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Entanglement detection via tighter local uncertainty relations
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We propose an entanglement criterion based on local uncertainty relations (LURs) in a stronger
form than the original LUR criterion introduced in [H. F. Hofmann and S. Takeuchi, Phys. Rev.

A 68, 032103 (2003)]. Using arbitrarily chosen operators {Âk} and {B̂k} of subsystems A and B,
the tighter LUR criterion, which may be used not only for discrete variables but also for continuous
variables, can detect more entangled states than the original criterion.
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I. INTRODUCTION

Entangled states are usually recognized as essential re-
sources in quantum computation and communication [1],
and more and more experimental realizations of entan-
glement sources have become available [2–4]. However,
there are still a number of important, yet open, prob-
lems concerning quantum entanglement. In particular,
the separability problem to determine both theoretically
and experimentally whether a given state is entangled or
not is of crucial importance in quantum information sci-
ence [5]. In the past years, a great deal of efforts have
been made to solve the separability problem [6–38].

There are many efficient methods proposed for entan-
glement detection in both finite dimensional systems and
continuous variable systems. For example, in finite di-
mensional systems, there are the partial transposition
criterion [7], local uncertainty relations (LUR) [8, 9], co-
variance matrix criterion (CMC) [10, 11], the computable
cross-norm or realignment (CCNR) criterion [12, 13], the
permutation separability criteria [14, 15], the criterion
based on Bloch representations [16], entanglement wit-
nesses [17, 18], and Bell-type inequalities. On the one
hand, the partial transposition criterion is necessary and
sufficient for certain low dimensional systems, but it is
known to be only necessary for higher dimensions [7].
The LUR criterion provides only a necessary condition
for arbitrary dimensional systems, but it can detect many
bound entangled states where the partial transposition
criterion fails [8]. Moreover, it is shown in Ref. [10, 11]
that the LUR criterion is equivalent to the symmetric
CMC using orthogonal observables and that the CCNR
criterion together with its extension [19] and the criterion
based on Bloch representation are their corollaries. The
LUR, the symmetric CMC criteria, and their corollaries
are usually considered as complementary to the partial
transposition criterion. On the other hand, entanglement
witnesses and Bell-type inequalities are usually used for
entanglement detection in experiments. Recently, Gühne

∗Electronic address: yshzhang@ustc.edu.cn

et al. proposed nonlinear witnesses to improve arbitrary
linear witnesses, which is strictly stronger than the orig-
inal linear witnesses [18]. In continuous variable sys-
tems, Simon proposed a continuous variable version of
the partial transposition criterion in two-mode Gaussian
states [34]. At the same time, Duan et al. also intro-
duced a criterion [35]. Both of these two criteria are nec-
essary and sufficient conditions for two-mode Gaussian
states. Werner and Wolf improved Simon’s result, and
they found bound entangled Gaussian states [36]. Fur-
thermore, Giedke et al. provided a necessary and suffi-
cient condition for Gaussian states of bipartite systems
of arbitrarily many modes [37].

In this paper, we propose an entanglement criterion
based on LURs in a tighter form than the original LUR
criterion. Using arbitrarily chosen operators {Âk} and

{B̂k} of subsystems A and B, the stronger LUR crite-
rion can generally detect more entangled states than the
original LUR criterion due to a newly added nonnegative
term, similar to the nonlinear witnesses. Our tighter cri-
terion can also be used both for discrete variables and for
continuous variables.

The paper is organized as follows. In Sec. II we
propose an entanglement criterion based on the tighter
LURs (TLURs) and illustrate its utility by an example of
Horodecki 3× 3 bound entangled states [39]. In Sec. III
the relationships between the TLUR criterion and other
entanglement criteria are discussed, and in Sec. IV, a
brief discussion and a summary of our results are given.

II. TIGHTER LOCAL UNCERTAINTY

RELATIONS

In Ref. [8], Hofmann and Takeuchi introduced an en-
tanglement criterion based on the local uncertainty re-
lations. Consider the set of local observables {Âk}Nk=1

and {B̂k}Nk=1
for subsystems A and B, respectively. Sup-

pose that the sum uncertainty relations have bounds for
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arbitrary local states as

∑

k

δÂ2

k ≥ UA, (1)

∑

k

δB̂2

k ≥ UB, (2)

where UA and UB are nonnegative values. Then, for sep-
arable states, the following inequality holds [8],

∑

k

δ(Âk ⊗ 1+ 1⊗ B̂k)
2

ρAB
≥ UA + UB. (3)

It has been proven that the LUR criterion is equivalent
to the symmetric CMC using orthogonal observables, and
that many other criteria, such as the CCNR criterion to-
gether with its extension and the criterion based on Bloch
representation, are their corollaries [11]. The LUR cri-
terion is an efficient method to detect bound entangled
states, but is it possible to improve the LUR criterion?
Our idea comes from the nonlinear witnesses that im-
proved the linear witnesses [18]. In the following, the
LUR criterion will be indeed developed in a tighter form
to improve the power of entanglement detection.

Before embarking on our criterion, a lemma will be
given. We again consider the sets of local observables
{Âk}Nk=1

and {B̂k}Nk=1
for subsystems A and B, which

satisfy the bounds of the sum uncertainty relations ap-
pearing in Eqs. (1) and (2). We first obtain the following
lemma.

Lemma 1. For bipartite separable states, the following
inequality must hold,

√

[
∑

k

δ(Âk)2ρA
− UA][

∑

k

δ(B̂k)2ρB
− UB]

±
∑

k

(〈Âk ⊗ B̂k〉 − 〈Âk ⊗ 1〉〈1⊗ B̂k〉) ≥ 0. (4)

Proof.– The proof is given in the Appendix. �

Theorem 1. (Tighter LURs) For bipartite separable

states, consider the sets of local observables {Âk}Nk=1
and

{B̂k}Nk=1
for subsystems A and B, respectively. If they

satisfy the bounds of the sum uncertainty relations in
Eqs. (1) and (2), then the following inequality must hold,

∑

k

δ(Âk ⊗ 1+ 1⊗ B̂k)
2

ρAB
≥ UA + UB

+

[

√

∑

k

δ(Âk)2ρA
− UA −

√

∑

k

δ(B̂k)2ρB
− UB

]2

.(5)

Proof.– Using Lemma 1, we can obtain that

∑

k

δ(Âk ⊗ 1+ 1⊗ B̂k)
2

ρAB

=
∑

k

δ(Âk)
2

ρA
+
∑

k

δ(B̂k)
2

ρB

+2
∑

k

(〈Âk ⊗ B̂k〉 − 〈Âk ⊗ 1〉〈1 ⊗ B̂k〉)

≥
∑

k

δ(Âk)
2

ρA
+
∑

k

δ(B̂k)
2

ρB

−2

√

[
∑

k

δ(Âk)2ρA
− UA][

∑

k

δ(B̂k)2ρB
− UB]

= UA + UB +M2,

where M =
√

∑

k δ(Âk)2ρA
− UA −

√

∑

k δ(B̂k)2ρB
− UB.

�

Remark. It is worth noting that both Lemma 1 and
Theorem 1 can be used for entanglement detection. Com-
pared with the original LUR criterion, the tighter cri-
terion added a squared, thus nonnegative, term M2.
Therefore, for a given set of observables {Âk}Nk=1

and

{B̂k}Nk=1
at each party, our criterion is stronger than the

original LUR and can generally detect more entangled
states.
Actually, we can also prove that

∑

k δ(Âk ⊗ 1 +

1 ⊗ B̂k)
2

ρAB
≤ UA + UB + (

√

∑

k δ(Âk)2ρA
− UA +

√

∑

k δ(B̂k)2ρB
− UB)

2. It is a dual inequality of Eq. (5).

Example 1.– To compare with the original LUR crite-
rion, we consider the same example which has been used
in Ref. [9]. P. Horodecki introduced a 3 × 3 bound en-
tangled state in Ref. [39], and its density matrix ρ is real
and symmetric as

ρ =
a

1 + 8a

(

| −1; 0〉〈−1; 0 | + | −1;+1〉〈−1;+1 |

+ | 0;−1〉〈0;−1 | + | 0;+1〉〈0;+1 | + | +1; 0〉〈+1; 0 |
)

+
3a

1 + 8a
| Emax〉〈Emax | + 1

1 + 8a
| Π〉〈Π |,

where

| Emax〉 =
1√
3
(| −1;−1〉+ | 0; 0〉+ | +1;+1〉)

and

| Π〉 =
√

1 + a

2
| +1;−1〉+

√

1− a

2
| +1;+1〉.

The real parameter a covers the range 0 < a < 1.

If one chooses the sets of local observables {λ̂k(1)}8k=1

and {λ̂k(2)}8k=1
introduced in Ref. [9], the bound entan-

gled state violates both the original LUR and the tighter
LUR (TLUR) criterion. On the other hand, if we define

CTLUR = 1− [
∑

k δ(Âk ⊗1+1⊗ B̂k)
2−M2]/(UA+UB)
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FIG. 1: (color online). (a) Describing the amount of entan-
glement for Horodecki 3×3 bound entangled state via CTLUR

(solid line) and CLUR (dashed line). CTLUR is always larger
than CLUR. (b) Detecting the entanglement of Horodecki 3×3
bound entangled state with white noise. The regions above
the curves can be detected as entangled states by the TLUR
criterion (solid line) and the original LUR criterion (dashed
line), respectively.

as Ref. [8] defined CLUR, where CTLUR and CLUR pro-
vide quantitative estimates of the amount of entangle-
ment verified by the violation of LURs, it can be dis-
covered that CTLUR is always larger than CLUR, which
has been demonstrated in Fig. 1(a). Furthermore, let
us consider a mixture of this state with white noise,
ρ(p) = pρ + (1 − p)1/9. Taking the TLUR in Eq. (5)
and the LUR in Eq. (3) with the Schmidt matrices of
ρ(p) as the set of local observables [23], one finds that
more entangled states can be detected by the TLUR cri-
terion than by the LUR criterion. Detailed results are
shown in Fig. 1(b).

III. RELATION WITH OTHER CRITERIA

In this section, we discuss the relation between The-
orem 1 and some other entanglement conditions that
have been proposed in the past. Actually, if we choose
some special sets of local observables in Theorem 1, there

are several corollaries that can be obtained in a form
reduced to some other criteria or improved versions of
them. One of them is derived from local orthogonal ob-
servables (LOOs) ĜA

k and ĜB
k which are orthogonal bases

of the observable spaces B(HA) and B(HB) and satisfy

Tr(ĜA
k Ĝ

A
l ) = Tr(ĜB

k Ĝ
B
l ) = δkl.

Corollary 1. A stronger witness can be obtained from
TLUR using complete sets of LOOs as the set of local
observables,

1−
∑

k

〈ĜA
k ⊗ ĜB

k 〉 −
1

2

∑

k

〈ĜA
k ⊗ 1− 1⊗ ĜB

k 〉2

−1

2

(

√

1− Trρ2A −
√

1− Trρ2B

)2

≥ 0, (6)

Eq. (6) holds for all bipartite separable states.

Proof.– One can choose Âk = ĜA
k , B̂k = −ĜB

k , and use
∑

k〈(ĜA
k )

2〉 = dA,
∑

k〈ĜA
k 〉2 = Trρ2A,

∑

k〈(ĜB
k )

2〉 = dB,

and
∑

k〈ĜB
k 〉2 = Trρ2B, which have been shown in Ref.

[23], to obtain Corollary 1. �

Remark. Corollary 1 is an improved version of the
nonlinear witness introduced in Ref. [23]. Any entangled
states, which can be detected by the original nonlinear
witness [23], 1 −

∑

k〈ĜA
k ⊗ ĜB

k 〉 − 1

2

∑

k〈ĜA
k ⊗ 1 − 1 ⊗

ĜB
k 〉2 ≥ 0, can also be detected by Corollary 1; the con-

verse is not true in general.
It is worth noticing that Corollary 1 can be eas-

ily realized in experiments, since the left hand side of
Eq. (6) can be directly measured (

∑

k〈ĜA
k 〉2 = Trρ2A,

∑

k〈ĜB
k 〉2 = Trρ2B). To show this, we will provide a short

example in the following.
Example 2.– To compare with the original nonlinear

witness, we consider the same example which has been
used in Ref. [23]. Let us consider a noisy singlet state of
the form

ρ(p) = p|ψs〉〈ψs|+ (1− p)ρsep, (7)

where |ψs〉 = (|01〉 − |10〉)/
√
2 and ρsep = 2/3|00〉〈00|+

1/3|01〉〈01|. Actually, ρ(p) is entangled for any p > 0

[23]. Now we choose ĜA
k and ĜB

k as

{ĜA
k }4k=1 =

{

− σx√
2
,− σy√

2
,− σz√

2
,
1√
2

}

,

{ĜB
k }4k=1

=

{

σx√
2
,
σy√
2
,
σz√
2
,
1√
2

}

. (8)

It can be seen that ρ(p) voilates the original nonlinear
witness for all p > 0.25 [23]. Using Eq. (6) with these
LOOs, one finds that ρ(p) is entangled at least for p >
0.221.
Besides Corollary 1, we can also obtain the conclusion

that the CCNR criterion, the criterion based on Bloch
representations, and the extension of CCNR criterion are
the corollaries of Theorem 1. This is because these three
criteria are the corollaries of the symmetric CMC cri-
terion and that the symmetric CMC using orthogonal
observables is equivalent to the LUR criterion.
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It is worth noticing that Theorem 1 can also be used
for continuous variables. If we choose {|a|x̂1, |a|p̂1}A and
{x̂2/a,−p̂2/a}B as the sets of local observables, and use
〈(∆x̂j)2〉 + 〈(∆p̂j)2〉 ≥ |[x̂j , p̂j ]| = 1 for j = 1, 2, the
following corollary will be obtained from Theorem 1.
Corollary 2. For continuous variable systems, define

û = |a|x̂1 + x̂2/a and v̂ = |a|p̂1 − p̂2/a with x̂j and p̂j′
satisfying [x̂j , p̂j′ ] = iδjj′ (j, j

′ = 1, 2). The inequality

〈(∆û)2〉+ 〈(∆v̂)2〉 ≥ a2 +
1

a2
+M2 (9)

holds for all separable states, where
M = |a|

√

〈(∆x̂1)2〉+ 〈(∆p̂1)2〉 − 1 −
√

〈(∆x̂2)2〉+ 〈(∆p̂2)2〉 − 1/|a|.
Remark. Corollary 2 is an improved version of the

entanglement criterion introduced in Ref. [35], which
provided an inequality 〈(∆û)2〉 + 〈(∆v̂)2〉 ≥ a2 + 1/a2

for separable states. Since a squared nonnegative term
M2 has been added in the right hand side of Eq. (9),
corollary 2 is strictly stronger than the criterion shown
in Ref. [35].
There is another interesting relation between the

TLUR criterion and the symmetric CMC using arbitrary
observables. Notice that Refs. [10, 11] mainly discussed
the symmetric CMC using orthogonal observables and
concluded that the LUR criterion is equivalent to the
symmetric CMC using orthogonal observables. Interest-
ingly, if arbitrary local observables {Âk} and {B̂k} are
used, the TLUR can be obtained from the symmetric
CMC [40].
Proposition 1. The TLUR criterion is a corollary of the

symmetric CMC using arbitrary local observables [40].
Proof.— Using Eq. (43) of Ref. [11]

‖C‖2Tr ≤ ‖A − κA‖Tr‖B − κB‖Tr where ‖ · ‖Tr is
the trace norm (i.e., the sum of the singular val-
ues), κA =

∑

i piγ
S(ρAi ), κB =

∑

i piγ
S(ρBi ), and γS

stands for the symmetric covariance matrix, one can
obtain that [

∑

k(〈Âk ⊗ B̂k〉 − 〈Âk ⊗ 1〉〈1 ⊗ B̂k〉)]2 =
(TrC)2 ≤ ‖C‖2Tr ≤ ‖A − κA‖Tr‖B − κB‖Tr =

(TrA − TrκA)(TrB − TrκB) = [
∑

k δ(Âk)
2

ρA
−

∑

i pi
∑

k δ(Âk)
2

ρA

i

][
∑

k δ(B̂k)
2

ρB
− ∑

i pi
∑

k δ(B̂k)
2

ρB

i

] ≤
[
∑

k δ(Âk)
2

ρA
− UA][

∑

k δ(B̂k)
2

ρB
− UB], where

∑

k δ(Âk)
2

ρA

i

≥ UA and
∑

k δ(B̂k)
2

ρB

i

≥ UB have

been used. Therefore, Lemma 1 and Theorem 1 can
be obtained from the symmetric CMC using arbitrary
observables. �

Remark. Refs. [10, 11] show that the LUR criterion us-
ing arbitrary observables is equivalent to the symmetric
CMC using orthogonal observables. Obviously, the sym-
metric CMC using orthogonal observables is a corollary
of the symmetric CMC using arbitrary observables. From
Proposition 1, TLUR criterion is also a corollary of the
symmetric CMC using arbitrary observables. However,
whether the TLUR criterion is equivalent to the LUR
criterion (the symmetric CMC using orthogonal observ-
ables) is unknown.

IV. DISCUSSION AND CONCLUSION

There are still several questions about the TLUR.
First, Theorem 1 and the original LUR criterion are con-
sidered for bipartite systems. Is it possible to generalize
them to multipartite systems? Second, we have shown
that Theorem 1 is stronger than the LUR when the set
of local observables is chosen. However, if one chooses
all possible sets of local observables, is Theorem 1 still
stronger than or just equivalent to the LUR criterion?
Finally, for discrete variable systems, Theorem 1 can be
used for detecting bound entangled states. Is it then
possible to detect bound entangled states for continuous
variables? These questions are interesting and worth for
further research.

In summary, we have proposed an entanglement cri-
terion based on the TLUR, which can be viewed as an
extension of the original LUR criterion. Using arbitrarily
chosen operators {Âk} and {B̂k} of subsystems A and B,
the TLUR criterion, which may be used not only for dis-
crete variables but also for continuous variables, can de-
tect more entangled states than the LUR criterion since
a nonnegative term has been added, similar to the non-
linear witnesses.
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APPENDIX

Here we prove Lemma 1. The density matrix for
bipartite separable states can be expressed as ρAB =
∑

i piρ
A
i ⊗ ρBi . Notice that the lemma is equivalent to

[
∑

k

δ(Âk)
2

ρA
− UA][

∑

k

δ(B̂k)
2

ρB
− UB]

≥ [
∑

k

(〈Âk ⊗ B̂k〉 − 〈Âk ⊗ 1〉〈1⊗ B̂k〉)]2. (10)
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The right hand side (RHS) and the left hand side (LHS)
of Eq. (10) can be written as

RHS

= {
∑

k

[
∑

i

pi〈Âk〉i〈B̂k〉i − (
∑

i

pi〈Âk〉i)(
∑

i′

pi′〈B̂k〉i′)]}2

= {
∑

k

∑

i

pi〈(Âk −
∑

i′

pi′〈Âk〉i′)〉i〈(B̂k −
∑

j′

pj′〈B̂k〉j′ )〉i}2

≡ {
∑

k

∑

i

pi〈Ak〉i〈Bk〉i}2,

where we have defined 〈Âk〉i = 〈Âk〉ρA

i

, 〈B̂k〉i = 〈B̂k〉ρB

i

,

Ak = Âk − ∑

i′ pi′〈Âk〉i′ and Bk = B̂k − ∑

j′ pj′〈B̂k〉j′
for convenience. Therefore,

LHS

= (
∑

k

∑

i

pi〈(Ak)
2〉i − UA)(

∑

k

∑

i

pi〈(Bk)
2〉i − UB)

≥ (
∑

k

∑

i

pi〈Ak〉2i )(
∑

k

∑

i

pi〈Bk〉2i ),

where we have used
∑

k

∑

i pi(〈(Ak)
2〉i −

〈Ak〉2i ) =
∑

k

∑

i pi(〈(Ak)
2〉i − 〈Ak〉2i ) ≥ UA and

∑

k

∑

i pi(〈(Bk)
2〉i − 〈Bk〉2i ) =

∑

k

∑

i pi(〈(Bk)
2〉i −

〈Bk〉2i ) ≥ UB.

With the help of the Cauchy-Schwarz inequality, it can
be obtained that

LHS ≥ (
∑

k

∑

i

pi〈Ak〉2i )(
∑

k

∑

i

pi〈Bk〉2i )

≥ (
∑

k

∑

i

pi〈Ak〉i〈Bk〉i)2

= RHS.

Therefore, Lemma 1 has been proved. �
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