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Abstract

Study of animal movements is key for understanding their ecology and facilitating their conservation. The Argos satellite
system is a valuable tool for tracking species which move long distances, inhabit remote areas, and are otherwise difficult to
track with traditional VHF telemetry and are not suitable for GPS systems. Previous research has raised doubts about the
magnitude of position errors quoted by the satellite service provider CLS. In addition, no peer-reviewed publications have
evaluated the usefulness of the CLS supplied error ellipses nor the accuracy of the new Kalman filtering (KF) processing
method. Using transmitters hung from towers and trees in southeastern Peru, we show the Argos error ellipses generally
contain ,25% of the true locations and therefore do not adequately describe the true location errors. We also find that KF
processing does not significantly increase location accuracy. The errors for both LS and KF processing methods were found
to be lognormally distributed, which has important repercussions for error calculation, statistical analysis, and data
interpretation. In brief, ‘‘good’’ positions (location codes 3, 2, 1, A) are accurate to about 2 km, while 0 and B locations are
accurate to about 5–10 km. However, due to the lognormal distribution of the errors, larger outliers are to be expected in all
location codes and need to be accounted for in the user’s data processing. We evaluate five different empirical error
estimates and find that 68% lognormal error ellipses provided the most useful error estimates. Longitude errors are larger
than latitude errors by a factor of 2 to 3, supporting the use of elliptical error ellipses. Numerous studies over the past 15
years have also found fault with the CLS-claimed error estimates yet CLS has failed to correct their misleading information.
We hope this will be reversed in the near future.
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Introduction

Documenting animal movements is key for understanding

species’ home ranges, migration patterns, resource tracking, and is

vital for developing realistic conservation plans. Remote tracking

of animals began in the late 1950’s with VHF radio telemetry and

this technique is still frequently used to track terrestrial animals

over relatively short distances [1]. However, tracking of wide-

ranging animals and intercontinental migrants was not possible

until the 1970s with the development of 5–11 kg Argos system

PTTs (platform terminal transmitters) for tracking large mammals

[2]. The second generation of smaller, lighter satellite transmitters

appeared in the mid to late 1980s and weighed as little as 110–

150 g [3]. By the late 1990s PTTS as light as 30 g became

available [3], with further size and weight reductions limited by

current battery and solar cell technology. For some telemetry

applications the newer GPS (Global Positioning System) has

replaced VHF and Argos. An important advantage of both Argos

and GPS is that, unlike short-range VHF telemetry, the satellites

are placed in orbits that allow positions to be obtained from every

location on earth, allowing studies of wide ranging and migratory

animals in inaccessible regions both terrestrial and marine.

However, the use of GPS is limited by the need to download

stored positions or the need for a data relay system to transmit

positions to a distant user – often via VHF or Argos. Present GPS-

based systems with data relay are generally not light enough for

deployment on animals weighing ,1000 g (i.e., maximum , 30 g,

using the maximum 3% of body weight rule of thumb) for more

than several days or a few weeks– largely because of power

limitations [4], [5], [6], [7], [8], [9], [10].

Quantifying location error is a key component of all telemetry

studies as it allows users to realistically analyze and interpret their

data (e.g., [11], [12], [13]). CLS, the French entity that operates

the Argos system (hereafter referred to as ‘‘Argos’’) provides

theoretical estimates of the errors of its positions and sends users

estimates of these errors with each computed location. Unfortu-

nately, Argos does not make clear if these error estimates refer to

the precision (reproducibility) or the accuracy (deviation from true

location) of the positions. Given that most users probably find

accuracy estimates most useful they likely assume that this is what

‘‘error estimates’’ refer to.

The primary error descriptor for Argos locations is the location

code or location class (LC) [14]. The LC is based upon the

estimated error in the positions and number of messages the
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satellite receives from the PTT. There are seven different location

codes, 3, 2, 1, 0, A, B, and Z, with 3 presumed to have the smallest

error, B the greatest, and Z considered an ‘‘invalid location.’’ By

default, users receive only positions with LCs 3, 2, and 1. To

receive positions with LCs 0, A, B, and Z users must request

‘‘Service Location Plus/Auxiliary Location Processing’’ from

Argos User Services [14]. Position errors are assumed by Argos

to follow a bivariate normal distribution [15]. Each location code

is assigned a general one-dimensional error value (Table 1)

assumed to include 68% of positions with that LC: 250 m for LC

3, 500 m for LC 2, 1500 m for LC 1 and .1500 m for LC 0.

Argos does not provide estimated errors for LC A or B.

The satellites carrying Argos equipment are polar orbiting, and

as a result the true error around calculated positions is better

represented by 2-dimensional ellipses rather than 1-dimensional

circles [14]. From the covariance matrix of the messages received

by the satellite, Argos derives an error ellipse with major and

minor axes ‘‘a’’ and ‘‘b’’ plus the ellipse orientation [15]. Argos

encourages use of the two-dimensional error ellipses for more

precise quantifying of the location error, although these param-

eters are only available as Diagnostic Data from ArgosWeb and in

table form from ArgosDirect if requested from User Services [14].

The realism of Argos-quoted location errors has been the

subject of substantial investigation (e.g., [16], [17], [18], [20], [21],

[22], [23]). Uniformly, these papers have reported that the 1-

dimensional error estimates provided by Argos greatly underesti-

mate the observed errors using a variety of different PTTs at

different sites. However we have found no evaluations of the

realism of the Argos error ellipses and resulting 2-dimensional

errors.

Several researchers have also noted that a lognormal distribu-

tion appears to better describe the 1-dimensional error than a

normal distribution [19], [21] although the implications of this

have not been explored. Other papers have used a t-distribution

after noting the non-Gaussian nature of the error distributions

[22], [24], but it appears that no statistical tests were run to see

how well the t-distribution actually fit the data or compared the fit

to other possible distributions. Vincent et al. [23] mentioned that

after filtering and smoothing, data grouped by location code gave

some datasets that could be fit by a normal distribution.

At the present time, Argos provides two algorithms for

calculating locations: least squares (LS) and Kalman filtering

(KF). Users must select only one method for receiving near-real-

time data; to obtain both the user must request and pay for post-

experiment reprocessing. All previous studies of Argos position

errors have been done with the LS method, which has remained

unchanged since 2007 [14] but modified a number of times prior

to that. The KF method – a technique very different from LS [14]

– was made available as a user option in March 2011. Once

implemented operationally, Argos recommended users switch to

KF processing because it ‘‘introduces significant improvements in

the number of positions and their accuracy, especially for

applications where just a few messages are received per satellite

pass or for platforms operating in difficult transmission conditions’’

[14]. However, this claim has not been independently verified.

In this study we test the accuracy of the locations provided by

Argos and compare errors (defined by us as the difference between

true location and Argos location) from LS and KF processing

techniques with two collars developed for use on large macaws (Ara

ssp) at our research site in southeastern Peru. In an effort to

provide location error estimates useful for interpreting Argos-

generated animal movement data, we also calculated and

evaluated empirical error estimates based on our data. We test

the following hypotheses: 1) the 1-dimensional error distributions

for both LS and KF processing methods are lognormally

distributed, 2) data processed using KF provide more locations

of higher accuracy than data processed using LS, 3) Argos-

provided error estimates characterize the actual accuracy for both

processing methods, and 4) Argos-provided error ellipses around

computed locations provide a useful way of characterizing the

position accuracy in 2 dimensions.

Materials and Methods

The study was conducted at the Tambopata Research Center in

the Department of Madre de Dios in southeastern Peru (13u89S,

69u369W) under permit number 030-2009-SERNANP-DGANO-

JEF. The center is on the border of the Tambopata National

Reserve (274,690 ha) and the Bahuaja-Sonene National Park

(1,091,416 ha) in the Department of Madre de Dios. The center

lies in the tropical moist forest life zone near the boundary with

subtropical wet forest at 250 m elevation and receives about

3200 mm of rain per year [25], [26]. The site is surrounded by a

matrix of mature floodplain forest, successional floodplain forest,

Mauritia flexuosa (Arecaceae) palm swamp, and upland forest [27].

Data were collected in 2009–2010 with two low power

(250 mW) Argos transmitters (PTTs) designed specifically for us

for use on large macaws (Ara spp). Two telemetry companies

provided the PTTs: Telonics (model TAV-2627) and North Star

Science and Technology (custom). Both units were of similar

design with a narrow metal band wrapping around the bird’s neck.

Table 1. Classification and 1-dimensional accuracy of location classes as provided by Argos.

Estimated error (68th percentile) Messages required per satellite pass (as per Argos)

Location Code, LC Least Squares Kalman Filter Least Squares Kalman Filter

3 ,250 m 4 messages or more

2 250 m,,500 m 4 messages or more

1 500 m,,1500 m 4 messages or more

0* .1500 m 4 messages or more

A* No accuracy estimation Unbounded accuracy estimation

B* No accuracy estimation 2 messages

Z* Invalid location 3 messages 1 or 2 messages

*By default, users receive positions with LC 1, 2, and 3 only. To receive LC 0, A, B, and Z positions (indicated by *), users must request ‘‘Service Location Plus/Auxiliary
Location Processing’’ from Argos User Services. Reproduced from Argos Users’ Manual Section 3.4.
doi:10.1371/journal.pone.0063051.t001
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Attached to the neckband was an electronics canister hanging

under the bird’s beak against the chest at roughly crop level. An

antenna about 21 cm long extended from the end of the canister

up past the neck. The units weighed 32 g (North Star) and 37 g

(Telonics), with components weighing about 3.5 g for electronics,

9 g for battery, and 20+ g for damage resistant housing, neckband

and antenna. The Telonics unit was slightly heavier because the

electronics housing was filled with potting material. For program-

ming the on-off duty cycles, the North Star unit had an internal

timer and the Telonics unit a clock; we found the latter easier to

use.

We hung the two collars from tall rainforest trees and towers

near the Tambopata Research Center to estimate expected

position errors for our macaw movement studies. We realize that

our position errors are likely conservative, as accuracy on free-

ranging macaws will likely be worse than under these static

conditions. One collar (North Star) transmitted from late March

2009 through mid-February 2010 (331 days); the other (Telonics)

from early February 2009 through late May 2010 (477 days).

Transmission took place on a varying schedule of every three or

four days for four to six consecutive hours during each

transmission period. There was no obvious schedule impact on

the number or quality of resulting locations. The positions from

both the LS processing method and the newer KF processing

method were compared with the known positions of the trees and

towers.

For monitoring purposes, LS locations were received directly

from Argos for the duration of the study. Our data from before the

KF implementation in 2011 were reprocessed at our request by

Argos. Our analysis was performed using the LS and KF data sent

in the reprocessed data package.

Analysis was done using Excel and standard or custom-written

scripts in MATLAB�. We computed errors in the Argos calculated

locations as distances and directions from the known positions of

the transmitters with all directions calculated in compass

convention as clockwise from north. To obtain the most accurate

distance measures possible on the approximately spherical Earth,

we calculated distances and azimuths using Vincenty’s algorithm

[28] as available from the MATLAB Central file exchange as

VDIST [29] and VDISTINV [30].

Data were grouped into 14 separate subsets for processing

according to location code (N = 7) and processing method (N = 2).

Given that Argos error may be influenced by variation in PTTs,

we used a Kolmogorov – Smirnov test to test the hypothesis that

the errors from the two PTTs came from the same distribution.

This was done by independently comparing the error magnitude

from the two transmitters for all 14 location code and processing

method combinations.

Probability plots and Lilliefor’s tests were generated for the

datasets to test goodness of fit of the presumed candidate

distributions – normal and lognormal (using logarithm to the base

e). In all statistical tests we used a significance level (alpha) of 0.05

unless otherwise noted. For the 14 position error datasets we

computed statistics appropriate for normally distributed data

(mean, standard deviation, 68th percent confidence intervals, 68th

percentiles) and statistics appropriate for lognormally distributed

data (geometric mean, multiplicative standard deviation, 68%

confidence intervals and 68th percentiles) from the relationships in

Table 2 for comparison with the Table 1 values from Argos. The

geometric mean (m*) and the multiplicative standard deviation (s*)

were calculated following the recommendations and formulas in

Limpert et al. [31].

We computed the numbers of LS and KF positions for each

location code and noted the number of positions that changed

location code after reprocessing with KF. To examine if Kalman

processing improved position accuracy of individual points over

least squares processing, we created time- and position-matched

datasets consisting of all LS positions grouped by location code

and all the matching KF results, discarding the new KF locations

that had not been computed under LS. Log transforming the

datasets gave approximately normal datasets with which we

performed analysis of variance and Tukey multiple comparison

tests.

To examine the relationship between the computed compass

bearing of the error (the ‘‘error bearing’’) and the orientation of

the semimajor axis of the error ellipse supplied by Argos (the

‘‘ellipse orientation’’), the angles were plotted against one another

for visual comparison and then a cross correlation analysis was

performed between the two parameters for both processing

methods and compared with the 95% confidence intervals

assuming no correlation. Since the Argos ellipse orientation angle

runs from 0 to 180u, not 360u, the error bearing was expressed as 0

to 180u by subtracting 180 from values greater than 180.

To determine if the Argos supplied error ellipse parameters

given for location codes 1, 2, and 3 provide reasonable bounds on

the true errors, we examined the percentages of our true locations

that lay within the i) error radius R (the square root of the product

of semimajor and semiminor axes of the error ellipse), ii) error

ellipse, and iii) semimajor axis used as an error radius.

We also used our error data to calculate five different types of

empirical error estimates using the data from location codes 3, 2,

1, 0, A, and B but not Z, both for LS and KF methods. In total the

five error methods, six location codes and two processing types

resulted in 60 different empirical error estimates. These error

estimates were:

1) 68% normal error circles with error radii calculated by

assuming the errors were normally distributed and 68% of

the 1-dimensional errors would be found between 0 and

m+z0.68 ? s, where m is the arithmetic mean, s the standard

deviation, and z0.68 = 0.44.

2) 68% lognormal error circles with error radii calculated

assuming errors were lognormally distributed and 68 percent

of the errors would lie between 0 and m* ? (s*)z, where m*

and s* are the geometric mean and multiplicative standard

deviation and z equal to z0.68 (i.e., 0.44).

3) 68th percentile error circles with error radii calculated as the

68th percentile value for the 1-dimensional error data.

For the next two methods we broke the errors down into

latitude errors and longitude errors and computed error ellipses

with east-west oriented semimajor and north-south oriented

semiminor axes a and b rather than single error radii.

1) 68% lognormal error ellipses with semimajor and semiminor

axes of the error ellipses computed assuming the longitude

errors and latitude errors were each individually lognormally

distributed and estimating a (semimajor axis) as mlon* ? (slon*)z

and b (semiminor axis) as mlat* ? (slat*)z, where lat and lon

indicate latitude and longitude values, respectively; z is z0.82;

and 0.82 is the square root of 68% (calculated expressed as a

decimal, or 68/100). Hence z0.82 = 0.7939.

2) 68th percentile error ellipses with semimajor axis a as the 82nd

percentile of distribution of longitude errors and semiminor b

as the 82nd percentile of the latitude errors. Again, the 82nd

percentile is the square root of the 68th percentile, calculated

from a decimal. So for the 68th percentile, we calculated the

82nd percentile for each axis.

4)

5)

Error Properties of Argos Locations
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To determine which of these empirical error estimates was most

useful for future studies of ranging and habitat use, we ranked each

estimate based on the total size of the circle or ellipse enclosed by

the radius or semimajor/semiminor axes and by how close to the

desired 68% the percent of locations were within each circle or

ellipse. The ranking was created in the following way. Beginning

with the LS data for each of the methods above, we computed the

error circles or ellipses for each LC. The areas of the resulting

figures and the percentage of points falling within each figure were

calculated. The results were ranked separately according to

enclosed area (smaller was better) and according to the absolute

deviation from 68% (smaller was better). A composite score for

each of the 30 combinations was calculated as the sum of the area

ranking plus 20% of the deviation ranking. The 20% weight was

used because being close to 68% was desirable but not nearly as

desirable as having a small error circle or ellipse. The final score

for each method was the average of the composite scores for all the

LCs. This was repeated for the KF data.

Results

Argos Position Errors – Magnitude and Distribution
We tested the hypotheses that each of the fourteen 1-

dimensional error distributions was well described by a normal

distribution and by a lognormal distribution (Table 3). None of the

14 were well described by a normal distribution (Lilliefors test,

P,0.001). In 13 of the 14 cases, the errors were well described by

the lognormal distribution (Lilliefors test with alpha = 0.05). Only

for Kalman LC 3 did the data differ significantly from the

lognormal distribution (Lilliefors test, P = 0.021). The probability

plot showed deviations from lognormality occurred only in the far

extreme values that could be argued to have resulted from factors

different from those that governed the majority of the error

deviations. Due to the fact that over 90% of the distributions were

fit by the lognormal, for the remainder of the paper we assume

lognormal distributions for all LCs.

Overall, the error in the locations increased with location code

as anticipated, with LC 3 the most accurate and LC Z the least

accurate (Table 4). The most accurate locations (LC 3) had an

average error of 400–500 m regardless of the processing method

and assumed underlying distribution (Tables 4 and 5). Of interest

is that error magnitudes for LC A locations were statistically

indistinguishable from LC 1 for both KF and LS processing

(Tukey multiple comparison test, 95% CI), although, measures of

variability (s and s*) appeared somewhat larger for LC A. The

magnitude of the errors for the two test units were not statistically

significantly different for LS processing except for LC A (KS test,

P = 0.048). For KF, processing location errors differed for LCs 1, A

and B (KS tests, P,0.04 for all three). The errors for these 4

statistically significant differences averaged 60% larger for the

transmitter constructed by North Star.

Table 2. Relationship between parameters characterizing normal (y) and lognormal (x) distributions.

Property Normal Distribution, y = log(x) Lognormal Distribution, x = exp(y)

Central limit theorem Additive effects Multiplicative effects

Distribution shape Symmetrical Skewed

Definitions: Characterizing parameters

Measure of central tendency m, arithmetic mean of y m*, geometric mean of x = exp(m)

Standard deviation s, standard deviation or additive standard deviation s*, multiplicative standard deviation = exp(s)

Measure of dispersion Coefficient of variation = s/m s*

Definition: Confidence interval or two sided confidence limits m 6 z?s: [m*/(s*)z, m*?(s*)z ]

68th percent confidence interval m 61?s [m*/(s*), m*?s* ]

90th percent confidence interval m 61.645?s [m*/(s*)1.645, m*?(s*)1.645 ]

Definition: Percentile or upper one-sided confidence bound m+z?s m* (s*)z

50th percentile m (mean) m*

68th percentile m +0.4677?s m* ? (s*)0.4677

90th percentile m +1.282 ? s m* ? (s*)1.282

By ‘‘z’’ is meant the appropriate value of the standard normal variate. Percentage and percentile calculations are exact for a population and are approximate for a
sample from a population. Confidence limits give the expected two-sided limits enclosing the specified percentage of the observations. The confidence bound gives the
expected percentage of observations lying at or below the indicated value. Adapted from [31].
doi:10.1371/journal.pone.0063051.t002

Table 3. Fits of position errors to normal and lognormal
distributions.

Least Squares Kalman Filtering

Location
Code, LC p values p values

Normal LognormalNormal Lognormal

3 ,0.001 0.090 ,0.001 0.021

2 ,0.001 0.117 ,0.001 0.066

1 ,0.001 .0.5 ,0.001 0.068

0 ,0.001 0.209 ,0.001 0.239

A ,0.001 .0.5 ,0.001 0.235

B ,0.001 0.153 ,0.001 0.208

Z ,0.001 0.153 ,0.001 0.208

Results for testing the hypotheses that the normal or lognormal distributions
were reasonable fits to the observed location error data. (Lilliefors test with
a= 0.05) The normal distribution was never a good fit to the data, while the
lognormal usually was.
doi:10.1371/journal.pone.0063051.t003
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LS versus KF Processing
Kalman filtering increased the total number of positions by 28%

over least squares processing (Table 4). However, the increase in

‘‘good’’ positions (LC 1, 2, and 3) was only about 2% (263 LS and

277 KF). The increase in LC A positions was also modest, from

169 to 179 or 6%. The major increase in number of positions was

in LC B positions which increased by 97% (173 LS to 340 KF).

In all, 16% of 658 matched-location pairs improved in location

code and only 4% dropped a location code with KF processing. In

addition, 168 more LC B positions became available that could

not be computed by LS processing as KF processing allows

positions to be computed from only 1 message received by the

satellite.

Reprocessing with KF did not significantly improve location

accuracy except for LC B positions. Mean error for LC 2 was

significantly less for LS processing compared to KF (t = 2.25,

DF = 134, P = 0.026). Mean error for LC B was significantly

greater for LS processing compared to KF (t = 4.39, DF = 332,

P,0.001). For the other location codes mean errors did not differ

significantly (t ,1.1, P.0.3).

Argos Distance Errors - Bearings
Longitudinal errors were larger than latitudinal error (Figure 1),

with the difference being a function of the location code (Table 6).

The ratio of the geometric means of longitude error and latitude

error which quantifies the eccentricity of the error ellipses ranged

from 2.3 to 2.8 for the best location codes (LC 3, 2, 1, and A). The

ratio for LC 0 was 3.3, indicating strongly elliptical errors, while

for LC B it was 1.3, indicating more circular errors (Table 6).

A tendency for the Argos error ellipse orientation (direction of

semimajor axis) to be east-west was also noted for both processing

methods. However, visual examination of the plot of LS error

ellipse orientations versus actual error bearings showed very little

evidence of a correlation, which was confirmed with a cross

correlation analysis. The cross correlation coefficient at 0 lag for

LS data was 20.02, with 95% confidence interval 60.08. For KF

data the plot showed a hint of a correlation, and the cross

correlation with all LCs combined (except Z) at 0 lag was

significant at +0.14 (95% CI of 60.07). This was found to be due

to significant correlations at LC 3 (+0.19 with CI 60.17) and LC B

(+0.28 with CI 60.11) but not at other location codes.

Utility of Argos Error Estimates (1 and 2 dimensional)
Sixty-eighth percentile errors computed from the datasets were

all larger than predicted by Argos for both KF and LS processing

methods regardless of whether we assumed a normal (Table 4) or

lognormal error distribution (Table 5). Under either error

distribution assumption (normal or lognormal), the Argos given

errors for LCs 1, 2, and 3 were smaller than either the empirically

observed errors or the 68th percentile estimated errors assuming

lognormal distributions.

The percentage of true locations lying within the Argos error

ellipse for LC 1, 2, and 3 positions was ,25% for both processing

methods (Table 7). The percentage was higher for location codes 0

and B (52% for LS; 61% and 54% for KF). Results were slightly

higher for the percentages lying within the Argos error radius R:

17%–36% for LS processing and 14%–55% with KF processing.

Percentages were highest for error circles of radius equal to the

Argos semimajor ellipse axis: 46%–86% for LS processing and

38%–93% with KF processing.
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Empirical Estimates of Accuracy
The rankings of the methods for computing the 68% empirical

error ellipses were broadly similar for both LS and KF processing

and whether all six LCs (LC 3 to LC B) were used or if only good

LCs (LC 3, 2, 1, A) were considered. The best was the 68th

percentile error ellipses (technique #5). Second was 68th percentile

error circles from data (technique #3). The next best techniques

were the 68% lognormal error ellipses (#4) and the 68%

lognormal error circles (#2). By far the worst was the 68%

normal error circles (#1). The semimajor (E-W) and semiminor

(N-S) axes for the 5 techniques are presented in Table 8 for LCs 3,

2, 1, and A.

These results further demonstrate the importance of recognizing

the lognormal nature of the error distributions. The 68th percentile

data circles (#3) by definition contained 68% of the locations, but

technique #3 is not a viable option for estimating 2-dimensional

error bounds for data points whose true location is unknown. (The

other techniques contained from 61% to 94% of the total

locations, which we considered acceptable.) Assuming data were

normally distributed (#1) was by far the worst way to compute

error circles/ellipses. The other three techniques (#2, #4, #5)

assumed the data were lognormally distributed and they all

performed quite similarly and quite well. The 68% lognormal

error ellipse (#5) provides the best combination of small size and

percent of locations included. This holds for both LS and KF

locations and regardless of whether all location codes are included

in the calculations or if just good locations are included (LCs 3, 2,

1, and A). For the three lognormal techniques (#2, #4, #5) the

areas of the error ellipses for LS and KF locations were similar for

all location codes except LC B and average areas were as follows:

LC 3 = 0.74 km2, LC 2 = 2.6 km2, LC 1 = 11.2 km2, LC

0 = 70 km2, and LC A 9.0 km2. The error ellipses for LC B

locations for LS and KF processing were 682 and 210 km2

respectively.

Discussion

Relative location code accuracy varied for the most part as

predicted, with location code 3 positions more accurate than LC 2,

which were more accurate than LC 1 positions. Interestingly the

LC A positions for which Argos provides no error estimates were

found to be as accurate as the LC 1 positions, although LC A

positions tend to have more outliers. This phenomenon has only

been mentioned in passing in the literature (e.g., [23]), yet it has

great potential importance. LC A is assigned to positions

computed when only three messages are received at the satellite,

and LC A positions are only available if users specifically subscribe

to Service Plus/Auxiliary Location Processing [14]. Researchers

who use only relatively high quality locations for their analyses

(LCs 1, 2, and 3) could add perhaps 60% additional data to their

data sets if they include LC A locations in their analyses, although

they would need to be able to identify and remove large outliers.

We suggest Argos publicize the likely value of LC A positions and

encourage more users to request Service Plus/Auxiliary Location

Processing or, preferably, supply users with positions for all

location codes unless they specifically opt out.

Figure 1. Radial histograms of the error orientations. Histograms
are for all location codes combined; histograms are somewhat different
for different location codes but give the same qualitative results. E-W
errors predominate over and tend to be larger than N-S errors for both
processing methods.
doi:10.1371/journal.pone.0063051.g001

Table 6. Ratio of geometric mean longitude error to
geometric mean latitude error.

Geometric mean longitude error/Geometric mean latitude error

Location Code Least Squares Kalman Filtering

All 2.281 1.967

3 3.058 2.654

2 2.251 2.598

1 2.693 2.276

0 3.122 3.289

A 2.374 2.750

B 1.541 1.277

Any value of the ratio over 1 indicates the mean East-West error is greater than
the mean North-South error.
doi:10.1371/journal.pone.0063051.t006
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We reject the hypothesis that Argos-provided estimates of error

characterize the actual accuracy of positions. Error estimates

provided by Argos were overly optimistic for both least squares

processing and Kalman filtering. The issue is further complicated

by the fact that Argos quotes its errors as ‘‘68th percentile’’ yet lists

ranges which appear more like confidence intervals and does not

specify if the errors refer to position precision or position accuracy.

Regardless, the Argos error estimates were too small whether they

were considered confidence intervals, percentiles, or simply means

of precision estimates or accuracy estimates. As a result,

researchers cannot assume, as claimed by Argos, that 68% of

locations fall within the ranges provided in Table 1. As noted

above, multiple papers have reported the inadequacy of Argos-

supplied error estimates to characterize position accuracies since at

least the late 1990s but the values quoted by CLS, the Argos

system operator, have remained unchanged.

We did accept the hypothesis that position errors – both 1-

dimensional and 2-dimensional – were well-fit by the lognormal

distribution and not by a normal – Gaussian – distribution. As

mentioned above, this finding has been noted in several recent

papers, but the significance has not been fully appreciated. The

lognormal distribution is a skewed distribution, meaning large

‘‘outliers’’ are to be expected and are legitimate. The appropriate

measure of central tendency is the geometric mean, not the

arithmetic mean. Any statistical tests that assume a normal

distribution, including t-tests, confidence intervals, and estimates

of percentiles, must be performed on log transformed data if the

results of the calculations are to be useful. Limpert et al. [31]

review the properties of lognormal distributions and show they are

widespread in the biological and physical world, in medicine, in

economics, in linguistics, in social science, and in many other

fields. They point out that only additive contributions to variability

lead to normal distributions, and the much more commonly

encountered multiplicative effects lead to the lognormal distribu-

tion. These authors found that only datasets composed of

differences, sums, means, or other functions of original measure-

ments were better fit by normal instead of lognormal distributions,

suggesting that lognormal distributions may be much more

common than frequently assumed.

Assuming lognormal distributions for the errors in position and

circular error radii, our data report the errors in 68% of the LS

positions can be expected to be less than 514 m for LC 3; 762 m

for LC 2; 1,920 m for LC 1; 1,640 m for LC A; 5,493 m for LC 0;

and 14,098 m for LC B. For KF locations, the errors in 68% of the

positions can be expected to be less than 553 m for LC 3; 1,121 m

for LC2; 2,086 m for LC 1; 1,640 m for LC A; 5,251 m for LC 0;

and 7,409 m for LC B. (Table 5). In brief, ‘‘good’’ positions (LC 3,

2, 1, A) are accurate to about 2 km, LC 0 and B are accurate to

about 5–10 km, but larger outliers are to be expected in all

Table 7. Percentage of true locations captured within error ellipse or circle.

LC % within Argos Error Ellipse
% within Circle with Radius of Argos
‘‘Error Radius’’

% within Circle of Radius Argos Semimajor
Axis

Least Squares Kalman Filter Least Squares Kalman Filter Least Squares Kalman Filter

3 25% (94) 15% (131) 17% (94) 14% (131) 46% (94) 38% (131)

2 24% (91) 19% (68) 29% (91) 15% (168) 69% (91) 52% (68)

1 22% (78) 24% (78) 28% (78) 21% (178) 77% (68) 74% (78)

0 52% (44) 61% (41) 36% (44) 34% (41) 86% (44) 93% (41)

A N/A 29% (178) N/A 35% (178) N/A 74% (178)

B N/A 54% (332) N/A 55% (332) N/A 86% (332)

Z N/A 33% (6) N/A 33% (6) N/A 50% (6)

Percentages indicate the number of instances when the true position lay within the error ellipse or circle for that location code (LC). Numbers in parentheses are the
total number of positions for the location code.
doi:10.1371/journal.pone.0063051.t007

Table 8. Empirical estimates of the 68% accuracy ellipses/
circles for LCs 3, 2, 1, and A.

LC Method

Least Squares
Positions Kalman Filter Positions

E-W axis N-S axis E-W axis N-S axis

3 1 0.713 0.713 0.700 0.700

2 0.514 0.514 0.553 0.553

3 0.478 0.478 0.512 0.512

4 0.741 0.277 0.813 0.296

5 0.606 0.267 0.786 0.297

2 1 0.935 0.935 1.649 1.649

2 0.762 0.762 1.121 1.121

3 0.903 0.903 1.220 1.220

4 1.055 0.509 1.593 0.712

5 1.071 0.444 1.423 0.686

1 1 2.906 2.906 2.648 2.648

2 1.920 1.920 2.086 2.086

3 1.764 1.764 2.485 2.485

4 2.610 2.610 3.018 1.226

5 2.631 1.182 2.867 1.131

A 1 2.993 2.993 2.916 2.916

2 1.640 1.640 1.640 1.640

3 1.673 1.673 1.701 1.701

4 2.581 1.188 2.445 1.075

5 2.703 1.223 2.507 1.119

See text for description of ‘‘Methods’’ column. For the best method, method 5
(boldface), the semimajor axis a was calculated as the 82nd percentile of
distribution of longitude errors and semiminor axis b was calculated as the 82nd

percentile of the latitude errors, meaning the ellipse so defined encloses
approximately 68% of the true positions (note !0.68 is 0.82).
doi:10.1371/journal.pone.0063051.t008
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location codes and need to be accounted for in the user’s data

processing.

Argos introduced KF processing with the hope that it would

provide more and higher accuracy positions ‘‘especially for

applications where just a few messages are received per satellite

pass or for platforms operating in difficult transmission conditions’’

[14]. However our data show that the present KF formulation did

not provide the expected across the board increase in accuracy

under our conditions. In fact, for most location codes there was a

tendency for LS errors to be somewhat smaller (Table 5). There

were trivial increases in the number of locations of each location

code generated with KF except with regards to LC B locations:

there were nearly twice as many LC B positions for KF versus LS

processing. The only meaningful advantage of KF processing that

we observed is the ability to create fairly good LC B locations

when only one message is received by the satellite, locations that

cannot be computed using LS processing. Our results suggest that

KF processing may exacerbate the difference in accuracy among

different PTTs. This does not suggest that Kalman filtering should

be discarded, only that the present formulation of the filter is not

much of an improvement over LS for relatively benign transmis-

sion conditions. We suggest Argos examine different formulations

of Kalman filters or look beyond to methods such as particle filters

(e.g., [32]) if they wish to improve their positions for users under all

conditions. They also need to incorporate the lognormal nature of

the errors and to account for other sources of error that are not

presently captured in the covariance matrix.

Previous studies [e.g., 19,22,23] have noted that east-west

(longitudinal) error components were larger than north-south

(latitudinal) components, which is to be expected because of the

polar orbits of the satellites. We also observed this. However, our

results suggest the axis of greatest error is tilted slightly north-south

(Fig. 1). For the best location codes (3, 2, 1, A), the ratio of

geometric mean east-west error is somewhat greater than 2.5 times

that of the north-south error (Table 6), although it may vary

somewhat with location code.

Argos provides error ellipses around many (LS) or all (KF)

positions to account for this spatial nonuniformity in the error by

computing semimajor and semiminor axes and orientation of the

ellipse from the error covariance matrix and assumptions of

normally distributed errors [15]. We anticipated a relationship

between these error ellipses and the location errors calculated from

the data. However, we found virtually no relationship between the

orientations of Argos error ellipses and the actual bearings of the

spatial errors. Nor do the magnitudes of the semimajor or

semiminor axes correspond to the magnitudes of the actual spatial

errors. Hence, for both LS and KF we must reject the hypothesis

that the Argos error ellipses are useful for characterizing the

accuracy of the calculated positions. We must also recommend

against using these ellipses in studies of animal movement and

habitat use. The Argos error ellipse included the true position only

15–29% of the time for location codes 3, 2, 1, and A (Table 7).

The ‘‘error radius’’ (!a?b) was actually somewhat better (14–35%)

and using the semimajor axis as an error radius performed best

(38–78% ) (Table 7). We were surprised that the error ellipses

failed so completely as estimates of true error. Do these error

ellipses refer to the precision of the calculation rather than the

accuracy of the result? Does the fact that Argos assumes in their

calculations that the errors follow a normal distribution [15] have

a major impact? Are there additional sources of errors that are not

included in the error covariance matrix? We suggest Argos provide

a better explanation of what their error ellipses describe and how

they might be useful to users.

The empirically derived error circles and ellipses we calculated

(Table 8) varied both in size and percent of locations included. In

all cases they were much larger than the Argos provided error

estimates. Due to the east-west bias of the errors inherent in Argos-

generated locations, the calculated error ellipses were smaller in

the north-south dimension and averaged smaller than our

calculated error circles but contained similarly high proportions

of the total locations. As a result, we feel that the ellipse semimajor

and semiminor axis estimates provided in Table 8 are the most

usable error estimates for future analysis of ranging and landscape

usage.

Conclusions
Our findings that actual position errors are larger than Argos-

quoted errors are not new and broadly agree with what other

researchers have found (see Table 4 summarizing others’ findings

in [19]). What is new is our emphasis on the significance of the fact

that Argos position errors are much better described by the

lognormal rather than the normal distribution. The lognormal

distribution is a skewed distribution, meaning large ‘‘outliers’’ are

to be expected and are legitimate. Many of the commonly used

methods of statistical analysis require an underlying normal

distribution to be valid and thus give incorrect results when

applied to untransformed lognormal data. Argos needs to redo

their estimates of errors using the lognormal distribution in place

of the normal distribution (or do their calculations on log

transformed data). In addition, when supplying error ellipses

based upon a proper formulation of the error covariance matrix,

they should emphasize that many important factors contributing

to position error are left out of their calculation and thus they

significantly underestimate errors. It would be helpful if Argos

could do their own research to give users some idea of the

magnitude of the underestimation or improve them to truly

include 68% of the locations.

Another important finding from this work is that as presently

formulated, Kalman filtering does not improve the number or

accuracy of any positions except those assigned location code B.

For users who can utilize positions with an average error of up to

5–10 km (e.g., marine mammal studies and oceanographic

drifters), Kalman filtering is a major improvement because of

the large number of LC B positions provided. For users who can

use positions with an average error of up to 2 km, either least

squares or Kalman filtering works equally well. And for users who

need most positional accuracies to be less than 1 km, Argos is not

likely the correct technology for the project.

Our results found that LC A positions with no Argos assigned

error have been underappreciated. They are equivalent in

accuracy to location code 1 positions, although the variation in

the data is greater. We feel that users should not have to go out of

their way to request LC A positions as is presently the case.

While we acknowledge that differences among individual units

can influence error estimates, the findings in this paper should be

broadly applicable to a wide array of other PTTs used in tropical

South America and most other geographical locations, regardless

of how the units are packaged. It is known that broadband noise

sources at times disrupt reception of Argos messages in southern

Europe [21] and Central Asia [20], [33], but no such noise source

has been reported in South America and we do not feel we

observed any evidence of such. Other factors contributing to

errors in position accuracies are not expected to depend upon the

particular packaging design of our instrumentation and designs

with similar components have been used in the past on non-

psittacines with no reported issues. Since we used low power

transmitters (0.25 W versus the frequently used 0.5 W and 1.0 W
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transmitters) and the environmental conditions under which we

collected our data at fixed sites were more stable than they would

be on a moving bird, we feel our results should give conservative

estimates of true Argos errors in South America and other

reasonably radio-quiet geographic regions.

We suggest it would be useful for other users to conduct

experiments with fixed-site Argos PTTs of similar wattage in

different locations of the world to verify that our findings are

indeed globally applicable. Since temperature variations can

theoretically impact the stability of the oscillator and electronics

that generates the frequency of the PTT signal, tests under

different temperature regimes would be particularly valuable.

Finally, we hope that CLS will stop ignoring the findings of their

users that their presently promulgated one-dimensional and two-

dimensional (i.e., error ellipse) parameters are inaccurate and

misleading and provide their users with better estimates of the

accuracy of the positions they provide.
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