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1. Introduction

String theory is two-dimensional gravity coupled to a critical matter system that includes

free scalar fields which are interpreted as coordinates on the target spacetime. The gauge-

fixed string action has a Virasoro symmetry, which provides a powerful organising principle

for describing the physical spectrum and interactions of the theory. The Virasoro algebra

is the simplest example of a more general class of infinite-dimensional symmetry algebras,

known generically as W algebras, which can be characterised by the fact that they contain

higher-spin currents as well as the spin-2 energy-momentum tensor T (z) which generates the

Virasoro subalgebra. One may then construct generalisations of two-dimensional gravity, by

gauging matter systems with W symmetries. If the matter systems are critical, and include

free scalars, then one obtains W -string theories. Owing to the non-linearity of W algebras,

the construction of these W -string theories seems to be much more complicated than that

of the usual Virasoro string. Some progress has been made recently in constructing specific

examples, principally for the case of W3 [1,2,3].

W3 is the first example in the infinite sequence of non-linear WN algebras, which are

generated by primary currents of spins 3, . . . , N , together with the energy-momentum tensor

T (z). In this paper, we study the general features of WN strings for arbitrary N . Realisa-

tions of WN in terms of (N − 1) free scalars ϕ2, . . . , ϕN can be obtained from the Miura

transformation for su(N) [4]. These realisations can be generalised by observing that the

scalar ϕ2 enters the currents only via its energy-momentum tensor (with background charge),

which may then be replaced by an arbitrary energy-momentum tensor with the same central

charge [5,2]. If the new energy-momentum tensor is chosen to comprise D free scalar fields

Xµ together with the original scalar ϕ2, then these (D+1) scalars, together with ϕ3, . . . , ϕN ,

form the coordinates on the target spacetime. The WN constraints, however, “freeze” the

momentum components of ϕ3, . . . , ϕN for physical states to certain specific values. This im-

plies that only the scalars ϕ2 and Xµ are physically-observable coordinates, thus describing a

(D+1)-dimensional spacetime. Furthermore, as we shall show, higher-level physical states in

the theory can only involve excitations in the (unfrozen) (ϕ2, X
µ) directions. This is because

states with excitations in the (frozen) (ϕ3, . . . , ϕN ) directions turn out to have momentum

components in these directions that are incompatible with momentum conservation, and

thus all such states have zero norm and are to be set equal to zero.

Because the physically-observable coordinates ϕ2 and Xµ enter the WN currents only

through their energy-momentum tensor T eff , the above considerations imply that the WN -

string theories closely resemble ordinary string theory. The central charge ceff of T eff is

related to the total central charge cN of the WN realisation. Requiring that cN take the

critical value

c∗N = 2(N − 1)(2N2 + 2N + 1) (1.1)
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implies that ceff for WN should take the value

ceff = 25 +
6

N(N + 1)
. (1.2)

This suggests that there may be a connection with a Virasoro minimal model [2], in the

sense that ceff may be rewritten as

ceff = 26 −
(

1 − 6

N(N + 1)

)
, (1.3)

where 26 is the critical central charge of the usual Virasoro string and the term between

brackets is precisely the central charge of the unitary (N,N + 1) Virasoro minimal model.

In this paper, we show how the tachyonic physical states of the WN string may be

classified and generated by the action of the Weyl group of su(N). This enables us to

explain some findings of [2], where it was noticed in the special cases of W3 and W4 that

certain “diagonal” states in the Kac tables of the corresponding minimal models arose at this

tachyonic level. Our results for the tachyonic states apply to any WN -string theory, revealing

a connection not only with the diagonal states of the (N,N+1) Virasoro minimal model, but

also with the diagonal states of certain WM minimal models, for all M < N . We also find a

connection between higher-level states of the WN string and certain “off-diagonal” entries in

the Kac table of the relevant minimal model. However, these particular higher-level states

involve excitations in the frozen directions (ϕ3, . . . , ϕN), and, as we mentioned earlier, they

therefore have zero norm.

Because the higher-level states with excitations in these frozen directions have zero norm,

it follows that the only physical states in the spectrum of the WN string are the tachyons

described above, and those higher-level states that involve excitations only in the unfrozen

directions. The consequence of this is that the spectrum of physical states of the WN string

is essentially given by the spectrum for Virasoro strings with effective central charge (1.2),

and a discrete set of effective intercepts Leff
0 . We shall show that these values of Leff

0 all

satisfy the unitarity bounds arising from level-1 and level-2 physical states. These results

provide a strong indication of the unitarity of the WN string.

The paper is organised as follows. In the next section we review how scalar realisations

of WN may be obtained by using the Miura transformation of su(N), and we derive an

explicit formula for WN currents in terms of WN−1 currents and one extra scalar field

(called ϕN in our notation). Using these results, we prove the relation between the central

charges of the WN and WN−1 algebras that was conjectured in [5], and which leads to the

relation between (1.1) and (1.2). In section 3, we give the critical central charge for the WN

string, and determine the physical-state conditions. In particular, this involves calculating

the higher-spin intercepts, which, a priori, one does not know without detailed knowledge

of the BRST operator for the WN gauge theory. In [2], it was proposed that a particular
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tachyonic operator called the “cosmological-constant operator,” for which the momentum is

a certain multiple of the background-charge vector of the (N − 1)-scalar Miura realisation,

is always a physical operator. This “cosmological solution” enables one to determine the

values of the higher-spin intercepts, for which we give general formulae. In section 4, we

prove that the solutions to the physical-state conditions for the tachyons of the WN string

are generated by the action of the Weyl group of su(N) on the cosmological solution. We

give a general proof for arbitrary WN that this spectrum of states is associated with the

“diagonal” highest-weight states for the (N,N + 1) Virasoro minimal model. In section 5,

we consider higher-level physical states, and obtain additional “off-diagonal” entries of the

Kac table. We also discuss the no-ghost theorem for WN strings, and argue in particular

that the higher-level states with excitations in the frozen directions have zero norm (these

include all those associated with the off-diagonal entries of the Kac table). The remaining

physical states have non-negative norm. In section 6, we return to the assumption of the

existence of the “cosmological-constant operator” as a physical operator. We give strong

arguments supporting this assumption, by demonstrating that if the values of the higher-

spin intercepts are different from those determined by this particular physical operator, then

one gets a non-unitary theory. Finally, in section 7, we present our conclusions and discuss

some open problems.

2. The Miura Transformation and the WN → WN−1 Reduction.

A realisation of the WN algebra in terms of (N − 1) free scalars ~ϕ(N) ≡ (ϕ2, . . . , ϕN) is

given by the Miura transformation for su(N) [4]

N∏

k=1

(
α0∂ + ~h

(N)
k · (∂~ϕ(N))

)
=

N∑

ℓ=0

W
(N)
ℓ (α0∂)N−ℓ, (2.1)

where the ~h
(N)
k are (N − 1)-component vectors satisfying

~h
(N)
i · ~h(N)

j = δij −
1

N
,

N∑

i=1

~h
(N)
i = 0.

(2.2)

It follows immediately from (2.1) that W
(N)
0 = 1 and W

(N)
1 = 0. The quantities W

(N)
ℓ

with 2 ≤ ℓ ≤ N are spin-ℓ currents that generate the WN algebra. They are not primary

with respect to the energy-momentum tensor W
(N)
2 , but can be made so for ℓ ≥ 3 by adding

derivatives and composites of lower-spin currents. Since this is not essential for our purposes,

we shall not take the trouble to do so. By convention, we shall always order products such

4



as the one in (2.1) in decreasing order of k, i.e. the largest-k factor sits at the left. Normal

ordering of the quantum operators will always be understood. The fields ϕi satisfy the

operator-product expansions

ϕi(z)ϕj(w) ∼ −δij log(z − w). (2.3)

The ~h
(N)
i for 1 ≤ i ≤ N − 1 are the weights of the N representation of su(N), and ~h

(N)
N

is defined by the second equation in (2.2). The simple roots ~e
(N)
i of su(N) are given in terms

of these weights by

~e
(N)
i = ~h

(N)
i − ~h

(N)
i+1 , 1 ≤ i ≤ N − 1. (2.4)

For later purposes we also introduce the Weyl vector ~ρ (N), given by

~ρ (N) =

N−1∑

j=1

(N − j)~h
(N)
j = 1

2

N−1∑

j=1

j(N − j)~e
(N)
j . (2.5)

A convenient choice of representation for the weights ~h
(N)
i is given by [2]

~h
(N)
1 =

( 1√
2
,

1√
6
,

1√
12

, . . . ,
1√

N(N − 1)

)
,

~h(N)
p =

(
0, . . . , 0︸ ︷︷ ︸

p−2

,− p− 1√
p(p− 1)

,
1√

p(p + 1)
, . . . ,

1√
N(N − 1)

)
,

(2.6)

where p runs from 2 to N .

This choice of vectors ~h
(N)
i for WN has the nice property that

~h
(N)
i =

(
~h
(N−1)
i ,

1√
N(N − 1)

)
(2.7)

for 1 ≤ i ≤ N − 1. In other words, the first (N − 2) components of the first (N − 1) vectors

are precisely the ~h
(N−1)
i vectors for WN−1. This enables one to re-express the WN currents

in terms of WN−1 currents together with the scalar field ϕN which is the last component of

the ~ϕ(N) fields of the WN realisation. To see this, we begin by writing the left-hand side of

(2.1), using (2.7) and (2.6), as

(
α0∂ − (N − 1)(∂φN )

)N−1∏

ℓ=1

(
α0∂ + ~h

(N−1)
ℓ · (∂~ϕ(N−1)) + (∂φN )

)
, (2.8)

where we have defined

φN ≡ 1√
N(N − 1)

ϕN . (2.9)
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The
∏N−1

ℓ=1 factors in (2.8) may be rewritten as

e−φN/α0

N−1∏

ℓ=1

(
α0∂ + ~h

(N−1)
ℓ · (∂~ϕ(N−1))

)
eφN/α0. (2.10)

Using the Miura transformation (2.1) for WN−1, this can be written, using Leibniz’s rule, as

N−1∑

m=0

N−m−1∑

q=0

(
N −m− 1

q

)
W (N−1)

m Pq(φN )(α0∂)N−m−q−1, (2.11)

where we have defined Pq(φN ), which is a differential polynomial in ∂φN , by

Pq(φN) ≡ e−φN/α0

(
(α0∂)qeφN/α0

)
. (2.12)

Note that Pq(φN ) satisfies the recursion relation

Pq(φN) = α0∂Pq−1(φN ) + ∂φNPq−1(φN ). (2.13)

Rewriting the double sum in (2.11), substituting back into (2.8), and equating powers of

(α0∂) in (2.1), we obtain the explicit relation

W
(N)
k =

k∑

q=0

(
N + q − k

q

)[ N − k

N + q − k
W

(N−1)
k−q Pq(φN)

+ α0∂
(
W

(N−1)
k−q−1Pq(φN )

)
− (N − 1)(∂φN )W

(N−1)
k−q−1Pq(φN)

]
.

(2.14)

All products of operators are understood to be normal ordered with respect to the basic

scalar fields ϕi. Currents W
(N−1)
m with m < 0 are defined to be zero. (A formula equivalent

to (2.10) was also derived in [2].)

Equation (2.14) gives a realisation of the WN currents in terms of those for WN−1,

together with an additional scalar field ϕN . Applying this recursively leads to a realisation

of the WN algebra in terms of ϕ2, which appears only via its energy-momentum tensor, and

(N − 2) additional scalar fields (ϕ3, . . . , ϕN ). Since ϕ2 commutes with the other scalars,

its energy-momentum tensor may be replaced by an arbitrary one that commutes with

(ϕ3, . . . , ϕN) and that has the same central charge.⋆

Using equation (2.14) for k = 2, we may relate the energy-momentum tensors for WN

and WN−1 as follows:

W
(N)
2 = W

(N−1)
2 − 1

2
(∂ϕN )2 + 1

2

√
N(N − 1)α0∂

2ϕN . (2.15)

⋆ Note that this allows one in particular to realise WN on any affine Lie algebra g with rank(g) ≥ N − 2,
generalising the results of [6]. The energy-momentum tensor is then realised on the coset g/h, where h is an
(N−2)-dimensional Abelian subalgebra of g, and the currents (∂ϕ3, . . . , ∂ϕN ) are taken to be the generators
of this subalgebra.
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Applying this recursively, we obtain

W
(N)
2 =

N∑

j=2

(
− 1

2
(∂ϕj)

2 + 1
2

√
j(j − 1)α0∂

2ϕj

)

= −1
2
∂~ϕ(N) · ∂~ϕ(N) + α0~ρ

(N) · ∂2~ϕ(N),

(2.16)

which therefore generates the Virasoro algebra with central charge

cN = (N − 1)
(

1 + N(N + 1)α2
0

)
, (2.17)

in agreement with [4]. The recursion relation

cN = −2 +
N + 1

N − 2
cN−1 (2.18)

conjectured in [5] follows straightforwardly from (2.17), and the fact that the background-

charge parameter α0 for the WN−1 Miura transformation in (2.10) is identical to that for

the WN transformation (2.1).

The scalar ϕ2 appears in (2.16) (and indeed, as already mentioned, in all the currents

in (2.14)) via its energy-momentum tensor

T (ϕ2) = −1
2(∂ϕ2)2 +

1√
2
α0∂

2ϕ2. (2.19)

This generates the Virasoro algebra with central charge c = 1 + 6α2
0. The contribution from

ϕ2 can thus be replaced by an arbitrary energy-momentum tensor with this central charge,

i.e.

c =
6cN

N(N2 − 1)
+

2(N − 2)(N + 3)

N(N + 1)
−
(

1 − 6

N(N + 1)

)
. (2.20)

3. Physical-state Conditions

We now turn to the consideration of the physical spectrum of the WN string. In the

remaining sections of the paper, when there is no possibility of confusion, we shall suppress

the label N that we have been using to indicate that the quantities are associated with the

WN algebra.

Physical states
∣∣phys

〉
of the WN string are defined by the conditions

(
Ws

)
m

∣∣phys
〉

= 0, m ≥ 1, (3.1a)
(
Ws

)
0

∣∣phys
〉

= ωs

∣∣phys
〉
, (3.1b)
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where the Laurent modes
(
Ws

)
m

of the spin-s current Ws for the WN algebra are defined by

Ws(z) =
∑

m

(
Ws

)
m
z−m−s. The constants ωs are the intercepts for the zero modes of the

spin-s currents. In principle, they can be determined by requiring that the nilpotent BRST

operator for the algebra annihilate the physical vacuum (including ghosts). In practice,

however, the construction of the BRST operator for the WN algebra is very complicated,

and has been given only for the case of N = 3 [7]. We shall show later in this section how the

intercepts may be determined by simpler methods. Note, incidentally, that it is sufficient to

impose (3.1b) for all s, together with (3.1a) for s = 2 and m = 1 and m = 2, since the rest

of the constraints in (3.1a) then follow from the commutation relations of the WN algebra.

The requirement of nilpotency of the BRST operator determines the central charge of the

WN -string theory. Even though the WN algebra is non-linear, the spin-2 current generates

a linear subalgebra. Thus the total central charge, which must be zero for nilpotence, is

simply the sum of those for the matter and ghost sectors. The ghosts for the spin-s current

contribute −2(6s2 − 6s + 1) to the ghostly central charge, and so the critical central charge

c∗N for the matter sector is given by

c∗N = 2

N∑

s=2

(6s2 − 6s + 1)

= 2(N − 1)(2N2 + 2N + 1). (3.2)

From (2.17), we see that the background-charge parameter α0 is then given by its critical

value α∗
0, namely

(α∗
0)2 =

(2N + 1)2

N(N + 1)
. (3.3)

From now on, we shall always assume that the central charge and α0 take their critical

values.

The necessity of using BRST methods to determine the intercepts ωs in (3.1b) can be

avoided if one knows a specific example of an operator that creates a physical state, since

then one can simply act on it with
(
Ws

)
0

and read off the values of the intercepts. In [2],

such an operator, called the “cosmological-constant operator” was proposed. Specifically,

for WN , it is a tachyonic operator of the form

Vcosmo = eλ~ρ·~ϕ, (3.4)

where ~ρ is the Weyl vector given in (2.5), and λ is a certain constant to be determined. For

W3, since one knows the values of the intercepts from the BRST construction in [7], one

can explicitly verify that such a physical operator exists. In [2], it was argued from classical

correspondence-principle considerations that such a physical operator should occur for all

higher WN algebras too. In section 6, we shall present a stronger argument that supports

this proposal. For now, we shall proceed on the assumption that a physical operator of the
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form (3.4) indeed exists. It then remains to determine the value of the constant λ. This can

be done by using an independent argument that enables us to calculate the spin-2 intercept

(see for example [2,8]). Since T tot ≡ Tmat + T ghost annihilates
∣∣phys

〉
⊗

∣∣vac
〉
ghost

, and the

spin-2 subalgebra of WN is linear, we may read off the spin-2 intercept as the negative of

the intercept for the spin-2 ghost current acting on
∣∣vac

〉
ghost

. In other words, the BRST

charge is required, as usual, to annihilate
∣∣phys

〉
⊗

∣∣vac
〉
ghost

. The ghost vacuum is defined

by

∣∣vac
〉
ghost

≡
N∏

s=2

s−1∏

m=1

(
cs
)
m

∣∣0
〉
, (3.5)

where
∣∣0
〉

is the SL(2, C)-invariant vacuum, and
(
cs
)
m

are the Laurent modes of the usual

ghost field for the spin-s current. Thus we find that the spin-2 intercept is given by [2]

ω2 =

N∑

s=2

s−1∑

m=1

m = 1
6N(N2 − 1). (3.6)

From (2.16) and (3.4) it follows that λ is given by

λ =
(

1 ± 1

2N + 1

)
α∗
0. (3.7)

The two values for λ in (3.7) are related by a reflection symmetry, as we shall explain in

section 4. Without loss of generality, we shall take the + sign in (3.7), and refer to the

corresponding operator (3.4) as the “cosmological solution.”

We are now in a position to compute the intercepts for the WN string. To do this,

we first compute the eigenvalues of the zero modes of the WN currents acting on arbitrary

tachyonic states, and then substitute the cosmological solution defined in (3.4) and (3.7) into

these eigenvalues. Thus consider an arbitrary tachyonic operator

V~β = e
~β·~ϕ. (3.8)

The highest-order pole of the operator-product expansion Ws(z)V~β(w) is of order s, implying

that the tachyonic state, obtained from (3.8), satisfies (3.1a). The eigenvalue of this state

under the action of
(
Ws

)
0

can be read off from this highest-order pole. Since (3.8) satisfies

∂ϕj(z)V~β(0) ∼ −
βjV~β(0)

z
, (3.9)

this pole can be obtained simply by replacing ∂~ϕ by −~β/z in formula (2.14) [4]. Let us

define the functions U
(n)
s (z) for 2 ≤ n ≤ N and 0 ≤ s ≤ n by U

(n)
0 (z) = 1, U

(n)
1 (z) = 0,

9



U
(n)
t<0(z) = 0 and the recursion relation

U (n)
s (z) =

s∑

q=0

(
n + q − s

q

)[ n− s

n + q − s
U

(n−1)
s−q (z)Pq(ζn/z)

+ α0∂
(
U

(n−1)
s−q−1(z)Pq(ζn/z)

)
− (n− 1)

ζn
z
U

(n−1)
s−q−1(z)Pq(ζn/z)

]
,

(3.10)

where we have introduced

ζn = − βn√
n(n− 1)

. (3.11)

The eigenvalues vs(~β) of V~β under
(
Ws

)
0

for the WN string are then given by

vs(~β) = U (N)
s (z)

∣∣∣
z=1

. (3.12)

The intercepts ωs for the WN -string theory can be obtained by substituting the cosmo-

logical solution (3.4), with λ given by (3.7), into (3.12) and (3.10), and solving the recursion

relations. Even though we have not been able to find a closed-form expression for all the ωs

as a function of N and s, we have found that the intercepts for any WN -string theory for

some low spins s can be written as

ω2 = 1
6(N + 1)N(N − 1),

ω3 = −1
6(N + 1)N(N − 1)(N − 2)α∗

0,

ω4 = 1
360(N − 1)(N − 2)(N − 3)(5N3 + 228N2 + 223N + 54),

ω5 = − 1
180

(N − 1)(N − 2)(N − 3)(N − 4)(5N3 + 108N2 + 103N + 24)α∗
0,

ω6 =
1

45360N(N + 1)
(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

× (35N6 + 7238N5 + 110728N4 + 201646N3 + 14378N2 + 45666N + 5400).

(3.13)

The expression for ω2 is just (3.6). We shall show in section 6 how ω3 may be calculated in

general. For s ≥ 4, we have arrived at the above expressions for ωs by polynomial fitting from

specific results for small values of N ; we have then verified these formulae for all algebras

up to and including W20.

An important remark is in order here. The intercepts computed above are the ones

for the WN currents as defined by the Miura transformation (2.1). The intercepts for the

primary WN currents can be obtained from the ones presented here. As an example, the

primary spin-3 current (for any N) is given by W3− 1
2(N−2)α∗

0∂W2 and hence has intercept

ω3 + (N − 2)α∗
0 ω2 = 0, which agrees with the known result for N = 3 [7]. In general

the intercepts for the primary currents are much more complicated than the ones above.

The determination of the physical states is a basis-independent question and thus there is
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no advantage in working in the more cumbersome “primary basis.” To avoid unnecessary

complication we shall therefore continue to use the more natural “Miura basis.”

4. The Physical Spectrum for Tachyonic States

Having determined the intercepts for the WN -string theory in the previous section, we

are now in a position to discuss the physical spectrum of this theory. In this section we shall

only consider tachyonic states, relegating higher-level states to section 5.

4.1 The Weyl Reflection Symmetry of Tachyonic States

The eigenvalues vs(~β) for the zero modes of Ws acting on the tachyonic state (3.8) can

also be obtained directly from the Miura transformation (2.1), by making use of (3.9). One

finds by letting the differential operators act on zj , for 0 ≤ j ≤ N − 2, that [4]

j∑

s=0

j!

(j − s)!
(α∗

0)svN−s(~β) =

N∏

k=1

[
α∗
0(j + 1 − k) − ~hk · ~β

]
. (4.1)

Shifting ~β, so that
~β = ~γ + α∗

0 ~ρ, (4.2)

leads to
j∑

s=0

j!

(j − s)!
(α∗

0)svN−s(~β) =
N∏

k=1

[
1
2
α∗
0(2j + 1 −N) − ~hk · ~γ

]
. (4.3)

From this identity one can see that the eigenvalues vs(~β), which are now polynomials in the

shifted momentum ~γ, are invariant under su(N) Weyl reflections of ~γ. To show this, we first

note that Weyl reflections of the simple roots of su(N), as given in (2.4), are defined by

S~ei(~ej) ≡ ~ej − (~ej ·~ei)~ei. (4.4)

This implies that the action of S~ei on ~hk interchanges ~hi with ~hi+1 whilst leaving all the

other ~hk fixed. From the invariance of the scalar product, it follows that a Weyl reflection

of ~γ

~γ −→ S~ei(~γ) = ~γ − (~γ ·~ei)~ei, (4.5)

for any simple root ~ei of su(N), merely permutes the ordering of the factors in the right-hand

side of (4.3). Since the simple roots generate the entire Weyl group, we conclude that indeed

the polynomials vs are invariant under all Weyl reflections of the shifted momentum ~γ.
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4.2 The Tachyon Spectrum of WN -String Theory

To determine the tachyonic states in the WN -string spectrum, one has to solve the

physical-state conditions (3.1b), i.e.

vs(~β) = ωs, 2 ≤ s ≤ N, (4.6)

where the intercepts ωs are given by vs(λ~ρ), according to the discussion of the previous

section. Since vs(~β) is a polynomial of degree s in ~β, it follows that the set of equations

(4.6) will have N ! solutions. Because, as we have seen, the Weyl group of su(N) acting on

the shifted momentum ~γ leaves (4.6) invariant, we learn that it maps solutions of (4.6) into

solutions. In fact, we know one solution of (4.6), viz. the cosmological solution, which is

given by (3.4) and (3.7); this is a solution by construction. Since the Weyl vector ~ρ is not

a fixed point of the Weyl group, and the dimension of the Weyl group of su(N) is N !, we

therefore conclude that we obtain all the tachyonic physical states from the cosmological

solution by the action of the Weyl group on it.

An explicit procedure for writing down the N ! elements of the Weyl group of su(N) can

be described as follows. Defining Si ≡ S~ei, these elements can be obtained by taking the

product of one entry from each column of


 1

S1


⊗




1
S2

S2S1


⊗




1
S3

S3S2

S3S2S1




⊗ · · · ⊗




1
SN−1

SN−1SN−2
...

SN−1SN−2 · · ·S1




, (4.7)

giving N ! (inequivalent) choices in all. Applying these to the shifted momentum

~γcosmo =
α∗
0

2N + 1
~ρ (4.8)

of the cosmological solution fills out all the N ! tachyonic physical states of the WN string.

Note that included amongst these N ! solutions generated by (4.7) is one that corresponds to

taking the − sign instead of the + sign in (3.7). It is obtained by choosing the Weyl reflection

generated by the product of the bottom entries in each column of (4.7), and corresponds to

the reflection ~ρ → −~ρ.

4.3 The Target Spacetime of WN Strings

In the previous subsection, we showed how the set of N ! tachyonic physical states of

the WN string are generated by the Weyl group acting on the cosmological solution given

by (3.4) and (3.7). In the discussions so far, we have considered an (N − 1)-dimensional

12



target space, with coordinates (ϕ2, ϕ3, . . . , ϕN). Since the physical-state conditions imply

that the momentum components βj can take only specific, discrete values (for example, the

N ! tachyon solutions), there is no sensible notion of a physical spacetime yet. To obtain a

physical-spacetime interpretation, we can carry out the procedure described in section 2, of

replacing the energy-momentum tensor of the ϕ2 scalar by an arbitrary energy-momentum

tensor with the same central charge, which is obtained by substituting the critical value c∗N
for WN , given by (3.2), into (2.20), leading to the expression given in (1.2).

We shall take this energy-momentum tensor to be that for ϕ2 plus D additional free

scalar fields Xµ, one of which will be chosen to be timelike, and the rest spacelike. Thus we

have

T eff = −1
2

(
∂ϕ2

)2
+ Q∂2ϕ2 − 1

2ηµν∂X
µ ∂Xν . (4.9)

The background charge Q must be chosen so that T eff has central charge given by (1.2), and

so

Q2 = 1
12

(
6(α∗

0)2 −D
)

= 1
12

(
24 +

6

N(N + 1)
−D

)
.

(4.10)

Note that Q is non-zero for all WN strings (with N ≥ 3), regardless of the number D of

additional scalars Xµ. It is for this reason that we choose to separate the coordinates into

ϕ2, which carries the background charge, and the remaining Xµ, which have no background

charge.

When one realises the WN algebra with just the (N − 1) scalars ~ϕ, all (N − 1) compo-

nents of the momentum ~β are “frozen” by the physical-state conditions to specific discrete

sets of values ~βfroz, such as those of the N ! tachyonic solutions which we are consider-

ing in this section. The effect of introducing extra scalar fields Xµ is that the momen-

tum components (β3, β4, . . . , βN ) continue to be frozen to exactly the same sets of values

(βfroz
3 , βfroz

4 , . . . , βfroz
N ), whilst the momentum components (β2, βµ) satisfy

Leff
0 = −1

2β
2
2 + Qβ2 − 1

2βµβ
µ, (4.11)

where

Leff
0 ≡ −1

2

(
βfroz
2

)2
+

1√
2
α∗
0 β

froz
2 . (4.12)

The fact that the momentum components (β3, β4, . . . , βN) remain unchanged, and the re-

maining β’s satisfy (4.11), is a consequence of the special way in which the new coordinates

Xµ are introduced into the theory, as a modification of the original energy-momentum tensor

for ϕ2. Thus βfroz
2 appeared in the physical-state conditions only through the combination

Leff
0 defined by (4.12), and so after adding the extra coordinates Leff

0 remains unchanged.

The conclusion of the above discussion is that we can effectively view the tachyonic

spectrum of the WN string as being composed of sets of Virasoro-type physical states, all

13



with the same central charge ceff given by (1.2), but with different intercepts Leff
0 given by

substituting the discrete βfroz
2 values into (4.12). In section 5, we shall show that this in fact

holds for the spectrum of higher-level states also.

4.4 WN Strings and Minimal Models

In [2], it was noticed that the tachyonic physical states for the W3 and W4 strings

display a numerological connection with the Virasoro minimal models with central charges

c = 1/2 and c = 7/10 respectively. In this subsection, we shall generalise and explain this

numerological connection.

As already mentioned in the introduction, one can rewrite ceff in the suggestive form

(1.3), which consists of a term equal to the critical central charge for the usual Virasoro

string minus the central charge of a unitary minimal model. This is indicative of a possible

connection between the WN string and the (N,N + 1) Virasoro minimal model with central

charge

c(N) = 1 − 6

N(N + 1)
. (4.13)

The suggestion is strengthened by the fact that if one rewrites Leff
0 as

Leff
0 = 1 − Lmin

0 , (4.14)

where 1 is the value for the intercept of the critical Virasoro string, then Lmin
0 is precisely

the dimension of a primary field of the minimal model with central charge given by (4.13).

The values of Leff
0 corresponding to all the tachyonic physical states can be obtained from

(4.12). Substituting these values into (4.14) yields all the “diagonal” entries of the Kac table

of the relevant minimal model, as we now show.

Since the values of Leff
0 can be determined by βfroz

2 , we need only compute these latter

values. They are easily obtained by acting with the Weyl group on the cosmological solution.

It turns out that for the WN string the shifted momentum components γfroz2 can take the

following values

γfroz2 = ± α∗
0 k√

2(2N + 1)
, (4.15)

where k is an integer satisfying

1 ≤ k ≤ N − 1. (4.16)

One can easily see this from the Weyl reflections


 1

S1


⊗ S2 S3 · · ·Sk(~ρ) = ~ρ−

k∑

j=(2,1)

(k − j + 1)~ej, (4.17)
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where the first lower bound in the summation of the right-hand side corresponds to the

upper entry in left-hand side, and the second bound to the lower entry. From (4.2), (4.12),

(4.14) and (4.15), we therefore find the following values for Lmin
0 :

Lmin
0 =

k2 − 1

4N(N + 1)
, (4.18)

where the integer k lies in the interval given by (4.16). The dimensions of the primary fields

of the Virasoro minimal model with central charge given by (4.13) are

∆(r,s) =

[
(N + 1)r −Ns

]2 − 1

4N(N + 1)
, (4.19)

where r and s are integers lying in the ranges 1 ≤ r ≤ N − 1 and 1 ≤ s ≤ N respectively.

Thus we see that the weights in (4.18) precisely correspond to the s = r = k entries in the

Kac table of the minimal model, i.e. the “diagonal” ones. In section 5, we shall show how

other entries of the Kac table arise from higher-level physical states.

We have exhibited 2(N −1) Weyl reflections (4.17) which generate the 2(N −1) distinct

values of βfroz
2 of the tachyonic states of the WN string. Since there are N ! such states, it

follows that in general βfroz
2 is degenerate. Indeed, we find that (N − k)(N − 2)! different

tachyonic states have identical shifted-momentum component γfroz2 for each k and each choice

of sign in (4.15). Thus for each allowed k, the value of Lmin
0 = ∆(k,k) in (4.18) occurs with

degeneracy 2(N − k)(N − 2)!.

The relation between WN strings and the dimensions of the primary fields of Virasoro

minimal models that we have just described is, in fact, a special case of a more general

association that can be made between WN strings and the dimensions for minimal models of

WM algebras, with M < N . Instead of replacing just ϕ2 by a new energy-momentum tensor,

one could as well replace (ϕ2, . . . , ϕM) by new WM currents. These now have to satisfy the

WM algebra with central charge

ceffM = c∗M − cmin
M (N), (4.20)

where c∗M is the critical central charge for WM (generalising the 26 of (1.3)) and the remain-

der,

cmin
M (N) = (M − 1)

[
1 − M(M + 1)

N(N + 1)

]
, (4.21)

corresponds to the central charge of the relevant WM minimal model. By analogy with

(4.14), we write

Leff
0 (β2, β3, . . . , βM) = 1

6M(M2 − 1) − LminM
0 , (4.22)

where Leff
0 (β2, β3, . . . , βM) is the contribution to the spin-2 intercept of the WN string from

the scalars realising WM , and is fixed by the physical-state conditions. By substituting
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all possible values of the frozen-momentum components (βfroz
2 , βfroz

3 , . . . , βfroz
M ), obtained by

acting with (4.7) on the cosmological solution (4.8), into (4.22), one then finds that LminM
0

takes values in the Kac table of the corresponding minimal model of WM . For example, if

M = N − 1, one finds the following values for LminM
0 :

LminM
0 =

k(N − k − 1)

2(N2 − 1)
, k = 0, 1, . . . ,

[N − 1

2

]
, (4.23)

where [x] denotes the integer part of x. The values given in (4.23) are equal to the “diagonal”

entries of the Kac table⋆ of the WN−1 minimal model with central charge given by cmin
N−1(N)

as defined in (4.21). The connection between WN strings and WM minimal models is,

however, not so clear as in the case of Virasoro minimal models, since there does not seem

to be any way of defining effective intercepts for the higher-spin currents analogous to Leff
0 .

5. Higher-level Physical States and the No-ghost Theorem

Having discussed the tachyonic states in the previous section, we shall now turn our

attention to higher-level states. If one considers cases where the excitations occur purely in

the unfrozen directions ϕ2 and Xµ, the analysis is similar to that for ordinary string theory,

and can be carried out for arbitrary WN strings, at arbitrary level number. For excitations

involving the frozen directions (ϕ3, . . . , ϕN), the analysis is much more complicated. By

looking at special cases for the W3, W4, and W5 strings, a general pattern seems to emerge,

indicating that these states have frozen-momentum components that are incompatible with

momentum conservation in their two-point functions, and thus that they have zero norm.

Consequently, the physical spectrum of higher-level states comprises excitations only in the

unfrozen directions. For these we show, by looking at level-1 and level-2 states, that they

have non-negative norms.

5.1 The Higher-level Physical Spectrum of WN Strings

The most general level-1 state in the (N − 1)-scalar realisation of the WN algebra is

given by

V
(~ξ,~β)

(z) = ~ξ · ∂~ϕ e
~β·~ϕ, (5.1)

where ~ξ ≡ (ξ2, ξ3, . . . , ξN) is a polarisation vector. In addition to the zero-mode constraints

(3.1b), there is one other non-trivial constraint coming from (3.1a):

(
W2

)
1
V(~ξ,~β)(0)

∣∣0
〉

= 0. (5.2)

⋆ By diagonal, we mean the dimensions with ℓi = ℓ′i in the notation of [4,9].
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In the tachyonic case the physical-state conditions can be treated in a general way, since

these states are automatically eigenstates of the zero modes
(
Ws

)
0

of the WN currents, and

since their eigenvalues can be obtained by algebraic means; see (3.12). For level-1 states, the

physical-state conditions are much more complicated: level-1 states are not automatically

eigenstates of
(
Ws

)
0
; they have to satisfy the additional condition (5.2); and finally, one has

to compute non-trivial operator-product expansions in order to find the explicit form of the

constraints. For these reasons, we have not found a treatment as general as the one for the

tachyonic case. However we shall present a general pattern for certain level-1 states, based

on a complete analysis for W3, W4 and W5, suggesting a generalisation to WN for arbitrary

N . Moreover, we shall also give the results of our complete analysis of the level-2 physical

states for the W3 and W4 cases.

Let us consider splitting the scalars (ϕ2, . . . , ϕN) into two sets: ~ϕ♭ ≡ (ϕ2, . . . , ϕs) and

~ϕ♯ ≡ (ϕs+1, . . . , ϕN ), where s is a fixed integer between 2 and N − 1. Consider a general

physical operator of the form

P (~ϕ♭, ~ϕ♯) = P̃ (~ϕ♭) e
~β♯·~ϕ♯ , (5.3)

where P̃ (~ϕ♭) is of the form

P̃ (~ϕ♭) = R̃(~ϕ♭) e
~β♭·~ϕ♭ , (5.4)

with R̃(~ϕ♭) a given differential polynomial in (∂ϕ2, . . . , ∂ϕs). This means that the corre-

sponding state has excitations only in the (ϕ2, . . . , ϕs) directions. One can then show that

the values to which the momentum components (βs+1, . . . , βN) of the operator (5.3) are

frozen by the physical-state conditions are independent of the detailed structure of P̃ (~ϕ♭)

and are therefore equal to the corresponding frozen-momentum components of the tachyonic

physical states.‡

An important result that follows from this property is that higher-level physical states

of the WN -string theory (for all levels) defined by (5.3) with s = 2 will have the momentum

components (β3, . . . , βN ) frozen identically to their tachyonic values. Thus these physical

states are, just like the tachyonic physical states, related to the “diagonal” entries in the Kac

table of the (N,N + 1) Virasoro minimal model. The physical-state conditions for states

which are not of this form are much more complicated and we have not been able to solve

them in general. However, the complete set of level-1 physical states for W3, W4 and W5

‡ This follows from the fact that the WN currents can be written as linear combinations of W
(N−1)
2 , . . . ,

W
(N−1)
s (which do not depend on ~ϕ♯) with coefficients which are differential polynomials in ∂~ϕ♯. The detailed

structure of P̃ (~ϕ♭) then enters the physical-state conditions only through the operator-product expansions

between W
(N−1)
j , for j = 2, 3, . . . , s, and P̃ (~ϕ♭), which can be rewritten, using (2.14), as operator-product

expansions between W
(N)
j currents and the physical operator P (~ϕ♭, ~ϕ♯). One can then replace W

(N)
j by its

intercept value ω
(N)
j , which is independent of the structure of P̃ (~ϕ♭).
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suggests that the higher-level states for any WN -string theory will recover the remaining

entries of the Kac table.

Let us first consider level-1 physical states of the form (5.1) for the W3-string theory. As

the case ~ξ = (ξ2, 0) has already been discussed, we shall assume that ξ3 6= 0. We need only

give the results for the momentum component β2, since these are sufficient to establish the

connection with the corresponding minimal model. Solving the physical-state conditions in

this case leads to six possible values of β2. In terms of the shifted-momentum component

γ2 they are given by (4.15), where now k ∈ {1, 2, 5}. Using equation (4.14), the k = 1 and

k = 2 values correspond to the diagonal entries 0 and 1/16 of the Kac table of the Virasoro

minimal model with c = 1/2, whereas k = 5 gives the remaining dimension of this minimal

model, namely ∆(2,1) = 1/2. Thus, by considering level-1 physical states of the W3 string

one finds all the dimensions of the c = 1/2 Virasoro minimal model.

Consider now the W4 string. Suppose first that the polarisation components ξ3 and ξ4
are both non-zero. In that case, the shifted-momentum component γ2 is again given by

(4.15), where now k ∈ {1, 2, 3, 6, 7}. The values k = 1, k = 2 and k = 3 lead to the diagonal

entries of the c = 7/10 Virasoro minimal models, whereas k = 6 and k = 7 lead to the

off-diagonal dimensions ∆(2,1) = 7/16 and ∆(3,2) = 3/5 respectively. Only one dimension of

this minimal model has not yet been found, namely ∆(3,3) = 3/2. The cases where ξ3 = 0

or ξ4 = 0 do not lead to anything new.

The W5 case is again very similar. The values of k which do not lead to diagonal entries

of the c = 4/5 Virasoro minimal model are now 7, 8 and 9. They lead to the off-diagonal

entries ∆(2,1) = 2/5, ∆(3,2) = 21/40 and ∆(4,3) = 2/3 respectively.

The pattern that seems to emerge for the level-1 physical states of the general WN string

should now be clear. The new values of k in (4.15) and (4.18) are given by

k ∈ {N + 2, N + 3, . . . , 2N − 1} (5.5)

and lead to the off-diagonal dimensions ∆(r,r−1), with r = 2, 3, . . . , N − 1, of the (N,N + 1)

Virasoro minimal model.

The analysis of the spectrum of level-1 physical states for the WN string thus gives more

evidence for the connection between the WN string and the (N,N + 1) Virasoro minimal

model. For W3 this level-1 spectrum exhausts all the dimensions of the relevant minimal

model. For the other WN -string theories we expect the remaining off-diagonal dimensions

to appear from physical states at sufficiently high level.

We have, in fact, constructed all the level-2 physical states of the W3 and W4 strings.

All these states are, once again, related to the relevant minimal model. For W4, however,

there is still no physical state at this level which corresponds to the dimension 3/2 primary

field of the c = 7/10 Virasoro minimal model. We expect, nevertheless, that this state will

emerge from the higher-level physical spectrum.
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In subsection 4.4 we generalised the connection between WN strings and Virasoro min-

imal models in the tachyonic case to a connection with WM minimal models. This gen-

eralisation seems to hold for the higher-level physical spectrum as well, where off-diagonal

dimensions of the WM minimal models appear. We have checked this explicitly for the

connection between the W4-string theory and the W3 minimal model with c = 4/5. In this

case the two off-diagonal entries, 2/3 and 2/5, of the corresponding Kac table, as well as the

diagonal ones, 0 and 1/15, emerge in the level-1 and level-2 physical spectrum of the W4

string.

5.2 The No-ghost Theorem for WN Strings

Having analysed the physical spectrum of the WN string, we are now going to use these

results to discuss the no-ghost theorem for WN -string theories. As explained in subsection

4.3, the target spacetime of the WN string only acquires a physical interpretation if the

energy-momentum tensor for ϕ2 is replaced by a new energy-momentum tensor (4.9) with

central charge ceff given in (1.2). We shall first show that after adding extra coordinates Xµ,

all higher-level physical states that involve excitations only in the unfrozen directions, i.e.

that are of the form (5.3) with s = 2 (and ϕ2 replaced by the set {ϕ2, X
µ}), have positive

semi-definite norm. Next, we shall argue, based on some explicit examples, that all the

physical states that are not of this form have zero norm and hence do not describe physical

degrees of freedom. This absence of negative-norm states at low-lying levels is usually a

good indication of the ghost freedom of the theory.

Higher-level physical operators of the form

R(ϕ2, X
µ) e

~β·~ϕ+βµX
µ

(5.6)

have, as we have explained in the previous subsection, the same set of frozen values for

the momentum components (βfroz
3 , . . . , βfroz

N ), regardless of the explicit form of R(ϕ2, X
µ),

i.e. of their level. This implies that all the states of the form (5.6) with given values of

(βfroz
3 , . . . , βfroz

N ) have the same value of Leff
0 :

Leff
0 ≡ 1

6N(N2 − 1) −
N∑

j=3

[
− 1

2(βfroz
j )2 +

1√
j(j − 1)

α∗
0 β

froz
j

]

= n− 1
2
β2
2 + Qβ2 − 1

2
βµβ

µ,

(5.7)

where n is the level number of the states (5.6), and the background charge Q is given by

(4.10). The computation of the norm of such physical states is therefore analogous to that

for physical states in Virasoro-string theory, but with central charge ceff and intercept Leff
0 ,

given in (1.2) and (5.7). One can thus use the well-known method of deriving unitarity
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bounds for the intercept a in Virasoro-string theory with a given central charge c. For level-

1 physical states this bound is independent of the value of the central charge and is given by

a ≤ 1. For level 2, the bounds depend on the value of the central charge: they are given by

a ≤ 37 − c−
√

(c− 1)(c− 25)

16
or a ≥ 37 − c +

√
(c− 1)(c− 25)

16
. (5.8)

In string theory, these bounds are sufficient to establish the unitarity of the theory at all

levels. Combining these bounds for the central charge ceff given by (1.2) requires the intercept

to satisfy

a ≤ 3(N − 1)

4N
or

3(N + 2)

4(N + 1)
≤ a ≤ 1. (5.9)

The values of Leff
0 given in (5.7) can be most easily obtained by using the tachyonic

physical states. Substituting (4.18) into (4.14) gives the values

Leff
0 =

(2N + 1)2 − k2

4N(N + 1)
, k = 1, 2, . . . , N − 1. (5.10)

Each value of Leff
0 in (5.10) corresponds to the value of the intercept for a Virasoro-type string

with central charge (1.2). One can easily see that each such intercept satisfies the unitarity

bounds (5.9). We therefore conclude that all the physical states of the form (5.6) have

positive semi-definite norm. This demonstration that physical states having excitations only

in the unfrozen directions have non-negative norm concludes the first part of the no-ghost

theorem.

The above discussion is not valid any more for states that are not of the form (5.6).

However, we shall argue, based on momentum-conservation considerations, that all these

states have vanishing norm. The point is that higher-level physical states are always of the

form
∣∣phys

〉
= R

∣∣p
〉
, where

∣∣p
〉

is a tachyon-like state and R is a differential polynomial in

the free scalars with polarisation tensors as coefficients. The norms of such states are

〈
phys

∣∣phys
〉

= N (R)
〈
p
∣∣p
〉
, (5.11)

where N (R) is a function of the scalar products of the polarisation tensors. The physical

state
∣∣phys

〉
is a null state if

〈
p
∣∣p
〉

= 0, which occurs when momentum conservation cannot

be satisfied. Under these circumstances, the sign of N (R) is immaterial.

The momentum-conservation law for tachyonic states appears as a delta function in their

two-point function. For a WN -string theory with effective energy-momentum tensor given

in equation (4.9) this is expressed by
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〈
e
~β′·~ϕ+β′

µX
µ
e
~β·~ϕ+βµX

µ
〉

∝ δ(β′
2 + β2 − 2Q)

∏

µ

δ(β′
µ + βµ)

N∏

j=3

δ(β′
j + βj − 2α∗

0ρj) , (5.12)

where ρj =
√

j(j − 1)/2 is the j-th component of the Weyl vector. Since the addition of

extra coordinates allows β2 and βµ to take continuous values, while leaving (β3, . . . , βN )

frozen to the same discrete values, it may happen that the momentum-conservation law

cannot be satisfied in the (ϕ3, . . . , ϕN) directions. In this case the delta function is zero in

these directions, implying that the two-point function (5.12) vanishes.

Let us first consider the tachyonic states. Since, in order to discuss their physical spec-

trum, it is not essential to introduce extra coordinates Xµ, we shall restrict ourselves to the

(N − 1)-scalar realisation. Suppose that ~β+ = α∗
0 ~ρ + ~γ is a solution of the physical-state

conditions for the tachyon case (which means that ~γ can be obtained from a Weyl reflection

(4.7) on ~γcosmo given in (4.8)). It then follows that ~β− = α∗
0 ~ρ − ~γ is also a solution of the

physical-state conditions. Since ~β+ + ~β− = 2α∗
0 ~ρ, we see from (5.12) that the momenta

~β+ and ~β− are conjugate, implying that the corresponding two-point function (5.12) is not

zero. Thus, tachyonic states have positive norm. Since physical operators of the form (5.6)

have their momentum components (β3, . . . , βN) frozen identically to the tachyonic values,

the same argument teaches us that these states are, in general, not null states.

The conclusion for higher-level physical states that have excitations in frozen directions

is different. In this case, the frozen momenta ~βfroz do not seem to appear in conjugate pairs,

and therefore the momentum-conservation law cannot be satisfied. Any two-point function

between such states is thus zero, implying that all these states are null. Although we do

not have a general proof of this statement, we have checked it for all level-1 states of the

W3, W4 and W5 strings and for all level-2 states of the W3 and W4 strings. Indeed we find

in all these examples that the component γs (s ≥ 3) of the shifted momentum ~γ is always

positive, where s is defined just above equation (5.3). The condition for having a conjugate-

momentum pair ~β and ~β′ is, as we have seen above, that their shifted momenta ~γ and ~γ′

should satisfy ~γ = −~γ′. Since γs is always positive for the states in question, such conjugate

pairs do not occur. It seems reasonable to expect that this pattern will hold in general.

Proving that all states involving excitations in the frozen directions have zero norm, and

thus do not contribute to the physical spectrum, establishes the second part of the no-ghost

theorem for WN strings.

Summarising this discussion, we conclude that the complete physical spectrum of the WN

string is given by the tachyonic states discussed in section 4, together with all higher-level

physical states that have excitations only in the unfrozen directions.
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6. Uniqueness of the Higher-spin Intercepts

In section 3 we computed the intercepts for the WN string under the assumption that

a particular tachyonic operator, namely the cosmological operator (3.4), is physical. After

determining the constant λ in (3.4) by using the known spin-2 intercept (3.6), the intercepts

for all higher-spin currents followed.

In [2], a classical correspondence-principle argument for the existence of the cosmological

solution as a physical operator was given. Of course a rigorous proof of the existence of

this solution would require a full BRST analysis in order to determine the actual values of

the intercepts, to verify that they were the same as those obtained from the cosmological

solution. Such an analysis is extremely difficult and has only been performed for the W3

algebra, confirming the existence of the cosmological solution in this case.

In this section we shall analyse this question from another point of view, and present

very strong evidence in favour of the existence of the cosmological solution as a physical

operator. In fact we shall argue that the assumption that the WN string is a unitary theory

implies that the intercepts must be precisely those obtained from the cosmological solution.

The demonstration proceeds in two stages. The first stage consists of requiring that all

tachyonic physical states should occur in conjugate pairs, such that they can have non-zero

norms consistent with the momentum-conservation conditions for frozen directions discussed

in subsection 5.2. This requirement, which does not involve the assumption of unitarity, is

very natural from the point of view of the string theory. It has the consequence of uniquely

determining the spin-3 intercept for any WN string. For the W3 string, this is therefore

sufficient. It also places curiously-stringent constraints on the intercepts for the higher-spin

currents. The tightness of the bounds on these intercepts, which is inessential to our further

arguments, is nevertheless very intriguing. The second stage of our demonstration consists

of demanding unitarity of the physical spectrum. This has the effect of pinning down the

values of the higher-spin intercepts precisely, to those given by the cosmological solution.

From the discussion in subsection 5.2, it follows immediately that if the tachyonic physical

states are to have non-zero norm, then their momenta (β2, . . . , βN) must occur in conjugate

pairs. In terms of the shifted momentum, this means that if ~γ is a solution of the physical-

state conditions, then −~γ must be also. In other words if, without loss of generality, we

write ~γ as

~γ ≡ (γ2, γ3, γ4, . . . , γN) = x
( 1√

2
,
t3√

6
,

t4√
12

, . . . ,
tN√

N(N − 1)

)
α∗
0, (6.1)

then the physical-state conditions for tachyonic states must all be even functions of x.
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For the case of W3, substituting (6.1) into the physical-state conditions (3.1b) for tachy-

onic states gives

ω2 = (α∗
0)2

[
1 − 1

12(t23 + 3)x2
]
,

ω3 = −α∗
0 ω2 + 1

108
(α∗

0)3t3(t23 − 9)x3,
(6.2)

where α∗
0 = 7/(2

√
3). Thus the requirement that these equations be even in x immediately

implies that ω3 = −α∗
0 ω2. Using the general result (3.6) for the spin-2 intercept, we therefore

find ω3 = −4α∗
0 for the W3 string. This agrees with the result obtained previously from the

cosmological solution (which itself agrees with the result from the BRST analysis for W3 [7],

as explained earlier). The absence of the x3 term in (6.2) requires that t3 = 0, ±3. It is easy

to check that these values correspond to the three conjugate pairs of frozen momenta for the

tachyons of the W3 string, obtained by the action of the Weyl group on the cosmological

solution.

Turning now to the case of the WN string, we first note that the above discussion

generalises straightforwardly to give the spin-3 intercept of equation (3.13). For the higher-

spin currents the argument becomes more subtle. We shall now illustrate this with a few

examples. Let us first consider the case of the W4 string. Substituting (6.1) into the physical-

state conditions (3.1b) for tachyons gives

ω2 = (α∗
0)2

[
5
2 − 1

24(2t23 + t24 + 6)x2
]
,

ω3 = −2α∗
0 ω2 + 1

216
(α∗

0)3(2t3 + t4)(t3 − t4 + 3)(t3 − t4 − 3)x3,

ω4 = − 9
16(α∗

0)4 − 3
4(α∗

0)2ω2 − 3
2α

∗
0 ω3 + 1

6912(α∗
0)4t4(4t3 − t4)(t4 + 2t3 − 6)(t4 + 2t3 + 6)x4,

(6.3)

where α∗
0 = 9/(2

√
5). From the single condition needed to make these equations of even order

in x, it follows that there are three 1-parameter families of solutions at this stage. Using the

value for the spin-2 intercept given by (3.6) we find that ω3 is then uniquely determined,

as mentioned above, to be −20α∗
0, but that ω4 is a function of the free parameter, say t3,

for each of the three families. The range of ω4 is the same for each family, and spans a

remarkably small interval:

81.89859375 =
524151

6400
≤ ω4 ≤ 524176

6400
= 81.9025. (6.4)

The cosmological solution corresponds to ω4 = 819/10. We have no explanation, beyond the

superficial one, for why the allowed range in (6.4) is so small. It seems however that this is

a generic feature of WN strings, which we have also observed for W5 and W6, suggesting a

deeper structure that has still to be elucidated.

We have just seen that requiring that the tachyonic physical states of the W4 string arise

in conjugate pairs determines the spin-3 intercept uniquely, and restricts the spin-4 intercept

to lie in the interval given in (6.4). We shall now consider the consequences of unitarity.
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We discussed this in subsection 5.2 for the case where the intercepts were assumed to take

the values determined by the cosmological solution. We saw in particular that, under this

assumption, the physical states of the WN -string theory of the form (5.6) have a set of Leff
0

values given in (5.7) that lie in the interval 3(N +2)/(4(N +1)) ≤ Leff
0 ≤ 1 of equation (5.9),

including states that saturate the lower and the upper bounds. As we shall now show, if the

ω4 intercept for W4 is not given by its cosmological value, then some states will violate these

unitarity bounds.

The values of Leff
0 for these states are given by substituting their (frozen) β2 values into

(5.7) (there are no extra Xµ coordinates in our present discussion). In terms of the shifted

momentum given by (6.1), we therefore have

Leff
0 = 81

80(1 − x2) (6.5)

for the W4 case. Since we already know the value of ω2 from (3.6), the first equation in (6.3)

may be used to express the free parameter t3 in terms of x2, and hence, using (6.5), in terms

of Leff
0 . Thus for each family we may express the spin-4 intercept ω4 as a function of Leff

0 .

Two of the three families give the same result,

ω4(Leff
0 ) = ωcosmo

4 − 4
(
1 − Leff

0

)(
Leff
0 − 77

80

)
, (6.6)

and the third family gives

ω4(Leff
0 ) = ωcosmo

4 +
(
1 − Leff

0

)(
Leff
0 − 9

10

)
. (6.7)

In these equations ωcosmo
4 denotes the cosmological value, 819/10, for the spin-4 intercept

for W4. Equation (6.6) shows that there is a state that has Leff
0 = 1 when ω4 = ωcosmo

4 and

has Leff
0 > 1 when ω4 is larger than ωcosmo

4 . On the other hand, equation (6.7) shows that

there is another state that has Leff
0 = 1 when ω4 = ωcosmo

4 and has Leff
0 > 1 when ω4 is

smaller than ωcosmo
4 . What is happening is that the degeneracy of the set of physical states

at a given Leff
0 value described in subsection 4.4 is (partially) lifted when ω4 is not equal to

its cosmological value ωcosmo
4 . For some such states, Leff

0 increases with increasing ω4, while

for other states Leff
0 increases with decreasing ω4. Therefore by considering the full set of

originally-degenerate Leff
0 = 1 states, we see that unitarity will be violated for any value of

ω4 except the cosmological value.†

We have also checked completely that the same conclusions hold in the case of the W5

string. Since the general pattern is very similar to the W4 case, we shall be very brief about

† In fact the requirement of unitarity by itself is sufficient to determine all the intercepts, including the
spin-2 intercept which we calculated in section 3 by a different method. One simply uses the same procedure
that we have described for ω4 to express ω2 as a function of Leff

0 , and sees that the unitarity bounds are
violated unless ω2 is given by (3.6).
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it. The intercepts of the spin-4 and spin-5 currents again depend on one free parameter and

their ranges are, once more, remarkably small:

499.59555 · · · =
1798544

3600
≤ ω4 ≤ 1798569

3600
= 499.6025,

−515.205 = −927369

1800
≤ ω5

α∗
0

≤ −927344

1800
= −515.19111 · · · .

(6.8)

The unitarity bounds (5.9) for N = 5 are violated except when the intercepts take the values

determined by the cosmological solution.

If N > 5, then the situation is more complicated. In the case of W6, for example, the

higher-spin intercepts now depend on two free parameters and lie again in extremely small

ranges. Although we have not analysed the general case in detail, we expect that only the

cosmological solution will give a unitary theory.

7. Conclusions

In this paper we have studied the physical spectrum of WN -string theories. Starting from

the Miura transformation for su(N), we derived an explicit formula giving the currents of

WN in terms of those of WN−1, together with one extra free scalar. Applying this recursively

leads to realisations of WN in terms of (N−2) free scalar fields (ϕ3, . . . , ϕN ) and an arbitrary

energy-momentum tensor. By taking this energy-momentum tensor to be realised in terms

of additional free scalar fields, one has the starting point for a WN -string theory. In order

to study the physical-state conditions for this WN string, we used a method based on a

unitarity argument to determine the intercepts of the WN currents, avoiding the necessity of

performing the complete BRST analysis of the WN gauge theory. This allowed us to derive

explicit formulae for these intercepts.

Using these values of the intercepts, we gave a construction of all the tachyonic physical

states for the general WN string. All these states can be obtained by acting on a particular

physical state, the cosmological solution, with the Weyl group of su(N). We also constructed

all the level-1 and level-2 physical states in some specific examples. Our results indicate that

the physical spectrum of the WN string bears a strong resemblance to ordinary Virasoro

string theory, but with a non-critical value of the central charge (1.2) and a discrete set of

intercepts, given by (4.14) and (4.18), which includes 1, together with other values. These

values for the central charge and the intercepts are very suggestive of a connection between

WN strings and minimal models. The physical states of the WN string can, in a certain sense,

be viewed as “gravitational dressings” of the primary fields of the corresponding minimal

model [2]. The precise nature of this connection is, however, still a mystery.

Our finding that unitarity requires the values of the intercepts for the WN currents to be

those given by the cosmological solution is one of the crucial results of this paper. We studied
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the no-ghost theorem by analysing level-1 and level-2 states. These, and indeed as we have

seen all higher-level states, can be divided into two categories, namely those that comprise

excitations only in the (unfrozen) (ϕ2, X
µ) directions, and the remaining ones which include

excitations in the (frozen) (ϕ3, . . . , ϕN ) directions. The first category describes the higher-

level states of the effective Virasoro-string theory alluded to above; it is the unitarity of

these states that determines the values of the WN intercepts. The second category, as we

showed in various examples, describes higher-level physical states that all have zero norm,

since they do not occur in conjugate pairs, implying that the two-point functions of any

two of these states vanishes by momentum conservation. Since only the first category of

higher-level states contributes to the physical spectrum of the WN string, the derivation of

the entire physical spectrum of the WN string reduces to finding the physical spectra of a

set of Virasoro-type string theories, with the non-standard values of the central charge and

intercepts given above. Thus we have found the complete spectrum of the WN string.

We have shown that WN -string theory reduces to effective Virasoro-string theories with

(D + 1) coordinates Xµ and ϕ2. For N ≥ 3, the coordinate ϕ2 has a non-vanishing back-

ground charge Q, given in (4.10). Owing to this background charge, the theory does not have

(D+1)-dimensional target-space Poincaré invariance. Amongst other things, this makes the

definition of a (D + 1)-dimensional mass ambiguous. This problem resolves itself by taking

D to be greater than 24, since then the background charge becomes imaginary. As discussed

in [3] for the W3 string, this implies that the ϕ2 coordinate has to live on a circle, since

the functional integral becomes periodic in ϕ2 with period π/|Q|. Therefore its momentum

component β2 is quantised, and is given by

β2 = 2mi|Q|, m ∈ ZZ. (7.1)

(Recall that in our conventions, the momenta are imaginary.) Because ϕ2 is then compact-

ified, the remaining coordinates Xµ describe a D-dimensional Minkowski spacetime à la

Ka luza-Klein. Since this spacetime is Poincaré invariant, the definition of D-dimensional

mass is now unambiguous and given by M2 = βµβ
µ. Using (5.7), (4.14), (4.10), (4.18) and

(7.1) this can be rewritten for the WN string as

M2 = −2 + 2n +
k2 − 1

2N(N + 1)
+ 1

3m(m− 1)
[
D − 24 − 6

N(N + 1)

]
, (7.2)

where n is the level number of the physical state, m is the Ka luza-Klein mode number and

k is an integer labelling the diagonal entries of the Kac table of the relevant minimal model,

satisfying 1 ≤ k ≤ N − 1. In particular we see from this that the k = 1 case with m = 0

or m = 1 has precisely the mass spectrum of ordinary Virasoro-string theory and includes,

therefore, a massless vector at level n = 1. Curiously, some sporadic cases develop extra

massless physical states, occurring at level n = 0. These massless tachyons arise at D = 25,

m = −2, 3, k = 5 for WN strings with N ≥ 6, and at D = 27, m = −1, 2, k = 3 for N ≥ 4.
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The issue of the existence of massless states in the spectrum of the WN string had

already been raised some time ago. Since the spin-2 intercept (3.6) for the WN string

increases with N , naive expectations might suggest that the (mass)2 of physical states would

correspondingly be decreased, opening the possibility of having massless higher-spin states.

In fact, as seen in [3] and this paper, the effect of having momentum components frozen by

the WN constraints is that the relevant quantity that determines the masses of the physical

states is Leff
0 rather than the spin-2 intercept (3.6). Since Leff

0 ≤ 1, it follows that the values

of (mass)2 are either the same as those for the usual Virasoro string (when Leff
0 = 1) or

shifted upwards. The original version of [3] mistakenly discarded the physical states of the

W3 string with Leff
0 = 1, by imposing an over-stringent requirement of hermiticity of the W3

currents. This led to the erroneous conclusion that the W3 string did not contain massless

states at all. (Further discussion of this issue may be found in [10], and the revised version of

[3].) In fact, as we have just seen in the previous paragraph, WN strings do contain massless

states. In particular, the massless level-1 states will give rise to a massless graviton in the

case of a closed WN string. However, neither the open nor the closed WN string has massless

states with spins higher than 2.

The next step in the understanding of the WN string is to construct an interacting

theory.
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NOTE ADDED

After this paper was completed, we encountered a paper that has some overlap with our

work [12]. It discusses the relation between the tachyonic spectrum of the WN string and

the diagonal states of the corresponding minimal model, although the rôle of the Weyl group

as the organising symmetry is not found.
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