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Turbulent flows in nature and technology possess a range of
scales. The largest scales carry the memory of the physical system
in which a flow is embedded. One challenge is to unravel the
universal statistical properties that all turbulent flows share
despite their different large-scale driving mechanisms or their
particular flow geometries. In the present work, we study three
turbulent flows of systematically increasing complexity. These are
homogeneous and isotropic turbulence in a periodic box, turbu-
lent shear flow between two parallel walls, and thermal convec-
tion in a closed cylindrical container. They are computed by highly
resolved direct numerical simulations of the governing dynamical
equations. We use these simulation data to establish two funda-
mental results: (i) at Reynolds numbers Re ∼ 102 the fluctuations
of the velocity derivatives pass through a transition from nearly
Gaussian (or slightly sub-Gaussian) to intermittent behavior that is
characteristic of fully developed high Reynolds number turbu-
lence, and (ii) beyond the transition point, the statistics of the rate
of energy dissipation in all three flows obey the same Reynolds
number power laws derived for homogeneous turbulence. These
results allow us to claim universality of small scales even at low
Reynolds numbers. Our results shed new light on the notion of
when the turbulence is fully developed at the small scales without
relying on the existence of an extended inertial range.

fluid dynamics | energy dissipation rate

An enduring notion in the phenomenology of turbulence is
the universality of small scales. It has been taken for granted

in theoretical approaches (e.g., refs. 1–8) and analyzed in nu-
merical simulations (9–11) as well as various laboratory experi-
ments (e.g., refs. 5 and 12). The standard paradigm is that whereas
the large scales are nonuniversal, reflecting the circumstances of
their generation, an increasingly weaker degree of nonuniversality
is imparted to small scales with increasing separation between the
large and small scales. This scale separation is thought to increase
with the flow Reynolds number, so a proper test of universality
has been thought to require very high Reynolds numbers. Con-
sequently, many substantial efforts have been made to produce
such high-Reynolds-number flows (e.g., ref. 12).
Here, we show evidence for an alternative point of view: If one

resolves small scales accurately, one observes, even at low Reynolds
numbers, universal scaling of velocity gradients that manifest pri-
marily at small scales. We stress that small-scale dynamics are
strongly nonlinear even in low-Reynolds-number flows driven by
large-scale forcing. There is thus considerable merit in measuring
or simulating low-Reynolds-number flows much more accurately
than has been the practice and exploring the evidence for uni-
versality (or lack thereof), instead of advancing as inevitable the
notion that useful lessons about universality are possible only at
very high Reynolds numbers. Indeed, another result of this paper
is that there exists a threshold Reynolds number above which
Gaussian-like fluctuations tend to assume intermittent charac-
teristics of fully developed flows and that these features can be
extracted by accessing increasingly smaller scales even if the
Reynolds numbers are quite moderate. The latter result is espe-
cially important for purposes of identifying a fixed point in certain
renormalization group expansion procedures (8).

Three Turbulent Flows with Increasing Complexity
Our study is based on three turbulent flows of systematically in-
creasing complexity (homogeneous and isotropic turbulence in
a periodic box, flow between two parallel walls, and thermal con-
vection in a closed cylindrical container) that are computed by well-
resolved direct numerical simulations. All these flows are governed
by the Navier–Stokes equations
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where ν is the kinematic viscosity, p is the pressure, ρ is the mass
density, and the forcing fi(xj, t) stands for different mechanisms of
maintaining the turbulence. For the convection problem an ad-
ditional advection–diffusion equation has to be solved for the
temperature field T(xj, t) that couples back to the flow via the
forcing term fi. The turbulent velocity field ui(xj, t) is decomposed
into a fluctuating component vi(xj, t) and a mean flow uiðxjÞ. We
define the Reynolds number as

Re=
vrmsL
ν

; [3]

where vrms is the root-mean-square fluctuation velocity; the
length scale L is the side of the cube for box turbulence (9), half
the distance H for the turbulent shear flow between parallel
plates (13) and the height H of the cell for convection (14, 15).
Different boundary conditions and forcing produce different

large-scale features. The simplest of these three flows is the ho-
mogeneous isotropic turbulent flow in a cube with periodic
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boundaries and without a mean flow (Fig. 1A). The turbulence
here is sustained by forcing at the large scale (9, 10). In ref. 9
a handful of low-wavenumber Fourier modes is driven such that
a fixed amount of turbulent kinetic energy is injected into the flow
at each time unit. Some details of these procedures are discussed in
SI Text. In ref. 10, a stochastic forcing is applied for a number of
low-wavenumber Fourier modes. Statistical homogeneity is estab-
lished in all three space directions. Next in complexity is the flow
between parallel plates with no-slip boundaries (Fig. 1B) and
a mean flow uxðzÞ (13), where z is in the direction separating the
plates. The turbulence is inhomogeneous in direction z but ho-
mogeneous in the downstream direction x along the flow because of
the constant pressure drop and also, by construction, in the span-
wise direction y. Statistical homogeneity in the azimuthal direction
remains in a cylindrical Rayleigh–Bénard convection (RBC) cell
with solid walls (Fig. 1C). This turbulent flow, also satisfying the no-
slip condition on all of the walls, is driven by a sustained temper-
ature difference ΔT between the top and bottom plates that causes
buoyancy forces to trigger and maintain the fluid motion (14, 15).
The side walls are thermally insulated. In the Boussinesq approxi-
mation (16), the driving simplifies to fz = gαT, with gravity accel-
eration g and (isobaric) thermal expansion coefficient α. Here the
mean flow is a large-scale 3D circulation whose scale is comparable
to the cell size (17–19).
At the smallest scales in a turbulent flow the kinetic energy is

dissipated into frictional heat by molecular viscosity. The amount
of kinetic energy loss per unit mass and unit time is the kinetic
energy dissipation rate, which is defined as
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�2

  : [4]

The statistical mean of the energy dissipation rate, e, is also the
rate of energy transfer from large scales of the order L down to
the smallest ones on the order of the viscous scales ηK = ν3/4/«−1/4,
at which the velocity fluctuations are damped out (1). Intermit-
tent fluctuations of « are displayed in Fig. 1 D–F, where we plot

instantaneous 2D slices of the field in logarithmic levels of intensity.
In all three flows, we observe strongly filamented shear layers, a fin-
gerprint of the spatial intermittency of the kinetic energy dissipa-
tion rate field.
We have collected data from direct numerical simulations of

homogeneous isotropic box turbulence (9, 10) and channel flow
turbulence (13) that apply the pseudospectral Fourier and Fourier–
Chebyshev methods, respectively. These two methods are standard
and need no elaboration. The third dataset for turbulent con-
vection has been obtained with a spectral element method, the
nek5000 package (20), which has been adapted to our turbulent
convection study (21). In turbulent convection the temperature
difference ΔT sustained between the hot bottom and the cold top
plates is quantified nondimensionally by the Rayleigh number Ra =
gαΔTH3/(νκ), where κ is the thermal diffusivity of the fluid. The
Prandtl number is set to that of convection in air or other gases with
Pr = ν/κ = 0.7. Rayleigh numbers in our simulations vary over nearly
five orders of magnitude fromRa = 3 × 105 to 1010. The aspect ratio
of the cylindrical cell is Γ =D/H = 1. The total number of mesh cells
grows to more than 4 billion in all three flow cases, which requires
massively parallel supercomputations (more details in SI Text).

Universal Scaling and Transition to Intermittency
Starting from the Navier–Stokes Eqs. 1 and 2, the scaling rela-
tions for the moments of the energy dissipation rate were derived
from a theory for homogeneous and isotropic turbulence in ref. 6.
They are given by

en ∝ Redn ; [5]

with the exponents

dn = n+
ζ4n

ζ4n − ζ4n+1 − 1
: [6]

Here, ζn is the inertial-range scaling exponent of the nth order
moment of the velocity increment Δrvx = vx(x + r) − vx(x), with vx

Fig. 1. Three turbulent flows and structure of energy dissipation field. (A) Homogeneous and isotropic turbulence in a cube of length L on the side with
periodic boundary conditions in all three space directions. Statistical homogeneity is present in all directions. (B) Turbulent shear flow in a channel of height
2H with solid walls at the top and bottom and periodic boundaries in the horizontal directions. The unidirectional mean flow in the downstream direction is
indicated and homogeneity is sustained in both horizontal directions. (C) Cylindrical convection cell of height H and radius R with isothermal hot bottom and
cold top plate. The cell of unit aspect ratio is given by V = {(r, ϕ, z):0 ≤ r/R ≤ 0.5; 0 ≤ z/H ≤ 1}. The mean flow, a 3D large-scale circulation, is shown schematically
(see description of Fig. 2B). The convective flow in the cylindrical cell is statistically homogeneous in the azimuthal direction only. (D) A slice (parallel to one of
the walls) of the instantaneous kinetic energy dissipation rate field for Re = 5,587 in box turbulence (10). The box with a side length L = 2π was resolved with
2,0483 equidistant grid points. (E) Kinetic energy dissipation rate in the midplane of a channel flow for Re = 1,160. The simulation required 2,048 × 2,049 ×
1,024 points for a channel with spatial extent 2πH × 2H × πH. (F) Same quantity in the midplane of a convection cell at Re = 4,638. The convection cell of unit
aspect ratio is covered by 875,520 spectral elements, each containing 123 Gauss–Lobatto–Legendre collocation points.
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being the velocity fluctuation in the x direction and the separa-
tion distance r also measured along x (definition in SI Text). To
make further progress, the functional dependence of the scaling
exponents ζ2n has to be given explicitly. In ref. 22 a convenient
functional form with ζ2n = 2n(1 + 3β)/(3(1 + 2βn)) is provided
that, with the free-fitting parameter β set to 0.05, agrees with
available experimental data in high-Reynolds-number flows (5)
as well as with popular parameterizations of ζn, e.g., with the
She–Lévêque intermittency model (4). This leads to d2 = 0.157,
d3 = 0.489, and d4 = 0.944. Additionally, d1 = 0. Note that the
fact d1 ≤ 0 has been proved from first principles (23). Higher
exponents are beyond the reach of rigorous mathematics until
the existence–uniqueness problem for the Navier–Stokes equa-
tions is solved (24).
The most important ingredient of the theory is the concept of

a locally fluctuating scale η (25, 26), which probes local velocity
gradients and is connected to the local velocity difference and
viscosity by ηΔηvx = ν (27, 28). The resulting theory yields a
prediction that is different from that of the Kolmogorov refined
similarity hypothesis (29): dK62n = 3ðn− ζ3nÞ=4 (30). The power law
exponents dn are connected with the exponents of the longitudinal
velocity increment moments in the inertial range, ðΔrvxÞn ∝ rζn .
Definition [4] shows that the determination of the full dissi-

pation field requires the measurement of all nine components of
the velocity gradient tensor ∂vi/∂xj, which is still a challenging ex-
perimental task (31). Numerical simulations also become very
demanding because high-amplitude events of the energy dissi-
pation field have to be resolved correctly (9). We have taken a
computational mesh that is finer than in standard simulations,
which enhances the computational effort significantly. The gain
is a faithfully represented velocity gradient. The statistical conver-
gence of the dissipation rate moments for the RBC case is discussed
in SI Text. Many studies of homogeneous turbulence exist (e.g., refs.
10, 11, and 32) and, although fewer in number, also of channel flows
(e.g., refs. 13, 33, and 34). The definition of the Reynolds number in
each of these two cases is straightforward.
The definition of the Reynolds number Re in convection needs

some thought. Fig. 2A shows Re as a function of the Rayleigh
number (i.e., nondimensional thermal driving) for two choices of
the velocity: the SD of the total velocity field, urms, and of the
fluctuations, vrms. The least-squares fits to both Reynolds num-
bers follow nearly the same scaling. What is important is to get
a sense of the mean wind, or large-scale circulation, that exists in the
flow. Fig. 2B displays this mean flow for a Rayleigh number of Ra =
107. It consists of a single circulation roll that fills the whole cell and
obeys very slow dynamics with respect to time, which would require
very long simulation runs, inaccessible with present capabilities.
The first important result concerns the transition between nearly

Gaussian and intermittent non-Gaussian behaviors for the velocity
gradient statistics. We demonstrate this transition for one longi-
tudinal velocity derivative, ∂vx/∂x. As shown in Fig. 3 A and C, the
probability density functions of ∂vx/∂x change from being nearly
Gaussian to fat-tailed ones as the Reynolds number increases.
Data for isotropic box turbulence and convection are displayed.
In Fig. 3 B and D, it is possible to infer a transition from Gaussian
to anomalous scaling of the moments of ∂vx/∂x (from 0 for the
skewness and 3 for the flatness factor). Whereas the derivatives in
homogeneous isotropic turbulence have been analyzed in the whole
volume, the data points for the RBC simulation are collected in
a subvolume Vb ⊂ V in the center of the convection cell. It is given
by Vb = {(r, ϕ, z):0 ≤ r/R ≤ 0.3; 0.2 ≤ z/H ≤ 0.8}, where R is the
radius of the convection cell.
Three comments are appropriate. First, as one may expect,

higher-order moments than the third and the fourth show a
sharper transition. Second, this transitional behavior is shared by all
three flows considered here (two of which are shown). Therefore,
we might reasonably surmise this feature to be universal. The result

on the transitional Reynolds number, previously underappreciated,
is important because it provides a constraint on the development
of turbulence models via renormalization group methods: It
plays the role of the fixed point for calculations that repeatedly
obliterate small scales by successive averaging protocols. Third,
the transition Reynolds number, defined on the basis of the large
scale in the flow, is on the order of 100 for all flows—although its
precise numerical value depends on the forcing and other large-
scale details.
In Fig. 4 we display the scaling of the dissipation rate moments

of order n = 2–4 vs. the large-scale Reynolds number Re (error
estimates in SI Text) and observe power-law scaling for all three
flows, except for very low Reynolds numbers below transition. If
one plots the data against Reynolds numbers after subtracting
the transition values, the inference does not change substan-
tially. The data points for isotropic box turbulence have been
obtained by averaging over the whole volume. For the channel

Fig. 2. Global flow conditions in inhomogeneous convective turbulence.
(A) Reynolds number vs. Rayleigh number. Reynolds numbers are calcu-
lated using the full velocity field, ui, and velocity fluctuations, vi. The
corresponding power law fits are shown as dashed lines. (B) Visualization
of the 3D large-scale mean flow uiðxjÞ that is obtained by time averaging
at Ra = 107.
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flow averages were taken in a narrow slab around the center plane.
The data points for the RBC simulation are collected again in the
subvolume Vb ⊂ V in the center of the convection cell. The in-
teresting point is that the data follow the scaling predicted by
the theory for homogeneous turbulence (6) for infinitely large
Reynolds numbers, as indicated by dashed lines in Fig. 4 for
each moment. This implies that the infinite-Re scaling, de-
duced theoretically for one flow, can be discerned at finite Re
for all (three) flows. We believe that this is a powerful statement.

Discussion
We summarize our results as follows: For small Reynolds num-
bers of the order of 100, a transition occurs from sub-Gaussian or
nearly Gaussian velocity gradient statistics to intermittent non-
Gaussian ones. At the transition Reynolds number the derivative
fluctuations are Gaussian. The existence of a Gaussian point is of
theoretical interest in theories of renormalization (8). Past this
transition point, velocity gradient statistics in all three flows follow
a universal scaling behavior, as demonstrated here by the Reynolds
number scaling of the energy dissipation rate «. These results hold
for three turbulent flows of increasing complexity, so we expect
them to be universal. The sensitivity of this result to the large-
scale forcing is yet to be understood in detail.
This study further suggests that the intermittent fluctuations of

velocity gradients, which dominate at the lower end of the tur-
bulent cascade range and down into the viscous range, display
properties of high-Reynolds-number turbulence at much lower
Reynolds number than is inferred from moments of velocity in-
crements in the inertial range. In some sense, well-resolved dissi-
pation contains ingredients of high-Reynolds-number turbulence
once the transition value is exceeded.
These conclusions suggest also that, in the future, a plausible

method for studying intermittent or anomalous scaling proper-
ties of turbulence is to study well-resolved energy dissipation at
low to moderate Reynolds numbers, instead of chasing the goal

of “asymptotically high” values. This makes the turbulence problem
entirely amenable to a serious study and opens alternative
roads for the parameterization of small scales that cannot be
resolved in many applications.
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Fig. 3. Transition of velocity gradient statistics from Gaussian to super-Gaussian. Data are for homogeneous isotropic turbulence (HIT) and Rayleigh–Bénard
convection (RBC). (A) Probability density functions of the longitudinal velocity derivative ∂vx/∂x normalized by the corresponding root-mean-square at four
different Reynolds numbers are displayed, z = ∂vx/∂x/(∂vx/∂x)rms. The Gaussian distribution is added as a dashed line for comparison. (B) Skewness z3=z3 of the
longitudinal derivative z vs. Reynolds number Re (Eq. 3). (C) Same as A. Now four examples for the convection case are shown. (D) Flatness z4=z4 of the
longitudinal derivative. In B and D, dashed lines are added, which indicate the skewness of zero and the flatness of three, respectively, which would hold for
a Gaussian field. Velocity derivatives for the RBC analysis have been obtained in a bulk volume Vb ⊂ V with Vb = {(r, ϕ, z):0 ≤ r/R ≤ 0.3; 0.2 ≤ z/H ≤ 0.8}. Velocity
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