.76. (4)

The maximum (minimum) of the AHC corresponds to



the smaller (larger) power index 7; (7,). This scaling
range can be confirmed with a numerical calculation of
the Eq. (42)). Furthermore, a direct numerical study for
the configuration integral gives the scaling exponent
~ & 1.62, which is consistent with our prediction of the
lower and upper limits.

So far in the calculation we have assumed a constant
DOS. This approximation is applicable for the ferromag-
netic system with strong exchange interaction between
local magnetic moments and charge carriers (e.g. oxides,
magnetites) and half metals in general. In this case we
do not need to sum over spin-up and spin-down states
which contribute oppositely to the AHE, and the previ-
ous results are valid.

However, when the Fermi energy crosses both spin-up
and -down impurity states, a symmetric DOS with p(e) =
p(—e€) leads to zero AHC. This is because under the trans-
formation ¢, — —¢;,—5 (I = ,4,k), Gijr changes sign,
while G;; is invariant. Thus the averaging for AHC over
all spin states and on-site energies cancels [I7]. We re-
lax the previous simplifying restriction by expanding the
DOS by p(e) =3, Ldpoen where |¢| < €, and we con-

n n! dep

sider pg = p(ep) > 0. Substituting this expansion into
Eq. yields oftf = 3> o™ with the 1st and 2nd

dpo d®po

dep ded. *

We can similarly evaluate the lower and upper limits of
AH

04y as before. The first two nonzero terms in the expan-

. 1 d 2=%Ya/b _Ya/b
sion are {ag(gy)}mm/maw ~ Mg2e(T)oy e/’ and
2

(0 mminjmaz ~ 0.002MLL0e3(T)oy /03", The
appearance of M is due to thg summation over the spin-
up and -down states. We have also employed the result
(le])e = 0.112€,.. The specific formulas of o¢(T") and &.(T)
do not affect the qualitative scaling between Jff and
0. For the Mott and ES hopping regimes, we have re-
spectively &, = kBT(TO/T) Y4 and & = kBT(To/T)1/2
with Ty the constant depending on the DOS [2, 22| 27).

Note that Ug(cly) and U%) have different physical meanings.

The term U%) dominates when the DOS varies monoton-
ically versus e. Furthermore, when the DOS has a local
minimum at the Fermi level, which may be obtained due
to particle-particle interaction (coulomb interaction), we
have dp/der = 0. Then the term ag%) varnishes and U%)
dominates the AHE. The above results also indicate that
the AHC may change sign when dpg/der or d®pg/des,
changes sign, which is consistent with the observation by
Allen et al [7].

Fig. shows our theoretical prediction is consistent
with the experimental observations of the scaling relation
in this regime, hence completing the understanding of the
phase diagram of the AHE.
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FIG. 4: (Color online) Scaling relation between the AHC and
longitudinal conductivity. The theoretical results are com-
pared with the experimental observations.
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SUPPLEMENTARY INFORMATION FOR “SCALING OF THE ANOMALOUS HALL EFFECT IN THE
INSULATING REGIME”

HOPPING MATRIX

In the case the magnetization is saturated and thus M = Mé,, we rewrite the Hamiltonian H), in the diagonal
basis of the exchange term and obtain

H Zezac Cla - Z ti(lyjﬁéjaéjﬁ’ (5)

ia,j B

where €, = €; + MT,o. Below are two different examples. First, for the dilute Ga;_,Mn,As, the matrix ¢;o ;3
describes the hopping of the holes localized on the Mn impurities. Under the spherical approximation ¢;,, ;3 can be
obtained based on by a unitary rotation U(R;;) from the é. direction to the hopping direction ¢ — j [I]. We thus have
tinip = [UT(Rij)tdiagU (Rij)]ap With tgiay = diag[ts o, t1/2,t_1/2,t_3/2] representing the situation that the hopping
direction is along the z axis. Another case is for the localized s-orbital electrons.qIn this case, the hopping is given by
tij = UT(R”)[E”(I -+ 1171] . 5")}U(R”) Here fij = diag[tl/g,t_l/g] and 171']' = % f;j (VV(I‘) X d’I_J) with V(I‘) including
the ion and external potentials, the spin-orbit coupling coefficient o = h/(4m?c?) and m the effective mass of the
electron.

CONFIGURATIONAL INTEGRALS

The averaging of a m-site physical quantity F'(e1, €, ..., €m; 71, T2, ..., T ) along critical percolation path/cluster is
given by

1
(F(€1,€2y eey €m3 1, T2y ey T ) e = m/del/deg.../dem X

X /d37"12/d37’23 /d Ton—1,mp(€1) Z Py (e1)p(e2)
k= ny
X Z P}C 62 ) Z Pk(Gm)F(Gl,GQ,...,Gm,T177’2,...,Fm)7 (6)
k=no k=nm,
where P, (€;,&.) = = 1), fn(el e~ %z" 1dx [2]. Some examples are given below. The first one is the average value of

n(e;, &) in the percolation cluster. Note n(e;, &.) is a 1-site function. The averaging is straightforward and

Jdein(ei)p(ei) 35y Pules) [ dein(ei)p(ei)n(e:)
[ dep(ei) 2202, Prler) [demn(e)ples)

The hopping conduction occurs when the average value 7 reaches the critical value n.. When the DOS p(e;) = pg is
a constant, the number n(e;) is given by n(e;) = 2% 522 (& — |e:])2(€? — |€]?). Then we have

n=(n(e&))e = (7)

3 QaksT)?
4(¢2 2\2
c— |€ — |€&]7)de;
n, = 2T o J& —laD™ (& —leil*)*dei _ 06 po . ®)
3 (2akpT)* [(& — lei])*(€2 — |eil*)dei (2akpT)?

from which we obtain the cut-off value &, by

(ZakBT)?’nc] 1/4

&(T) = [ 0.4067 o



Thus it gives

TO 1/4 G,B’FLC
c=\| = , To =16 , 10
b ( T ) 0 ks po (10)

2

which is the Mott law. Accordingly, if we assume the density of states p(e) ~ €, we obtain straightforwardly the

Efros-Shklovskii (E-S) law S¢. :(%)1/2 [3]. Second, we give the formula for the longitudinal resistance based on the
2-site function Z;; = 1/G,;. The longitudinal resistance for a percolation path is calculated by

R N de [ de; | drisZi(eis egiTig)ples) 3opzg Prlei)ple) 3oz Piley)
o [ dei [ dej [ d3Fijp(ei) 220y Pr(ei)p(€) 3opey Prles) ’

where IV is the number of links along the percolation path. The above formula can be simplified by the fact that
Yoo Pr(e;) = n(e;, &) — Pi(e, &) o [n(e;, &)]>. We then reach

B - N [dei [ dej [ d*FijZij(eis €;7i5) plei) [nles, £)Pp(e;) [n(es, €c)]?
o [ dei [ dej [ d3Fip(ei)[nei, &)]2ples)[n(e;, )] .

The longitudinal resistivity is given by Ruz/(n4L.), with ng the density of the percolation paths and L, the length of
the material along 2 direction [2]. Finally, if the physical quantity is a function of a triad with each site of the triad
having at least three sites connected to it, the averaging of such physical quantity is given by

Fler. g exi o . i) — 4.drdeaden [ o | i F (& M)p(en) n(en) *plea) In(ea)plea) n(es)?
N L T T [ derdesdes | Pz [ Brasplen)n(e)Ppled)n(e)Pples)n(e)]®

The anomalous Hall conductivity/resistivity will be calculated with this formula.

(11)

(12)

(13)

FORMULA FOR MACROSCOPIC ANOMALOUS HALL CONDUCTIVITY

Now we show rigorously the formula for macroscopic AHC in the hopping regime. The transverse voltage difference
for the region from x — Az to x + Az (Fig. 3 in the manuscript) reads

Vy(x) = Vi + Vi + .+ Vi (14)

For the general situation we allow some V;7’s to be zero (see Fig. 3 in the manuscript). In that case no triad
forms for the incoming current I; under the condition all direct conductances in a triad must be no less than G..
To calculate Vi, the voltage contributed by the i-th triad, we employ perturbation theory to the equation [4]
Iij = GijVij + >k Gijk (Vik + V). First, in the zeroth order, we consider only the normal current, namely, the Hall

current is zero and thus Zj I = Zj Gij Vigo) = 0, with which one can determine the voltage Vi(o) at each site. Then,
. H . H H
for the first-order perturbation, we have >, I;; = >, Gi;Vi; + 3, Ji(j ) = 0, which leads to Ji( ) = > Jl-(j ) =
ik Qijk(Vj(,g) + vy =— >, Gi;Vij. The current JH) can also be written as
3

H 0 0 1 0 0 0 0 0
T =33 GV + Vi) = 3 S GV + v v - vy = 3 > GV (15)
7k ik

For the hopping regime, the triads are dilutedly distributed and the Hall voltages induced by different triads are

FIG. 5: (Color online) Resistor network transformation.



considered to be uncorrelated. Therefore, we obtain the Hall voltage of the i-th triad from the transformation indicated
in fig. [f] that

H H (2)
V(H) _ V-(H) GiliZJ?S ) - Gi1i3J2( ) 31 glflglg )
' 1t Glllz Glzis + Gilia GiziS + Gi3i1 Gi1i2 anz G12i3 + Gi1z3 G1213 + Gi3i1 Gi1i2

(16)

From the resistor network configuration one can see Zév(w) I; = 2I,. For convenience, we denote I; = 2Iy\;(x) with

>oiAi = 1. Generally V[ (z) =3, VZ-(H) is a function of position z, and one needs to average it along the x direction.
For a macroscopic system, one has N(x) — oo. Furthermore, we consider at the position z, for each \A; there are
n;(x) number triads that have such same current fraction \;. Thus we have

o 1 n;>1 g(])
= 6]0—/dx Ai Judags : (17)
Ly Z Z GJlJz Gj2j3 + GJI]S GJ2J3 + stjl Gj1j2

To simplify this formula we extend the current distribution {\;} for the region between x — Az and x + Az to
the whole space along = direction, and then we can exchange the order of the integral and the first summation:
7 [de D tny N2 >, i) N [de Y T»L"’(f). In the limit N(x) — oo and the length L, much larger than

the typical length L of the triad, the calculation 1 J[dx (z) gives the average of all possible configurations of the
triads through the percolating cluster. This leads to

Gl

H — 11121

= 6.[0 E ni)\i< 128 >Cv (18)
oo GiligGigig + G1113G1213 + Gi3i1Gi1i2

with n; = (1/L,) [ dan;(x) the average number of triads with in/outgoing current I;. Note the identity >, n;\; =1
is independent of p031t10n x, and therefore we have also ), n;A; = 1. The transverse electric field is given by
pH — VyH /L,. The longitudinal current density reads jo = Io/(L,L), where L,L represents the area of the cross
section. With these results we obtain the Hall conductivity

AH gzlzgzg
Y Gll’LQ G’Lglfg + Glllg Glglg + GZgll Glllg
(3)
kT i [T (tia 5L ki thryia) T,
= SLUiaj B < Z ﬂ’Y[ ( Ll k77za) Jk:l )> (19)

It 1fJ;€|2T<2 ) btk 2T 2)T(2 +titaPTS T

where Tj(s) and Ti(ﬁg are defined by

€ia|tl€jp|t]€ia—€
|A ‘6 szT(‘ [+lejpl+] Jﬂ‘)7 (20)
with Aij = €ia — €5, and
® = g (lega | Hlewy [+ leia—exy [+ leia—ea))
Tijk = |Aiink|€ 2kgT \I€J Y ia Y ia €
+|A..A.k|e—ﬁ(\em|+\€kw|+\€jﬂ—€m|+\€m—€jﬁl)
=g
+|A,kAk.|e*ﬁ(|€m|+\€jﬁ|+\€m*€k«/|+\€kw*€jﬁ|) (21)
3 J .

The configuration integral will be performed according to the Eq. .

UPPER AND LOWER LIMITS

For the lower limit, we let R;j, Rjr < Rk, and |€| < |€j| < |€ry|. By keeping only the maximum term in the
denominator and the minimum one in the numerator of the Eq. we obtain

(oA, = 3Lo2 PBL L athy Ry R g ar (eialHegslHesa—eny |—leia—ers Dy
Tt 40,
kBT 1 . D 1 ia P P —|€ia—
~ 3L03IeTt(0) <ea(Rz]+R]k Rzk)>c<e2kBT(‘€, H’lEJBH"EJB €k'y‘ |€, 5k’y|)>c. (22)
max



To make the calculation realistic, we further consider the approximation by replacing the configuration integral of the
exponential functions by configuration integral of the exponents. Then we get

kBT 1 Rii+R:1.—R; 1 _(le; . L —les . —
{U;‘;{ min == 3 O'iw T 0 (a(Rij+Rjk 1k))c\R7,j.Rjk<Rike(ZkBT(|5m|+\e]3|+\ejﬁ €hry|—|€ia fk—y‘)>c||sia\<\€jﬁ\<\sk,‘r\. (23)
e tma.’.l)

Similarly, the upper limit can be formulated with the restrictions R;;, Rjr, > R, and |e;o| > |€jg| > |exy|. By the
same procedure we obtain

]{iBT 1 Rii+Ri.—R; 1 . . e les . — X
{U;xyH o ™~ 3 03261 R (a(Rij+Rjk—Rir))elrij Rjp>Rip o (st (€ialtlejltle8 —ery | —leia—€ry Deliciq 1> 1ej51> 1ery | (24)
min

Lower limit
First we calculate the lower limit of AHC, which is given by

kBT min min
&Tu%ijk >C<€ijlc Jes (25)

{UfyH}min = SLaim

min _ ga{R;i+Rijxr—Rik)ec min
Where <Rl]k >C = € { " ik Khe Rz‘j7Rjk<Rik7<€ijk >C

spin indices. The configuration integral (R;; + Rjr — Rik)c|Rr,;, R, <Rq; 1S given by

(Rij + Ryx — Rup)e = [ deidejdey, | d®Rij [ d*Rip(ei)n(e)]ple;)nle;)]* pler) [nlen)]* (Rij + Rjk — Rir)
o e [ deidejdey, [ d*Rij [ d*Rrp(es)[n(en)] ple;)nle;)]*pler) nler)]* ’

with R;;, Rji < R;,. We shall first perform the integral over position [ d®R;; [ d®R;j. Let R;; = Ri,Rj; = Ro, and
then Ry = R;, = \/R? + R — 2R, Ry cosf. Denote by the integral I = /%[ J &PRij [ &Ry (Rij + Ry, — Rix) with
N, = [d®R;; [ d®R;. To write down the explicit formula of this integral, we apply the restrictions: R; < R; max
and Ry, Ry < Rz, with R; 4, determined through 2aR7}** + %ﬁ(\q| + |ej| + |ei — €5]) = P& (from the condition
G;’j”" =G or 27" = 1/G.). With the basic triangle geometry (Fig. @ we obtain

= 0-58(leil+lejl+lej—er]—lei—ekl)e

lei|<|ejl<ler]-  We neglect the

(26)

R,

3 -
o ayd

G

FIG. 6: (Color online) Triangle geometry for the configuration integral over the position space.

<J)

R
Ja
~

1 R?m,az T( Ra
I = —87r2/ dRQR% [/ dg/ deR% sin 0(R1 + R2 - \/R% + R% — 2R1R2 COs 9)
0 /2 0

N
m/2 Ry,
+/ de/ deR% sin 9(R1 + Ry — \/R% + R% — 2R R5 cos 9)}, (27)
/3 2R3 cos 0
where
R, = min{Rimaz, Ro + /A2 — R%sin® 0},
Ry, = min{leax, %, Ry cosf + \/ A2 — R% sin? Q}, (28)
with

1 [ & 1
4(12 ]CBT 2kBT

2
(leil + ekl + e — 2x])] ™



Therefore the integral domain is not uniquely specified and depends on the the integral variables, which makes the Eq.
be still not analytically solvable. We need to simplify it by amplifying the integral domain. From the geometry
of the triangle composed of (R1, Rz, R3), we can show the following inequalities:

f}il:(:é+ T dRyR?sin(Ry + Ry — \/R? + R3 — 2R, Ry cos 0) N
R max . -
fR;cos 0++/A2—R2sin2 6 deR% sin ¢
foRz cos 0-4+/A2_RZsin® 0 dR1R?sinO(R; + Ry — \/R% + R3 — 2R Ry cos 0) (30)
fORQ cos f++/A2—R2 sin? 0 dR, R% sin 6
which is needed in the case Ry cos + /A2 — R3 sin? 0 < Rimax, and
fR "t dRyR2sin@(Ry + Re — /R + R3 — 2R Ry cos 0)
fg;’”‘” deR% sin @ N
o cosg AR1RI SN O(Ry + Ry — /R + R3 — 2R, Ry cos0) 1)
o oeg AR R sin 0 ’
when Ry < Rimaz. Based on these results, we find that
1 Romaw ™ Rimaax
1 < /\787r2/ dRQR% [/ d@/ deR% Sin9(R1 + R2 - \/R% + R% — 2R1R2 COs 9)
T 0 0
Rimaz
+/ de/ deR% sin (9(R1 + Ry — \/R% + R% — 2R R5 cos 9)}, (32)
2R5 cos 0
with
Romasx ™ Rimasx Romasx ™ Rimax
N, =8r?| / dRy R} / do / dR;R?sin 6 + / dRy R} / do dR Risinf].  (33)
0 0 0 2R5 cos 6

Employing the integral f://; df sin 9\/R% + R3 — 2R Ry cosf) = 3R jo [(Rl + Ry)? — (R? + R3 — R1R2)3/2], we get
finally

2 1.576

- 2R~ 0.4247°RT /N, 34
N max N’r mazxr maz/ r ( )
with Rpaz = max{ Rimaz, Romaz}- It is easy to obtain the normalization factor as N, = 2R,‘;m After the integral

over position given above we can now do it over the on-site energies. This gives

0.424 [ deide;derp(e;)[n(e:)]* p(e;)[nle;)]pler) [nen)]* Riaa
23/18 [ deidejdey; [ plei)[nei)]®ple;)nle;)]pler)[n(en)] Raq
~ 0.1568¢./a. (35)

<R1 + Ry — R3>C|R1,R2<RS =

2

In above calculation we have considered the approximation that the density of states is a constant.
Now we evaluate the average of energy. Similarly, the configurational average of the energy is given by

arer (el +lej| + lej — exl = lei — exleljei<les 1 <lex] =
1 [deidejderp(ei)[n(e;)]* ples)[ne;)]? plew) [n(er) P (Jei] + ;] + lej — ex| — |ei — exl)
2kpT [ deidejderp(ei)[n(e:)]ple;)[ne;)]plex) n(er)]? '

(36)

To simplify the above integral, we check |e; — €| — |e; — €x| with the restriction: |e;| < |e;] < |eg|. For the case i)
Sgn(e;) = Sgn(e;) = Sgn(ex) = £1, we have |e; —ex| —|e; —€x| = —|e; —¢;|; For ii) Sgn(e;) = Sgn(e;) = —Sgn(ex) = +1,
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we have |e; —ex|—|e;—ex| = —|e;—¢;|; Foriii) Sgn(e;) = Sgn(er) = —Sgn(e;) = £1, we have |e; —ex|—|e;—ex| = —|ei—¢;1;
For iv) Sgn(e;) = Sgn(ex) = —Sgn(e;) = £1, we have |¢; — €| — |€; — x| = |e; — €;|. For this we obtain that

1
(leil + lej| + lej — el —lei — exl)e = (leil +lej] = Slei = jl)e- (37)

Then by a straightforward calculation one can verify that

B
Sl + el +lej —enl = lei = exl)eljesi<les <les] = 0-0860¢. (38)

From egs. and we have

p
a(Rij + Rjk = Ri) | Rij Ry<ri + 5 (Il +lejl + 165 — en] = lei = erl)elieij<ie;<len = 0.2426¢c. (39)
The lower limit of the AH conductivity is then obtained by
kgT
AHY\  _ 2 B 0.242B¢.
{Umy bmin = 3Log, e2t522w € . (40)

The longitudinal conductivity o,, is given by G, divided by the correlation length of the network and thus takes the
form o,, = 0o(T)e Pé (for the Mott hopping regime, one has B¢, :(%)1/4). We reach further

AH _ 022 kBT 1 758 ~
{Ugcy }nﬂn - 3LUO Oge X Oggs
€2t(0)

max

v~ 1.76. (41)

UPPER LIMIT

Now we show the result of the upper limit, which can be done in a similar procedure. The upper limit is given by

kT
AH ~ 2 B max max
{Uzy }maw - 3ngz 2,(0) < ijk >C<€ijk >C7 (42)
tmin
d _ Rij+Rjr—R; _ 0.5 ) . e —les —en
where <R:;z](€w>c = ea(Rij+Rjk Lk>°|R¢j,Rjk>Rik7<€;?ﬁw>c = 0-58(leil+lejl+lej —er|—lei—exl)e les|> 51> ek To calcu-

late (Rij + Rjx — Rir)e|ri; ;>R We again consider first the integral I = ﬁfdgﬁlfdgﬁg(]%l + Ry —

\/R% + R3 — 2R Ry cosf) with N, = fdgﬁlfdgﬁg. Note the integral restrictions for the upper limit are:
R; < R; masz and Ry, Ry > R, and with the triangle geometry (Fig. @) we obtain

1 Romax /3 R,
I— J\—/SW?/O ngRg/o dH/Rz dR R sinf(Ry + Ry — \/Rf + R? — 2R Ry cos ),

2cos 6

(43)

where R, = min{Rimqz, 2Rz cosf, Rycosf + /A2 — R3sin®f}. Again we simplify the integral by amplifying the
integral domain. For this we consider the following inequality:

flleZZ:éJr A?_RZsin? 0 dR1R?sin0(Ry + Ry — \/R? + R3 — 2R Ry cos ) §
fl@l?ﬂ A®—RZsin?0 Ry R sinf -
[ cosOVATTRE SN0 b R2sinO(Ry + Ry — /R2 + K2 — 213 Ry cos 0) "
foRz cos 0+y/A2—R3sin? 0 RyR?sin 6 ’
which is needed in the case Rz cosf + /A2 — R3 sin? 0 < Ripmax. With this we find that
Ramax w/3 Rimax
1 e | dR2R§/0 de/R2 ARy RE sin0(Ry + Ry — \/ R% + R} — 2Ry Ry cos ). (45)

2cos 6
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By the same procedure used in the lower limit we obtain I =~ 0.37297%R7 . /N,, and N, =
8?2 ORQW”E dRyR% Oﬂ/g df ["rr dRy RZsin@ = 0.36172RS, .. Further doing the integral over the on-site energies

2cos @
yields <R” + Rjk — Rzk>c Rij,Rjx<Rip = 0483ﬂ§c/a
The configurational average of energy 38(|e;| + |€;| + |e; — x| — |€; — €x])c|je;|>|e;|> e Can be simplified by checking
le; — €x| — |e; — €x| with the restriction: |¢;| > |¢;| > |ex|. Through a similar analysis as applied in the lower limit one
can verify (|e;|+ [€;| + |e; — ex| — |€j — €xl)e 2 (|e;| + |€j] + £]€; — €;)c. Substituting this result into the original integral
we obtain finally £ 3(|€;| +|€;] + |e; — ex| — € — €xl)elje;|> ;1> 1] = 0-1375B&c. For this we obtain mar) o e0-483p¢.
(€Him)e =~ 013888 and the upper limit of the AHC by

AH _ 0.621 kBT 1379
{O'Iy Ymaz = 3Log ot X o),
Qt(o)

min

v~ 1.38. (46)

Based on the results obtained above we thus conclude {UﬁyH } x o}, with 1.38 < v < 1.76.
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