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ABSTRACT

We have developed a new regularization approach for estimat-
ing unknown spatial fields, such as facies distributions or porosi-
ty maps. The proposed approach is especially efficient for fields
that have a sparse representation when transformed into a com-
plementary function space �e.g., a Fourier space�. Sparse trans-
form representations provide an accurate characterization of the
original field with a relatively small number of transformed vari-
ables. We use a discrete cosine transform �DCT� to obtain sparse
representations of fields with distinct geologic features, such as
channels or geologic formations in vertical cross section. Low-
frequency DCT basis elements provide an effectively reduced
subspace in which the sparse solution is searched. The low-di-
mensional subspace is not fixed, but rather adapts to the data.
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he DCT coefficients are estimated from spatial observations
ith a variant of compressed sensing. The estimation procedure
inimizes an l2-norm measurement misfit term while maintain-

ng DCT coefficient sparsity with an l1-norm regularization term.
hen measurements are noise-dominated, the performance of

his procedure might be improved by implementing it in two
teps — one that identifies the sparse subset of important trans-
orm coefficients and one that adjusts the coefficients to give a
est fit to measurements. We have proved the effectiveness of
his approach for facies reconstruction from both scattered-
oint measurements and areal observations, for crosswell travel-
ime tomography, and for porosity estimation in a typical

ultiunit oil field. Where we have tested our sparsity regulariza-
ion approach, it has performed better than traditional alter-
atives.
INTRODUCTION

The problem of estimating patterns and structures is encountered
n many engineering and science applications, from earth sciences to
omputer vision and medical imaging. These problems are often ill-
osed �having more unknowns than measurements�, which can re-
ult in nonunique solutions. For example, the problem of estimating
ubsurface structures such as channels and faults from limited point
bservations is severely ill-posed when these structures are de-
cribed in terms of many independent pixel values. In such situa-
ions, structural assumptions about the solutions are usually built
nto the solution algorithm to favor solutions in close proximity to a
rior description of the unknown structure. However, it is often diffi-
ult to specify the spatial patterns a priori, especially when they are
oorly defined and have irregular geometry. In such cases, it is better
o introduce implicit structural information through constraints on
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moothness or sparsity to produce solutions that naturally reveal pat-
erns present in the data.

Acommon approach for constraining the solutions of ill-posed in-
erse problems is through regularization �Tikhonov and Arsenin,
977�.As stated by Constable et al. �1987�, regularization serves two
rimary purposes: to stabilize the solution of an ill-posed inverse
roblem and to give a solution that fits measurements adequately
ithout producing artifacts that are unjustifiably complex. Tikhonov

egularization methods try to achieve these objectives by modifying
he inverse problem objective function so a sum of two terms is min-
mized: a data misfit term and a regularization term that penalizes
ow-order spatial derivatives of the solution. This results in spatial-
y-smooth solutions that are consistent with the observed data. Be-
ause of their simplicity and desirable smoothness properties,
ikhonov regularization methods have enjoyed widespread applica-

ebruary 2009; published online 1 September 2009.
Texas, U.S.A. E-mail: behnam@pe.tamu.edu.
d Computer Science, Cambridge, Massachusetts, U.S.A. E-mail: vgoyal@

ngineering, Cambridge, Massachusetts, U.S.A. E-mail: dennism@mit.edu.
EG license or copyright; see Terms of Use at http://segdl.org/



t

t
i
q
s
p
t
s
d

n
s
t
a
fi
s
I
i
n
F
s
g

n
w
p
t
p
s
n
t
s
f
t
t

o
o
s
m
p
p
o
l
h
p
1
m
o
d
s
H
p

p
o
p
i
i

s
f
w
s
a
t

s
s
p
a
p
i
v
m
c

M

t
fi
o
m
m
n
m
f
s
s
t
p

I

c
k
t
o
c
e
t
p
c

e
t
1
t
e
d
i
s
c
o
s
c
W
o
s

R70 Jafarpour et al.
ion in inverse theory, particularly in the geosciences.
Although smoothness is a desirable property in many applica-

ions, the choice of a regularization technique ultimately should take
nto account the underlying physics that has generated the observed
uantities. Consequently, the form of the regularization constraint
hould be consistent with and promote the expected properties of the
hysical system. For instance, compactness measures are preferred
o smoothness when working with models that are believed to have
harp local features �Last and Kubik, 1983; Portniaguine and Zh-
anov, 1999; Ajo-Franklin et al., 2007�.

Another approach to regularization is to use compression tech-
iques to reduce the number of unknowns in the inverse problem. In
patially-discretized models, these techniques typically transform
he original finite set of problem variables into another set of vari-
bles that provide an equivalent description of the original spatial
eld. If the transformation is appropriately chosen, a relatively small
ubset of the new variables can provide a very good approximation.
n such cases, the remaining transformed variables can be neglected
n the inversion procedure. This truncation approximation yields a
ew inverse problem that has fewer unknowns and is better posed.
urthermore, the solutions provided often are better able to capture
patial patterns of particular interest in many applications, including
eophysics.

One challenge of a compression approach to regularization is the
eed to identify which transformed variables should be retained and
hich should be neglected. This problem can be addressed from the
erspective of sparse reconstruction if a substantial number of the
ransformed variables can be assumed to be small enough to be ap-
roximated as zeros. In this case, the transformed representation is
aid to be sparse because only a few of the transformed variables are
onzero. Then the inverse problem reduces to the identification of
he nonzero transformed variable values that give the best fit to ob-
ervations. Consequently, regularization is achieved through trans-
ormation and truncation of the problem variables rather than
hrough incorporation of smoothness terms in the performance func-
ion.

Minimization of the l1-norm of the low-order spatial derivatives
f the model �Claerbout and Muir, 1979; Bube and Langan, 1997� is
ne of several regularization techniques that have been proposed for
tabilizing inverse problems. An important property of the l1-norm
inimization, compared to its l2-norm counterpart, is its smaller

enalty for large outliers and larger penalty for small values. These
roperties lend themselves to better detection of piecewise continu-
us features with sparse spatial derivatives. A particular version of

1-norm regularization techniques is known as total variation, which
as been proposed for edge detection problems and reconstruction of
iecewise smooth properties �Rudin et al., 1992; Acar and Vogal,
994; Yu and Dougherty, 2000�. Although the use of l1-norm mini-
ization is not new, the use of the l1-norm as a proxy for sparsity has

nly been formalized recently under the compressed sensing para-
igm, which also provides certain theoretical guarantees on recon-
truction quality �Candès and Tao, 2006; Donoho, 2006a�. Lin and
errmann �2007� give a recent geophysical application of this ap-
roach.

Here we consider l1-norm minimization for subsurface inverse
roblems.Akey assumption is that either the original model is sparse
r an appropriately transformed version of the model has a sparse ap-
roximation. For purposes of this paper, we presume that techniques
nspired by image compression can be used to generate transformed
nverse problems likely to have sparse representations. Choice of the
Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
parsifying transform is application specific and usually requires in-
ormation about the expected structure of the underlying field. Here
e consider the discrete cosine transform �DCT�, which provides

parse approximation for correlated geological patterns �Jafarpour
nd McLaughlin, 2009�. Appendix A describes the discrete cosine
ransform �DCT�.

We will also describe the methodology and problem formulation,
ummarize results for relevant examples, and discuss our conclu-
ions. The methodology section includes an overview of com-
ressed sensing to introduce our transform-domain, sparsity-based
pproach to regularization and inversion. Our results include exam-
les that illustrate the effectiveness of l1-norm minimization for
dentifying sparsity in the DCT domain. In these examples, the in-
erse solution is derived from either scattered observations or areal
easurements. We conclude with a summary of the results and a

onsideration of their implications.

ETHODOLOGY AND PROBLEM FORMULATION

Here �and in Appendix A�, we review the basic concepts of linear
ransforms and show how they yield sparse representations of spatial
elds. We also describe compressed-sensing and basis-pursuit meth-
ds, which exploit sparsity to provide accurate regularized esti-
ates. Then we propose a two-step version of the basis-pursuit
ethod that successfully addresses problems that can arise with

oisy measurements. The sparsity assumption is key to the new for-
ulation and stems from the ubiquitous role of spatially continuous

eatures in the earth sciences. In particular, the geologic continuity of
ubsurface channels in the spatial domain translates into a nearly
parse representation in the transformed domain. The sparseness of
he channel-facies characterization problem fits well with our ap-
roach.

mage compression and linear transforms

The use of truncated transform methods to solve inverse problems
an be viewed as a type of low-rank model representation, also
nown as model parameterization. The basic concept is to replace
he original formulation with one that captures the essential features
f the problem with a smaller number of unknowns. Several image-
ompression techniques �Jain, 1989; Gonzalez and Woods, 2002�
xploit this mechanism for reducing the number of variables needed
o describe natural images. The discrete cosine transform used in this
aper is a typical example of a linear transform suitable for image
ompression �seeAppendix A�.

Effectiveness of the DCT for compressing natural images is well
stablished in the signal processing and image compression litera-
ure �Jain, 1989; Gonzalez and Woods, 2002�.As an example, Figure
a shows sample images of low frequency 2D DCT basis functions
hat can be used to represent 45 by 45 data on a grid. The basis imag-
s are arranged according to their orientation and level of detail in a
escending order from upper left to lower right. Figure 1b shows an
dealized 45 by 45 porosity field �left� and its corresponding 45 by 45
et of DCT coefficients plotted with a logarithmic scale �right�. DCT
oefficients in Figure 1b are rotated to be consistent with the basis
rientation shown in Figure 1a and for better visualization. We can
ee from Figure 1b that many DCT coefficients outside the upper left
orner have small values and do not contribute much to the image.

hen these small coefficients are truncated �set equal to zero� and
nly the largest �S�15� coefficients are retained, the result is the
parse DCT representation in Figure 1c �right�. The corresponding
EG license or copyright; see Terms of Use at http://segdl.org/
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Transform-domain sparsity regularization R71
ompressed image �left� looks much like the original, even though it
s constructed from a much smaller number of variables.

parse estimation, compressed sensing, and
asis-pursuit methods

Compressed sensing is a recently introduced technique for esti-
ating sparse signals from partial �or undersampled� observations

n a complementary, “incoherent” domain. It has attracted research-
rs’ attention in several disciplines, including signal processing and
tatistics. We give a simple introduction to this approach to illustrate
he concept. We present a more general formulation in the next sec-
ion, although further mathematical details are left to the original
ublications on this topic �Candès et al., 2006; Candès and Tao,
006; Donoho, 2006a�.

To introduce compressed sensing, we consider the estimation of
hannel facies in a reservoir model with N grid blocks. Suppose we
ssemble all the block porosity values in an N-dimensional spatial-
omain vector u and denote the discrete cosine transform of u by an
-length vector v, so u��v where � is the N�N inverse discrete
osine transformation matrix. The transform-domain vector v is un-
nown but is expected to be �nearly� sparse.

We assume that the unknown sparse signal v has sparsity S �i.e.,
hat the vector v has S nonzero coefficients, which we denote as
vN�0�S�, and we attempt to estimate v from noiseless observations
f u assembled in the M-length measurement vector ū. �Vector ū is a
ubsampled version of u�. Thus we seek to solve ū��̄v, where �̄ is
he M-by-N matrix containing the appropriate rows of �, for esti-
ates ṽ. Because M � N, this is an underdetermined system of

quations with an infinite number of solutions. However, the fact
hat v only has a small number of nonzero coefficients can be ex-
loited, often resulting in a unique solution. The l0-norm minimiza-
ion problem

min
ṽ�RN

�ṽ�0 subject to ū��̄ṽ �1�

ormalizes the search for solutions with minimum support �the vN�1

ith the smallest possible number of nonzero elements that satisfy
he constraint�. The solution of equation 1 will be the sparse signal v
nless there exists an equally sparse or sparser solution that satisfies
he measurements equations, which is not likely �Candès and Tao,
006�.

Unfortunately, solving the l0-norm problem in equation 1 essen-
ially requires a combinatorial search, with very high computational
omplexity, over sparsity patterns �known as a nondeterministic
olynomial-time hard problem �Natarajan, 1995�. A computation-
lly manageable alternative to equation 1 is the basis-pursuit prob-
em, which uses an l1-norm minimization �Chen et al., 2001;
onoho, 2006a� and is expressed as

min
ṽ�RN

�ṽ�1 subject to ū��̄ṽ . �2�

his basis-pursuit formulation is a convex optimization problem
hat always has a solution if the measurement equations are consis-
ent. The minimization problem given by equation 2 can easily be
osed as a linear program �Bloomfield and Steiger, 1983�. Donoho
2006b� derives conditions under which the problems described by
quations 1 and 2 are equivalent.

Whether recovery of a signal u from ū succeeds depends on the
ull signal u �particularly the sparsity pattern of its discrete cosign
Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
ransform� and the choice of which M components are observed. A
ualitative understanding can be obtained from analyses involving a
andom matrix with independent and identically distributed Gauss-
an entries that relates the signal in a sparsifying basis to the ob-
erved quantities. �In contrast, the matrix in our problem consists of
ows of the inverse DCT matrix.� As the problem dimensions be-
ome large, the signal is reconstructed asymptotically when

M � 2·S · log �N /M�, where S is the number of nonzero entries in
he sparse signal �Donoho and Tanner, 2008�. Effectiveness of spar-
ity-based interpolation is shown with a simple example below.

parse estimation with prior information and noisy data

The preceding example suggests that sparsity of the solution in the
ransform domain can be exploited to develop a more efficient and
etter-posed estimation scheme. When reliable prior knowledge of
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igure 1. Transform domain �DCT� representation of the true facies
odel with its sparse approximation in the DCT domain: �a� sample
CT basis images; �b� The true 45�45 porosity distribution �left�
ith high �red� and low �blue� porosity and its DCT coefficient mag-
itudes in logarithm scale �right�; �c� The sparse representation of
rue facies distribution �left� with S�15 nonzero DCT coefficients
right� are displayed in the second row �l1 refers to the l1-norm of the
stimated DCT coefficients�. Plot of DCT coefficients in �b� is rotat-
d for better visualization and consistency with DCT basis in �a�.
EG license or copyright; see Terms of Use at http://segdl.org/
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R72 Jafarpour et al.
he unknown parameters is available, it can be used to constrain the
nverse problem further and improve the reconstruction algorithm.
n addition, observation errors need to be taken into account by in-
luding a misfit term in the optimization problem. A general formu-
ation of the above problem that incorporates prior information and
llows for observation errors can be written as

min
v�RN

�Cu
�1/2�u��ṽ��p�� �Wṽ�q, �3�

here the first term in the objective function penalizes deviations
rom the observations with an lp-norm, and the second term enforces
he desire for a sparse solution by penalizing the weighted magni-
ude of the DCT coefficients with an lq-norm. Covariance matrix Cu

ontains information about the quality �weight� of each individual
bservation. Throughout this paper, we assume Cu

�1/2 is the identity
atrix; which is equivalent to independent and identically distribut-

d measurement errors. This assumption can be readily relaxed if the
rrors are correlated. Weighting matrix W can be computed from
rior information, using the image-training approach described in
ppendix B. Weighting coefficients in this matrix effectively in-

lude �or exclude� relevant �or irrelevant� basis vectors in the ap-
roximation and promote the selection of basis vectors that are more
onsistent with geologic prior information. Regularization parame-
er � adjusts the relative importance of the prior and observation
erms.

Here we consider three alternatives for the objective function
orms lq and lp in equation 3: the linear least squares �LLS� �p�q

2�, the least absolute deviation �LAD� �p�q�1�, and the least
ixed norm �LMN� �p�2, q�1� solutions. When the problem is

iewed from a Bayesian perspective, these alternatives correspond
o adoption of either Gaussian or Laplacian probability distributions
or observation noise and for vector v of DCT coefficients �Bloom-
eld and Steiger, 1983; Tikhonov and Arsenin, 1977; Schweppe,
973; Alliney and Ruzinsky, 1994�. Then the alternative solutions
rovide the maximum a posteriori �MAP� estimates associated with
he corresponding combinations of measurement noise and DCT co-
fficient probability distributions.

Several studies on the distribution of DCT coefficients have been
onducted for various types of images, including natural and medi-
al images. As a result, different probabilistic assumptions have
een proposed for the norm in equation 3 �Reiniger and Gibson,
983; Eggerton and Srinath, 1986; Muller, 1993; Eude et al.; 1994�.
einiger and Gibson �1983� find the Laplacian distribution to be
ore appropriate for DCT coefficients, although others report that

o single distribution can be adopted. Eude et al. �1994� use the gen-
ralized Gaussian function �GGF�, which includes the uniform, La-
lacian, and Gaussian distributions as special cases, for the DCT co-
fficient distribution. Lack of agreement in these studies suggests
hat the choice of a DCT coefficient distribution depends on the type
f images and data sources encountered in a particular application.

wo-step solution of the noisy estimation problem

Donoho �2006b� shows that, under some mild conditions, the so-
ution of the original l0-norm problem in equation 1 and the solution
f the l1-norm problem in equation 2 are identical for sparse noise-
ree systems. However, when observations are noisy and the formu-
ation in equation 3 is used, identification of the sparsity pattern
hrough the l1-norm minimization might no longer give the same re-
ult as the desired l -norm minimization. Such solution variability
0

Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
eflects an important difference between the l0- and l1-norm formula-
ions in equations 1 and 2. Although the l1-norm of vector v can be
ecreased by reducing the magnitude of its elements, the l0-norm de-
ends only on the number of nonzero elements and is not sensitive to
heir magnitudes. In general, l1-norm minimization of the DCT coef-
cients has two effects: first, elimination of the insignificant DCT
oefficients leading to increased sparsity �which is desirable in our
pplication�, and second, reduction in the magnitude of larger DCT
oefficients �undesirable because it can lead potentially to underesti-
ated DCT coefficients�. When sparse solutions are sought by as-

igning a large value of the sparsity regularization weight � , in equa-
ion 3, the second of these effects can result in underestimation of the
nknown features especially in the presence of noise.

For this reason, we propose a two-step LMN solution, which di-
ides the l1-norm minimization reconstruction approach. First, we
dentify the important DCT basis vectors and sparsity structure in the
olution using the l1-norm minimization with a large � value, which
s equivalent to the noise-free, basis-pursuit approach of equation 2.
ext, we estimate DCT coefficients corresponding to the sparsity
attern obtained from step one through l2-norm minimization of the
bservation misfits, as in the LMN approach with � �0.

This two-step implementation exploits the fact that the l1-norm
inimization successfully identifies the sparsity pattern in the solu-

ion but may underestimate the magnitudes of the sparse coeffi-
ients. The first step of the procedure uses an l1-norm minimization
nly to identify DCT coefficients that will be assigned nonzero val-
es. In the second step, we find more accurate estimates for nonzero
oefficients by minimizing a least-squares data-misfit objective
unction. The least-squares minimization in the second step main-
ains the sparsity structure obtained in the first step while improving
uality of the coefficient estimates, which we illustrate with an ex-
mple in the next section.

RESULTS AND DISCUSSION

Here we present and discuss inversion and estimation results for
everal example problems. We start with a simple noise-free scat-
ered-point-measurement example to demonstrate the use of struc-
ural assumptions in the compressed sensing framework. In this ex-
mple, we consider each of the three alternative formulations to
ompare the performance of l1-norm regularization �q�1� used in
AD and LMN to impose sparsity constraints versus the l2-norm

egularization �q�2� used in LLS. In our next example, we apply
ur two-step estimation procedure to the problem of estimating
hannel features from noisy areal measurements �i.e., denoising�.
ur third example examines transform domain l1-norm regulariza-

ion �through the one-step LMN approach� in a traveltime tomogra-
hy problem. Finally, we apply the one-step LMN formulation to a
eld example dealing with porosity estimation.

nterpolation using scattered point measurements

The examples described in this section illustrate how the com-
ressed sensing formulation presented earlier can be used to recon-
truct channelized facies in a subsurface environment. For the fol-
owing examples, we assume that the original signal is the sparse sig-
al with S�15 �Figure 1c�. We make this simplifying assumption
which will be relaxed later� for this illustrative example only.

Figure 2 demonstrates results obtained when a limited number of
bservations �M �40� is used to constrain the reconstruction. The
rst column in Figure 2 shows the signal recovery when all 2025
EG license or copyright; see Terms of Use at http://segdl.org/
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Transform-domain sparsity regularization R73
CT coefficients are permitted to take nonzero values. It can be seen
rom the resulting DCT coefficients �second row� that many high-
requency coefficients are assigned nonzero values. The second and
hird columns of Figure 2b show the same experiment when the opti-

ization is restricted to the span of N�210 and N�120 low-fre-
uency basis elements. The solutions are more reasonable from a
eologic perspective, and the “true” DCT coefficients are perfectly

a)

b)

igure 2. Sparse facies reconstruction from randomly located measu
ain� facies distribution �left�, its corresponding sparse �S�15�log-

n space �right�; �b� Three masks �first row� that are used to define
2025, 210, and 78 �left, middle, right�. The corresponding solution

pectively. The l notation refers to the l -norm of the estimated DCT
1 1

Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
econstructed for N�120. This suggests that when prior knowledge
f the facies distribution is available, it should be used to constrain
he search subspace.

The above example used a perfectly sparse signal �in the DCT do-
ain� with noise-free observations to illustrate sparse-signal recon-

truction with compressed sensing. In practice, many examples can
e found in which the underlying features are not perfectly sparse

ts using low-frequency subspaces: �a� The true sparse �in DCT do-
coefficients �middle�, and �M �40� randomly located observations
equency search subspaces in the DCT domain with dimensions N
DCT and spatial domain are shown in the second and third rows, re-
ients.
remen
�DCT�
low-fr
s in the
coeffic
EG license or copyright; see Terms of Use at http://segdl.org/
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R74 Jafarpour et al.
ut have a nearly sparse compressed representation. Furthermore,
eal observations usually are corrupted with noise. In the next exam-
le, we consider the interpolation problem in equation 3 to account
or noise in the observations, assume that the unknown transformed
arameter v is only approximately sparse �it can have nonzero but
elatively insignificant coefficients�, and use prior structural infor-
ation about the solution to arrive at more consistent solutions.
In our next example, again we assume the observation points are

ocated randomly in space, but we consider the effects of using dif-
erent ways to incorporate prior information. We set the dimension
f the DCT coefficient search subspace to N�78 and number of ob-
ervations to M �30. When prior information from image training
s used, the prior weighting matrix W is obtained from the procedure
nAppendix B. When prior training is not used, W is the identity ma-
rix and equal weights are given to all DCT coefficients. The value of
arameter � is varied to impose different levels of sparsity on the
CT coefficients of the solution.
Figure 3a-c shows the true porosity distribution, corresponding

CT coefficient magnitudes �logarithm scale�, and observation lo-
ations and values used for the randomly scattered measurement ex-
mple. Figure 4 shows reconstructed porosity fields obtained with
LS, LAD, and LMN inversion methods. Figure 4a illustrates re-
ults for the LLS formulation. The first two rows of Figure 4a give
stimates obtained when no assumption is made about the channel
rientation �this section is labeled as Approximation subspace 1�.
he first and second columns give results for two cases with small
nd large � values, corresponding to less and more weight, respec-
ively, given to the regularization term in the objective function in
quation 3. The third and fourth rows in Figure 4a �Approximation
ubspace 2� show the LLS estimates when qualitative prior informa-
ion about channel orientation is available. In this case, more DCT
asis elements with left-to-right variability are selected �see basis
mages in the top portion of Figure 1a�. Results are similar to the pre-
ious example where the channel orientation was not known except
or a slight directional bias in the estimated features, implying that
ualitative orientation information might not constrain the LLS so-
ution sufficiently. The last two rows of Figure 4a �Approximation
ubspace 3� display the results when prior information from basis
raining is used.As seen in these figures, LLS estimates perform well
nly when an accurate prior is used to weigh the appropriate basis
ectors.

Weighting matrix W provides important quantitative information
bout the expected significant basis elements by specifying smaller
enalties for expected significant coefficients �see the basis training
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igure 3. �a� True channel facies porosity distribution, �b� the corres
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iscussion and Figure B-1�. In the absence of a good prior, the

2-norm constraint used for regularization does not yield the chan-
elized structure present in the true model. Closer examination of
he results reveals that estimated DCT coefficients are not sparse,
onfirming that the l2-norm is not a good choice to preserve sparsity.

Figure 4b and c illustrate solutions to the LAD and LMN formula-
ions for the same experiment. Results with increasing prior infor-

ation �for different approximation subspaces� and sparsity regular-
zation terms are shown. The similarity between results for the LMN
nd LAD formulations implies that the l1-norm minimization of
CT coefficients �rather than in the misfit term of the objective func-

ion� is responsible for the superior reconstruction they provide as
ompared to LLS solutions. Reconstruction improves when addi-
ional prior information is included. In the case of qualitative direc-
ional information �third and fourth rows in Figure 4b and c�, the esti-

ated channel orientation is more biased toward the left-to-right di-
ection. Additional improvements are obtained by incorporating
onsistent prior information inferred from a correct training image
the last two rows in these figures�, as expected. Results of these ex-
eriments suggest that for chosen values of S, N, and M, the un-
rained basis is sufficient for finding an approximate sparse solution
o the true facies model.

Overall, LLS results suggest that the l2-norm of the DCT coeffi-
ients fails to identify the sparse structure of the original facies dis-
ribution and can provide only a reasonable estimate when accurate
rior information is supplied. This can limit the use of this formula-
ion in practice, where prior information might be inaccurate or un-
vailable. In general, the l2-norm is very sensitive to large deviations
outliers� and tends to neglect smaller misfit terms. This behavior
ends to produce small-scale artifacts at unobserved locations, espe-
ially when observation noise is present. Given the similarity be-
ween the LAD and LMN formulations for inducing sparsity in the
olution, we compare only the LMN and LLS solutions in our next
xample.

econstruction using noisy areal measurements
denoising)

The previous examples use relatively accurate but scattered ob-
ervations in space. Another important application of sparse estima-
ion is to extract features from a complete grid of noisy measure-

ents.An example is a seismic image of porosity. Significant uncer-
ainty can be present in seismic imaging data because of interactions
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etween the signals and geologic layers between the sensor and res-
rvoir.

Figure 5a and b shows the true porosity model and its correspond-
ng DCT coefficient magnitudes �in logarithm scale�, respectively, in
his example. We assume that all model grid blocks are observed
Figure 5c�, but measurement noise has corrupted the data. The spar-
ity constraint is imposed on DCT coefficients to preserve channel
ontinuity and suppress the effect of measurement noise. The num-
er of observations is M �2025 and the dimension of the approxi-
ation subspace �Figure 5d�, is N�210 �other cases were tried and

ielded similar results�. The true model used to generate the observa-
ions is not perfectly sparse. Instead, the level of sparsity is varied in
ach experiment to evaluate its effect on the solution.
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Measurement uncertainty is simulated by adding observation er-
ors synthetically to the true facies model. Noisy measurements are
enerated by adding an uncorrelated Gaussian random error with
ero mean and standard deviation of 10% to the original facies val-
es for each grid block in the true porosity image. For comparison,
orosity values inside and outside the channels in the true model are
27% and �18%, respectively.
The compressed sensing formulation presented earlier is intended

or reconstruction of high-dimensional sparse signals from a rela-
ively small number of measurements �M�N�. However, the exam-
les in this section use a large number of noisy measurements.
herefore, the primary goal of our l1-norm minimization is to extract
feature from the noisy measurements. Rather than perfect signal
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R76 Jafarpour et al.
ecovery, we focus on l1-norm regularization to find a sparse approx-
mate solution that best describes the feature.

We perform a suite of tests to evaluate the performance of l1-norm
inimization by comparing the LLS, ones-step LMN, and two-step
MN formulations. These experiments are designed to examine the
ensitivity of the reconstruction to prior basis training, the weight
iven to the sparsity constraint term in the objective function, and the
earch dimension.

Figure 6 illustrates reconstruction results for the noisy areal mea-
urements in Figure 5d using the LLS, one-step LMN, and two-step
MN formulations. The importance of the regularization term rela-

ive to the measurement mismatch term in the objective function
quation 3 is adjusted with the weighting parameter � . Figure 6a dis-
lays reconstruction results for the DCT coefficients �first row� and
orosity values �second row� with the LLS formulation using no
raining, i.e., where W is the identity matrix. The panels from left to
ight in Figure 6a show the reconstructed solutions with increasing �
alues. For � �0, the reconstructions simply minimize the l2-norm
f the data fitting error. This results in nonzero values for almost all
CT coefficients. Increasing � reduces the energy of the DCT coef-
cients at the expense of greater data fitting error. It is evident from
igure 6a that this behavior results in underestimation of porosity
alues in the spatial domain. These results confirm that the LLS esti-
ator is not appropriate for extracting significant DCT basis ele-
ents and tends to underestimate the magnitudes of these significant
CT coefficients.
Figure 6b depicts the one-step LMN estimation results without

rior training. The columns from left to right show solutions with in-
reasing � values to put more emphasis on sparsity. As seen in Fig-
re 6c, the behavior of the one-step LMN solution is different than
hat of the LLS solution. With increasing values of � , more insignifi-
ant DCT coefficients are eliminated than in the LLS approach
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igure 5. �a� True channel facies porosity distribution, �b� the corresp
ient magnitudes in logarithm scale, �c� grid observations that are cor
d� the approximation subspace without directional preference.
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compare Figure 6a and b�. Furthermore, the magnitudes of the sig-
ificant DCT coefficients do not decrease as sharply with increasing
alue of � as with the LLS solution. This selective behavior of the

1-norm minimization is exploited to systematically identify the sig-
ificant basis elements of the underlying unknown feature from the
ata. The third and fourth columns in Figure 6b show the one-step
MN solutions for large � values. It can be observed from these fig-
res that magnitudes of larger DCT coefficients begin to decrease
ith increasing values of � . One major distinction between the LLS

nd one-step LMN solutions at large � values is that in the LLS ap-
roach, increasing � values mainly reduces larger DCT coefficients
per sensitivity of l2-norm to larger values�. However, in the one-step
MN solution, increasing � values mainly results in selective elimi-
ation of the insignificant DCT coefficients.

Figure 6c displays results obtained with the two-step LMN proce-
ure. The first step of this procedure is equivalent to the one-step
MN procedure with a large � value. The sparsity structure of the

wo-step LMN solution after step one, DCT coefficients obtained
rom step one, and corresponding porosity facies structure obtained
fter the least-squares minimization of step two are shown, respec-
ively, in the first, second, and third columns of Figure 6c. Improved
esults obtained from the two-step procedure suggests that step one
1-norm minimization can identify sparse structure of the true field
dequately. However, the step two l2-norm minimization can use this
tep one result to facilitate estimation of important DCT coefficients.

ynthetic traveltime tomography example

Next, we apply our one-step LMN sparse estimation procedure
ith l1-norm regularization to a simple straight-ray cross-well trav-

ltime tomography example. Our objective is to reconstruct the
slowness of a porous medium in the interval be-
tween two wells. We use a smooth Gaussian
slowness field as the true model and compare the
slowness derived from l1-norm regularized esti-
mates of DCT coefficients with slowness derived
from least-squares solutions with first- and sec-
ond-order Tikhonov regularization terms.
Tikhonov regularization is a preferred recon-
struction technique when recovering fields that
are believed to have mainly smooth features
�Tikhonov andArsenin, 1977�.

Figure 7a shows the configuration of the cross-
well tomography example. A uniformly spaced
system of ten sources is located on the left end of
the domain and a symmetric array of ten receivers
is located on the right end of the interval. The re-
sulting 100 arrival-time measurements are used
to infer the slowness structure of the medium.
Figure 7b illustrates the true slowness used to
generate the synthetic inversion data. The slow-
ness values in the true model vary between
0.66 �s /m and 321.52 �s /m. Two sets of experi-
ments are performed; one with exact �noise-free�
measurements, and one with additive Gaussian
noise with a standard deviation corresponding to
10% of the actual measurement magnitudes.

Figure 8 summarizes results obtained with
noise-free measurements. Each row in this figure
corresponds to a separate reconstruction method.
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igure 8a and b depicts solutions for first- and second-order
ikhonov regularizations �corresponding to minimization of first-
nd second-order spatial derivatives, respectively�. Figure 8c illus-
rates estimates obtained when l1-norm DCT coefficient regulariza-
ion is used. In each case, four reconstruction solutions correspond-
ng to zero, small, medium, and large regularization weights �left to
ight� are shown. The l1-norm regularization in Figure 8c was ap-
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igure 6. Reconstruction results for the true model in Figure 5a using
c� first and second steps, respectively, of the LMN formulations with
imated DCT coefficients �first row� and the corresponding estimated
onstruction result for the largest � used; �c� Reconstruction results
ation subspace �left�, estimated DCT coefficients magnitude in log

ation refers to the l -norm of the estimated DCT coefficients.
1
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lied to a 465-dimensional �N�465� low-frequency DCT approxi-
ation subspace. From Figure 8a and b, it is evident that when the

nderlying slowness model is smooth and observations are perfect,
rst- and second-order Tikhonov regularization methods provide
imilar and reasonably accurate reconstructions. By increasing the
ontribution of the regularization term in the objective function, in-
reasingly smoother solutions are obtained �Figure 8a and b, left to
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R78 Jafarpour et al.
ight�. Consequently, the quality of the solution is improved initially
ntil reconstruction results are overly smooth �last column of Figure
a-c�.

The first column in Figure 8c contains the reconstruction estimate
ithout including the l1-norm regularization in the one-step LMN
ethod �i.e., there is only least-squares minimization of the misfit

erm�. It can be inferred from this figure that although the nonregu-
arized reconstruction in the DCT domain is capable of identifying

igure 7. Cross-well traveltime tomography example. �a� Configu-
ation of the example with an array of ten sources �10 m apart� and
n array of ten receivers �10 m apart�; �b� the true slowness model.

a)

b)

c)

igure 8. Cross-well traveltime tomography of the model shown in F
Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
he general low- and high-slowness regions, it fails to capture the
moothness and exact value of the slowness features, particularly
ear the source and receiver locations. Clearly, in the absence of

1-norm regularization the DCT parameterization is outperformed
y the Tikhonov regularization methods. Even though Tikhonov
ethods solve the problem in the N�2025 dimensional spatial do-
ain �compared to N�465 in the DCT domain�, effectively they

an eliminate fine-scale �short-wavelength� features. As seen in the
econd through fourth columns of Figure 8c, when l1-norm regular-
zation is included, reconstruction outcomes in the DCT domain are
mproved markedly and outperform Tikhonov regularization solu-
ions. This encouraging outcome is attributed to the fact that the
CT representation of the true model is approximately sparse and

hat the structure of the existing sparsity is captured effectively by
olving an l1-norm minimization problem in the low-dimensional,
iscrete-cosine-transform subspace.

Figure 9 depicts the results from a similar set of experiments, in
hich Gaussian noise with standard deviation equal to 10% of the
ata values is added to the measurements. The noise in the data
hould have the most noticeable effect when a small regularization

b without adding noise to data. The reconstruction results for Tikha-
igure 7
ov regularization with �a� first order, and �b� second order spatial derivative minimization, and �c� l1-norm regularization �LMN� in the DCT do-
ain are shown with increasing regularization weight � �from left to right�. The root mean squared error �rmse� is in ��s /m� unit.
EG license or copyright; see Terms of Use at http://segdl.org/
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Transform-domain sparsity regularization R79
eight is used. Inspection of the results in Figure 9 suggests that in
ll methods �Figure 9a-c�, a large regularization weighting coeffi-
ient is needed to suppress the effect of noise. We make an interest-
ng observation by comparing results pertaining to l1-norm DCT co-
fficient regularization �i.e., Figures 8c and 9c�. Except when a large
egularization weight is used, relatively high-frequency elements
end to appear as the procedure attempts to fit the noise in the mea-
urement. We can reduce this effect by incorporating prior knowl-
dge about the underlying model �e.g., by eliminating the irrelevant
igh-frequency basis vectors�.

ield example

As our final example, we apply the one-step LMN procedure to
parse reservoir porosity from the Burbank oil field in Oklahoma,
nited States. The reservoir is made of sandstone and is divided into

everal flow units. Hird �1993� provides a more detailed description
f the field. Here we use porosity data from a section of the sixth flow
nit to construct a porosity map of the entire field. We use three
ethods to reconstruct the underlying porosity map: a spline inter-

olation technique documented by Sandwell �1987�, a geostatistical

a)

b)

c)

igure 9. Cross-well traveltime tomography of the model shown
ikhonov regularization with �a� first-order and �b� second-order sp
CT domain are shown with increasing regularization weight � �fro
Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
riging procedure, and l1-norm regularization in the DCT domain.
he kriging estimator uses a variogram model �or a stationary cova-

iance� to interpolate porosity values from point measurements. It
onsiders only data near each estimation point �usually within a few
orrelation lengths� when deriving the interpolated value. There-
ore, it can be expected to be a locally accurate interpolator �Goo-
aerts, 1999�.

To include the smoothness assumption of splines and kriging in

1-norm regularization, we used a low-frequency approximation
ubspace with N�78. Because the information in the variogram
odel describes the spatial persistence expected in the field, a sepa-

ate case was considered in which an ensemble of 100 random real-
zations was generated randomly from the kriging variogram. These
ealizations were used to weight the basis elements in the l1-norm
egularization following the procedure outlined inAppendix B.

Figure 10a shows the data set and the configuration of the estima-
ion domain that is considered. The porosity data vary within the
3.45%, 31%� range. The domain of interest is discretized into a 100
y 50 array of cells of size 1312 m by 1640 m in x- and y-directions,
espectively. Sixty observations were used to construct the poros-
ty map. Anisotropic exponential variograms with the range of

re 7b after adding 10% noise to data. Reconstruction results for
rivative minimization, and �c� l1-norm regularization �LMN� in the
o right�. The root mean squared error �rmse� is in ��s /m� unit.
in Figu
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m left t
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x�20,000 ft and ay �12,500 ft, a sill value of C�60, and a nug-
et C0�5 described the spatial correlation in the data adequately.
his variogram was used in the kriging algorithm. Kriging calcula-

ions were performed with the KT3D program included in the
SLIB software package �Deutsch and Journel, 1998�. Sandwell

1987� provides details of the spline interpolation method.
Burbank field porosity reconstruction results are summarized in

igures 11 and 12. Figure 11a-d depicts the map of porosity esti-
ates that are obtained from spline interpolation, kriging, one-step
MN with l1-norm minimization, and one-step LMN with l1-norm
inimization conditioned on the variogram model, respectively. In-

erpolation results from these methods capture the general trends of
ow and high porosity. However, the structural continuity of each

method is slightly different. A significant differ-
ence between the regularization and interpolation
methods �spline and kriging� is that the interpola-
tion methods reproduce the observed data exact-
ly, and the regularization method trades off mea-
surements misfit and prior structural assumptions
�expressed in terms of sparsity in the DCT do-
main and/or spatial persistence as described by
the variogram�. Figure 11c and d shows the effect
of using continuity of the variogram as an addi-
tional constraint. The resulting estimate in Figure
11d bears some resemblance to the kriging result
in Figure 11b. The main difference between the
two estimates is in the connectivity within the
low-porosity region. Minimization of the l1-norm
in the DCT domain tends to result in more contin-
uous features with smaller values. Potentially,
this can lead to underestimation of porosity val-
ues and overestimation of connectivity in the res-
ervoir. The two-step procedure described in the
previous section �and in Figure 6c� can be used if
a smaller data misfit is desired.

A standard cross-validation procedure was
sed to evaluate the performance of each method in estimating an
bserved value. For each of 60 estimation problems, one measure-
ent was removed from the data set and the remaining 59 measure-
ents were used to generate a porosity map. Estimated and observed

alues for the removed measurement were then compared to evalu-
te the accuracy of the estimation method. Figure 12 shows a scatter
lot of estimated versus observed values for each method. The re-
ults suggest that in an rms-error sense, l1-norm regularization pro-
ides a better estimate for this example.Asimple explanation for this
ehavior is that interpolation methods are more sensitive to local ob-
ervations; therefore, removing a data point has more impact on the
verall interpolation result �especially in regions with scattered ob-
ervations�. However, l1-norm-regularized methods are less sensi-
ive to local data and are designed to find global trends in the field.

CONCLUSIONS

Here we introduce a new regularization method for inverse prob-
ems in geophysical applications. This method combines a linear
ompression transform procedure �we use the DCT in our examples�
ith an inversion approach that seeks a sparse solution composed of
small subset of the transformed basis-function coefficients. This

pproach to inversion has its origin in basis-pursuit and sparse-re-
onstruction algorithms that rely on l -norm minimization. In gener-
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igure 10. Porosity data from Burbank field, Oklahoma, U.S.A. �a
ection of the sixth flow unit is shown�.
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igure 11. Reconstruction results for the Burbank field porosity data using
ethods of Sandwell �1987�, �b� geostatistical kriging, �c� l1-norm regulariz

requency DCT domain �LMN�, and �d� l1-norm regularization in a low fre
omain conditioned on the kriging variogram model �LMN-Var�.
igure 12. Cross-validation results for Burbank field example. LMN
epresents the solution with l1-norm regularization in a low frequen-
y DCT domain and LMN-Var refers to l1-norm regularization in a
ow frequency DCT domain conditioned on the kriging variogram

odel. Root-mean-squared errors are 87 for the spline, 60 for krig-
ng, 54 for l1-norm, and 51 for l1-norm and with conditioning on the
ariogram model.
 1
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Transform-domain sparsity regularization R81
l, we have shown that promoting sparsity through l1-norm minimi-
ation can be combined effectively with structural prior assumptions
o reconstruct geologic features in an appropriate transform domain.

e used several subsurface-characterization examples to demon-
trate the effectiveness of our regularization approach when the un-
erlying assumptions are applicable.

A key element in the development and application of the method
s identification of a transform that can be expected to yield an ap-
roximately sparse representation of the original field. General com-
ression transforms such as DCT or discrete wavelet transforms are
bvious sparse basis choices that can be suitable for sparsity promot-
ng with l1-norm minimization. By incorporating structural prior
nowledge about the properties of the underlying model �e.g., geo-
ogic setting and depositional environment� it is possible to identify
n approximation subspace in the transform domain that encourages
olutions with specific properties �as suggested by prior informa-
ion�. Structural prior information can become increasingly useful
even necessary� when sufficient data are not available to constrain
he solution or when observations are corrupted with noise. Because
he low-frequency DCT basis vectors provide reasonable approxi-

ations of smooth fields, continuous geologic features are likely to
e compressible and have an approximately sparse DCT representa-
ion. In this case, most of the transformed coefficients have small

agnitudes and can be truncated �as structural prior assumption�
ith marginal effect on the quality of the solution.
Successful use of the transform domain l1-norm regularization in

he presence of noise may necessitate the use of a large regulariza-
ion weight to suppress fine-scale artifacts that can emerge falsely
ecause of observation noise. However, adopting too large an

1-norm regularization weight can lead to excessive smoothing and
nderestimation of property values. We propose a heuristic two-step
rocedure to remedy this problem. In the first step, we identify a
parse solution structure �i.e., the subspace spanned by the set of
ost significant DCT basis elements� using l1-norm minimization
ith a large regularization weight in the objective function. In the

econd step, we minimize the data misfit by adjusting magnitudes of
he basis-function coefficients selected in step one. This two-step ap-
roach was more effective and resulted in improved solutions when
he data were corrupted by noise and a large regularization parame-
er was needed to dampen the noise effect.

In summary, this inversion approach seems promising for geo-
cience applications where, because of spatial correlations com-
only observed in facies distributions, a sparse approximation to the

nderlying model is believed to exist in a transform domain �often
hrough decorrelating transforms�. The potential of this approach
cross a range of applications �including geophysical inverse prob-
ems, subsurface characterization, and medical imaging� merits fur-
her investigation, including tests on realistic large-scale problems.

APPENDIX A

THE DISCRETE COSINE TRANSFORM

The discrete cosine transform is a linear transform that is widely
sed for image coding because of its compression power for smooth
nd correlated data. The DCT basis that we have used in this paper is
he most commonly used from a family of discrete cosine transforms
see Püschel and Moura, 2003�. The 1D �forward� DCT of a discrete
ignal u of length N can be expressed as �Ahmed et al., 1974; Rao
nd Yip, 1990�:
Downloaded 06 Sep 2009 to 18.95.5.157. Redistribution subject to S
v�k����k� �
n�0

N�1

u�n�cos	��2n�1�k
2N


 0�k�N�1

�A-1�

��k�1:N�1���2��0��� 2

N
�A-2�

quations A-1 andA-2 describe an orthogonal transformation, so its
nverse has a very similar form:

u�n�� �
k�0

N�1

��k�v�k�cos	��2n�1�k
2N


 0�n�N�1

�A-3�

The DCT can be interpreted as a counterpart to the discrete Fouri-
r transform �DFT� that provides real-valued outputs for real-valued
nputs. Compared to DFT, the DCT has better energy-compaction
roperties and approaches the performance of the Karhunen-Loeve
ransform �which is optimal in the mean-squared-error sense� for
ertain Morkov processes. Hence, it has enjoyed widespread appli-
ation in image compression �Rao andYip, 1990�. Many of the prop-
rties of the DFT extend in some way to the DCT. In particular, the
ransform coefficients have a natural order from low- to high-fre-
uency, and the DCT is extended to multidimensional signals by
artesian product.Applying the transform separately in each dimen-

ion and using algorithms like fast Fourier transforms make these
omputations efficient.

Here we make extensive use of the 2D DCT. Figure 1a shows the
4 basis elements that arise in a 2D DCT with size 8 in each dimen-
ion. Smooth 2D signals can be approximated well by a small num-
er of DCT coefficients �Jain, 1989; Gonzalez and Woods, 2002�.
ore specifically, if the horizontal and vertical frequency content

re significantly different, then the best approximation will use a dif-
erent number of coefficients horizontally and vertically. Such
symmetric sampling is illustrated in Figure 1b and is exploited in
he porosity estimation shown in Figure 4.

APPENDIX B

BASIS TRAINING PROCEDURE

A training procedure can be developed to obtain the weighting
oefficients �elements of W� from the available training data.Asim-
le training procedure is described briefly in this section for our syn-
hetic example. We assume that prior information takes the form of a
raining library that includes representative examples of spatial pat-
erns that can be expected in a given application. Such a library can
e used to determine, on average, the significance of each basis vec-
or in the reconstruction. Here, we compute the weighting matrix W
n equation 3 using the following procedure:

� The DCT of each image in the library is computed.
� Absolute values of the DCT coefficients are averaged across

the library.
� Means of the absolute values of the resulting DCT ensemble are

truncated by specifying a threshold to remove basis vectors un-
likely to have a significant contribution �i.e., vectors corre-
sponding to basis coefficients with small mean magnitudes�.
EG license or copyright; see Terms of Use at http://segdl.org/
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4� Reciprocals of the remaining coefficients are normalized to
yield W.

Matrix W �obtained from the above procedure� ensures that in
he reconstruction algorithm, significant basis vectors �as suggested
y the prior library� are given small penalties so they can take large
alues, whereas large penalties are associated with less significant
asis vectors to keep their corresponding coefficients small. Insig-
ificant �high-frequency� basis vectors are eliminated in the estima-
ion problem.

Figure B-1 illustrates the training procedure used to obtain W.
igure B-1a presents sample 45�45 channelized facies realiza-

ions generated from a 250�250 training image borrowed from
aers and Zhang �2004� and using multipoint geostatistical simula-

ion software SGeMS �Strebelle and Journel, 2001; Remy, 2004�.
igure B-1b and c shows, respectively, the DCT coefficients associ-
ted with each member of the library and the result of the threshold-
ng operation, which retains only the basis vectors corresponding to
he 78 DCT coefficients that are largest on average. Weight matrix W
s a diagonal matrix with its diagonal elements corresponding to the
eciprocal of the remaining averaged DCT magnitudes as shown in
igure B-1d. The unknown coefficients of the thresholded basis vec-

ors are the parameters to be estimated in the inversion problem. It is
mportant to note that if the prior image library is not consistent with
he main features in the unknown parameters, prior training can be
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igure B-1. Training DCT basis with a prior ensemble of porosity. �a�
zations generated by SGeMS using multipoint geostatistics �Str
001� and used for training the DCT basis; �b� magnitude of the DCT
rior ensemble in �a�, shown in logarithm scale; �c� the largest �in mag
fficients �averaged over prior ensemble�; and �d� the reciprocal of th
o build a diagonal weighting matrix W.
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misleading and reconstruction results can be af-
fected adversely �Jafarpour and McLaughlin,
2009�.
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