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Abstract

In ensemble Kalman filtering (EnKF), the small number of ensemble members that is
feasible to use in a practical data assimilation application leads to sampling variability
of the estimates of the background error covariances. The standard approach to re-
ducing the effects of this sampling variability, which has also been found to be highly5

efficient in improving the performance of EnKF, is the localization of the estimates of
the covariances. One family of localization techniques is based on taking the Schur
(entry-wise) product of the ensemble-based sample covariance matrix and a correla-
tion matrix whose entries are obtained by the discretization of a distance-dependent
correlation function. While the proper definition of the localization function for a single10

state variable has been extensively investigated, a rigorous definition of the localization
function for multiple state variables has been seldom considered. This paper introduces
two strategies for the construction of localization functions for multiple state variables.
The proposed localization functions are tested by assimilating simulated observations
experiments into the bivariate Lorenz 95 model with their help.15

1 Introduction

The components of the finite-dimensional state vector of a numerical model of the at-
mosphere are defined by the spatial discretization of the state variables considered in
the model. An ensemble-based Kalman filter (EnKF) data assimilation scheme treats
the finite-dimensional state vector as a multivariate random variable and estimates its20

probability distribution by an ensemble of samples from the distribution. To be precise,
an EnKF scheme assumes that the probability distribution of the state is described by
a multivariate normal distribution and it estimates the mean and the covariance matrix
of that distribution by the ensemble (sample) mean and the ensemble (sample) covari-
ance matrix. The estimate of the mean and the estimate of the covariance matrix of25

the analysis distribution are obtained by updating the mean and the covariance matrix
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of a background (prior) distribution based on the latest observations. The background
distribution is represented by an ensemble of short-term forecasts from the previous
analysis time. This ensemble is called the background ensemble.

Because the number of background ensemble members that is feasible to use in
a realistic atmospheric model is small, the estimates of weak covariances (the entries5

with small absolute values in the background covariance matrix) tend to have large
relative estimation errors. These large relative errors have a strong negative effect on
the accuracy of an EnKF estimate of the analysis mean. The standard approach to
alleviating this problem is to apply a physical-distance-dependent localization to the
sample background covariances before their use in the state update step of the EnKF.10

In essence, localization is a method to introduce the empirical understanding that the
true background covariances tend to rapidly decrease with distance into the state esti-
mation process.

Data assimilation schemes treat the spatially discretized state vector, x, as a mul-
tivariate random variable. We use the conventional notation xb and xa for the back-15

ground and the analysis state vectors, respectively. We also use the notation y◦ for the
vector of observations. In an EnKF scheme, the analysis mean, x

a
, is computed from

the background mean, x
b
, by the update equation

x
a
= x

b
+K
(
y◦ −h

(
xb
))

. (1)

The function h(·) is the observation function, which maps the finite-dimensional state20

vector into observables. Thus, h(xb) is the ensemble mean of the prediction of the
observations by the background. The matrix

K = PbHT
(

HPbHT +R
)−1

(2)

is the Kalman gain matrix, where Pb is the background covariance matrix, H is the lin-

earization of h about x
b

and R is the observation error covariance matrix. The entry Ki j25
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of K determines the effect of the j th observation on the i th component of the analysis
mean, x

a
. Under the standard assumption that the observation errors are uncorrelated,

the matrix, R, is diagonal. Hence, the way the effect of the observations is spread from
the observations to the different locations and state variables is determined by Pb and
H. The sampling variability in the estimates of Pb affects the accuracy of the informa-5

tion propagated in space and between the different state variables through the matrix
products, PbHT and HPbHT. The goal of localization is to reduce the related effects of
sampling variability on the estimates of K.

Over the years, many different localization methods have been proposed. Hamill
et al. (2001); Houtekamer and Mitchell (1998, 2001); Hunt et al. (2007); Ott et al.10

(2004), and Whitaker and Hamill (2002) used localization functions which set the co-
variance to zero beyond a certain distance (localization radius). Jun et al. (2011) pro-
posed a nonparametric statistical method to estimate the covariance. Anderson (2007)
used a hierarchical ensemble filter which estimates the covariance using an ensem-
ble of ensemble filters. Bishop and Hodyss (2007, 2009a, b) adaptively determined15

the width of localization by computing powers of the sample correlations. Buehner and
Charron (2007) examined the spectral and spatial localization of error covariance. An-
derson and Lei (2013) and Lei and Anderson (2014) proposed an empirical localization
function based on the output of an observing system simulation experiment.

The focus of the present paper is on the family of schemes that localize the covari-20

ances by taking the Schur (Hadamard) product of the sample background covariance
matrix and a correlation matrix of the same size, whose entries are obtained by the
discretization of a distance-dependent correlation function with local (compact) sup-
port (e.g., Hamill et al., 2001; Houtekamer and Mitchell, 2001; Whitaker and Hamill,
2002). Such a correlation function is usually called a localization or taper function. The25

commonly used localization functions were introduced by Gaspari and Cohn (1999).
Beyond a certain distance, all localization functions become zero, forcing the filtered
estimates of the background covariance between state variables at locations that are

836

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/833/2015/npgd-2-833-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/833/2015/npgd-2-833-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 833–863, 2015

Multivariate
localization methods
for ensemble Kalman

filtering

S. Roh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

far apart in space to zero. This property of the filtered background covariances can also
be exploited to increase the computational efficiency of the EnKF schemes.

Equations (1) and (2) provide the solution of a formulation of the data assimilation
problem that assumes that Pb is invertible (e.g., Sects. 4.2.1 and 4.2.3 of Szunyogh,
2014). Because Pb is symmetric, its eigenvalues are real and non-negative, which5

implies that it is invertible, only if it is also positive-definite. (An n×n symmetric matrix
A is positive-definite if xTAx > 0 for all non-zero vectors x ∈Rn.) Thus, Eqs. (1) and (2)
provide a solution of the formal data assimilation problem for a localized estimate of
Pb, only if that localized estimate is symmetric and positive-definite.

Because the computation of the right-hand-side of Eq. (2) does not require the in-10

vertibility of Pb, singularity of the localized Pb usually does not lead to a breakdown
of the computations in practice. This does not change the fact, however, that the so-
lution obtained by Eqs. (1) and (2) can no longer be the solution of the problem that
they were designed to solve. In addition, an ill-conditioned estimate of Pb can degrade
the conditioning (increase the condition number) of HPbHT +R, making the numerical15

computation of the right-hand side of Eq. (2) less stable.
A realistic atmospheric model has multiple scalar state variables (e.g., temperature,

coordinates of the wind vector, surface pressure, humidity). If a univariate localiza-
tion function, such as that described by Gaspari and Cohn (1999), is applied directly
to a multivariate state vector, the resulting localized background covariance matrix20

may not be positive-definite. This motivates us to seek rigorously-derived multivari-
ate localization functions for ensemble Kalman filtering. As will be demonstrated, such
rigorously-derived multivariate localization functions often produce more accurate anal-
yses than those that apply the same univariate localization functions to each scalar
component of the state vector. Kang et al. (2011) also introduced a multivariate lo-25

calization method that zeros out covariances between physically unrelated variables.
Their motivation to zero out cross-covariances, however, was to filter apparent spurious
covariances rather than to preserve the positive-definiteness of the background error
covariance matrix.
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In our search for proper multivariate localization functions, we take advantage of
recent developments in the statistics literature. In particular, we use the localization
functions developed in Porcu et al. (2012), who studied the radial basis functions to
construct multivariate correlation functions with compact support. Note that Sect. 5 in
Zhang and Du (2008) described general methodology for covariance tapering in the5

case of multiple state variables. Du and Ma (2013) used a convolution approach and
a mixture approach to derive covariance matrix functions with compactly supported
marginal and cross-covariances. Kleiber and Porcu (2015) constructed nonstationary
correlation functions with compact support for multivariate random fields. Genton and
Kleiber (2015) reviewed approaches to building cross-covariance models such as com-10

pactly supported correlation functions for multivariate Gaussian random fields.
The rest of the paper is organized as follows. Section 2 briefly describes EnKF and

localization for the special case of two state variables. Section 3 describes the bivariate
Lorenz-95 model we use to test our ideas. Section 4 summarizes the main results of
the paper.15

2 Methodology

2.1 Univariate localization

In principle, localization can be implemented by using filtered estimates of the back-
ground covariances rather than the raw sample covariances to define the matrix, Pb,
used in the computation of K by Eq. (2). The filtered (localized) version of covariance20

matrix, P̃b, is obtained by computing the Schur (entry-wise) product:

P̃b = P̂b ◦ C, (3)

where C is a correlation matrix, which has the same dimensions as the sample covari-
ance matrix, P̂b. In practice, however, the localization is often done by taking advantage
of the fact that localization affects the analysis through PbHT and HPbHT, or, ultimately,25
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through K. In particular, because a distance, d , can be defined for each entry, Ki j , of K
by the distance between the i th analyzed variable and the j th observation, the simplest
localization strategy is to set all entries, Ki j , that are associated with a distance longer
than a prescribed localization radius, R (d > R), to zero, while leaving the remaining
entries unchanged (e.g., Houtekamer and Mitchell, 1998; Ott et al., 2004; Hunt et al.,5

2007).
Another approach is to localize PbHT and HPbHT by a tapering function (e.g., Hamill

et al., 2001; Houtekamer and Mitchell, 2001). The usual justification for this approach
is that H is typically the linearization of a local interpolation function, h(·), for which the
localized matrix products provide good approximations of the products computed by us-10

ing localized estimates of Pb. Note that PbHT is the matrix of background covariances
between the state variables at the model grid points and at the observation locations,
while HPbHT is the matrix of background covariances between the state variables at
the observation locations. Thus, a distance can be associated with each entry of the
two matrix products, which makes the distance-dependent localization of the two prod-15

ucts possible. The approach becomes problematic, however, when h(·) is not a local
function, which is the typical case for remotely sensed observations (Campbell et al.,
2010).

We consider the situation where localization is applied directly to the background
error covariance matrix, P̂b. Recall that the localized covariance matrix is expressed as20

in Eq. (3). In particular, C is a positive-definite matrix with strictly positive eigenvalues,
while the sample covariance matrix, P̂b, may have zero eigenvalues (as it is only non-
negative definite). The localization in Eq. (3) helps to eliminate those zero eigenvalues
of P̂b and alleviate the related large relative estimation errors. The positive-definiteness
of C ensures that localization does not introduce new zero eigenvalues in the process25

of eliminating the zero eigenvalues of P̂b. The proper definition of the localization func-
tion that ensures that C is positive-definite has been thoroughly investigated for the
univariate case (N = 1) in the literature (e.g. Gaspari and Cohn, 1999).
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2.2 Multivariate localization

We now consider a model with N state variables. For instance, we take a simple model
based on the hydrostatic primitive equations. This model solves the equations for the
two horizontal components of wind, the surface pressure, the virtual temperature and
a couple of atmospheric constituents. The state of the model is represented by the state5

vector, x = (x1,x2, . . .,xN ), where xi , i = 1,2, . . .,N, represents the spatially discretized
state of the i th state variable in the model.

The sample background covariance matrix, P̂b, can be partitioned as

P̂b =


P̂b

11 P̂b
12 · · · P̂b

1N
P̂b

21 P̂b
22 · · · P̂b

2N
...

...
. . .

...
P̂b
N1 P̂b

N2 · · · P̂b
NN

 . (4)

The entries of the submatrices, P̂b
i i , i = 1, . . .,N, are the marginal-covariances for the10

i th state variable. In practical terms, if the i th state variable is the virtual temperature,
for instance, each diagonal entry of P̂b

i i represents the sample variance for the virtual

temperature at a given model grid point, while each off-diagonal entry of P̂b
i i repre-

sents the sample covariances between the virtual temperatures at a pair of grid points.
Likewise, the entries of P̂b

i j , i 6= j , are the sample cross-covariances between the grid15

point values of the i th and the j th state variables at pairs of locations, where the two
locations for an entry can be the same grid point.

We thus consider matrix-valued localization functions, ρ(d ) = {ρi j (d )}i ,j=1,...,N , which
are continuous functions of d . The component ρi j (d ) of ρ(d ) is the localization function

used for the calculation of the covariances included in the sub-matrix Pb
i j of Pb. Each20

entry of the localization matrix C is computed by considering the value of the appro-
priate component of ρ(d ) for a particular pair of state variables and the distance, d ,
associated with the related entry of P̂b.
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In order to get a proper matrix-valued localization function, ρ, a seemingly obvious
approach to extend the results of Gaspari and Cohn (1999) would be to compute the
entries of C based on a univariate correlation function for a multivariate variable. That is,
for the pair of state variables i and j , we localize the corresponding sample background
covariance matrix, P̂b

i j , by multiplying a localization matrix from the same correlation5

function for all i and j . Formally, this would be possible because the distance d is
uniquely defined for each entry of P̂b the same way in the multivariate case as in the
univariate case. This approach, however, cannot guarantee the positive-definiteness of
the resulting matrix, C. As a simple illustrative example, consider the situation where
the discretized state vector has only two components that are defined by two different10

scalar state variables at the same location (e.g., the temperature and the pressure).
In this case, if n is the number of locations, the localization matrix for the two state
variables together can be written as

C =
(

C0 C0
C0 C0

)
(5)

independently of the particular choice of the localization function. Here C0 is an n×n15

localization matrix from a univariate localization function. From Eq. (5), it is clear that n
eigenvalues of C are zero and the rank of C is n, while its dimension is 2n×2n.

As in Eq. (2), although C is rank-deficient and thus so is the localized covariance
matrix P̃b, we may still be able to calculate the inverse of HP̃bHT+R, as R is a diagonal
matrix. The smallest eigenvalue of HP̃bHT+R is the smallest (positive) value of R, and20

thus the matrix, HP̃bHT +R, is still invertible and has positive eigenvalues. However,
unless the diagonal elements of R are large (which implies large observation error
variance), the matrix HP̃bHT +R is seriously ill-conditioned and the computation of its
inverse may be numerically unstable. Therefore, the numerical stability of the computa-
tion of the inverse of the matrix heavily relies on the observation error variance, which25

is an undesirable property.
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We therefore propose two approaches to construct positive-definite (full rank) matrix-
valued localization functions, ρ(d ). The first proposed method takes advantage of the
knowledge of a proper univariate localization function, ρ̃. Instead of using the same
correlation function to localize multiple state variables, for a certain distance lag, we
let ρ = ρ̃ · B, where B is an N × N symmetric, positive-definite matrix whose diago-5

nal entries are one. It can be easily verified that ρ is a matrix-valued positive-definite
function, which makes it a valid multivariate localization function. For instance, in the
hypothetical case where the two components of the state vector are two different state
variables at the same location, making the choice

B =
(

1 β
β 1

)
, (6)10

with |β| < 1, leads to

C =
(

C0 βC0
βC0 C0

)
(7)

rather than what is given in Eq. (5). Since the eigenvalues of the matrix B are 1±β > 0,
it can be easily verified that the matrix in Eq. (7) is positive-definite. For the case with
more than two state variables (N ≥ 3), the matrix B can be parametrized as B = LLT

15

with L a lower triangular matrix whose diagonal entries are positive. Furthermore, we
need the constraint that for each row of L, the sum of all of the squared elements should
be 1 in order to have the diagonal entries of B to be one. Other than these constraints,
the elements of L can vary freely in order to guarantee the positive-definiteness of B.

An attractive feature of this approach is that we can take advantage of any known20

univariate localization function to produce a multivariate localization function. However,
the multivariate localization function from this approach is separable in the sense that
the multivariate component (i.e., B) and the localization function (i.e. ρ̃) are factored.
Another limitation of the approach is that the localization radius and decay rate are the
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same for each pair of state variables, leaving no flexibility to account for the poten-
tial differences in the correlation lengths and decay rate for the different state vector
components.

The second proposed method takes advantage of the availability of multivariate com-
pactly supported functions from the spatial statistics literature. To the best of our knowl-5

edge, only a few papers have been published on this subject; one of them is Porcu
et al. (2012). The function class they considered was essentially a multivariate ex-
tension of the Askey function (Askey, 1973), f (d ;ν,c) =

(
1− d

c

)ν
+, with c,ν > 0. Here,

x+ = max(x,0) for x ∈R. For instance, a bivariate Askey function, which is a special
case of the results of Porcu et al. (2012), is given by (i , j = 1,2)10

ρi j (d ;ν,c) = βi j

(
1− d

c

)ν+µi j
+

, (8)

where c > 0, µ12 = µ21 ≤ 1
2 (µ11 +µ22), ν ≥

[1
2s
]
+2, βi i = 1 (i = 1,2), β12 = β21, and

|β12| ≤
Γ(1+µ12)

Γ(1+ ν+µ12)

√
Γ(1+ ν+µ11)Γ(1+ ν+µ22)

Γ(1+µ11)Γ(1+µ22)
. (9)

Here, Γ(·) is the gamma function (e.g., Wilks, 2006), s is the dimension of the Euclidean
space where the state variable is defined, and [x] is the largest integer that is equal15

to or smaller than x. The Askey function in Eq. (8) has the support c because it sets
covariances beyond a distance c to zero. It can be seen from Eq. (9) that, if the scalars,
µi j , are chosen to be the same for all values of i and j , the condition on β12 for ρ to be
valid is |β12| ≤ 1. Note that, for this choice, the second method is essentially the same
as the first method with the Askey function set to ρ̃. The localization function given by20

Eq. (8) is more flexible than the functions of the first method with the Askey function set
to ρ̃ because µi j can be chosen to be different for each pair of indexes, i and j . The
localization length, however, is still the same for the different pairs of the state variables.

To illustrate the differences between the shape of the Gaspari–Cohn and the Askey
functions, we show the Gaspari–Cohn function for c = 25 and the univariate Askey25
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function for c = 50, ν = 1,2,3, and µ11 = 0 (Fig. 1). This figure shows that for a given
support, the Askey functions are narrower.

3 Experiments

3.1 The EnKF scheme

There are many different formulations of the EnKF update equations, which produce5

not only an updated estimate of the mean, but also the ensemble of analysis perturba-
tions that are added to the mean to obtain an ensemble of analyses. This ensemble of
analyses serves as the ensemble of initial conditions for the model integration that pro-
duce the background ensemble. In our experiments, we use the method of perturbed
observations. It obtains the analysis mean and the ensemble of analysis perturbations10

by the equations

x
a
= x

b
+K
(
y −Hx

b
)

, (10)

xa′

k = xb′

k +K
(
yo′

k −Hxb′

k

)
, (11)

where x′k , k = 1,2, . . .,M are the ensemble perturbations and yo′

k , k = 1,2, . . .,M are
random draws from the probability distribution of observation errors. As the notation15

suggests, we consider a linear observation function in our experiments. This choice is
made for the sake of simplicity and limits the generality of our findings much less than
the use of an idealized model of atmospheric dynamics.

For the case of multiple state variables, the ensemble members are considered to
be in a single ensemble, that is, not being grouped into distinct sub-ensembles.20
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3.2 The Bivariate Lorenz model

The idealized model we use is the bivariate Lorenz-95 model (Lorenz, 1995). The
model mimics the nonlinear dynamics of two linearly coupled atmospheric state vari-
ables, X and Y , on a latitude circle. The variable, X , is a “slow” variable represented by
K discrete values, Xk , and Y is a “fast” variable represented by J ×K discrete values.5

The governing equations are

dXk
dt

= −Xk−1(Xk−2 −Xk+1)−Xk − (ha/b)
J∑
j=1

Yj ,k + F , (12)

dYj ,k
dt

= −abYj+1,k(Yj+2,k − Yj−1,k)−aYj ,k + (ha/b)Xk , (13)

where Yj−J ,k = Yj ,k−1 and Yj+J ,k = Yj ,k+1 for k = 1, . . .,K and j = 1, . . .,J . The “bound-
ary condition” is periodic; that is, Xk−K = Xk+K = Xk , and Yj ,k−K = Yj ,k+K = Yj ,k . In our10

experiments, K = 36 and J = 10. The parameter h controls the strength of the coupling
between X and Y , a is the ratio of the characteristic time scales of the slow motion
of X to the fast motion of Y , b is the ratio of the characteristic amplitudes of X to Y ,
and F is a forcing term. We choose the parameters to be a = 10, b = 10, F = 10, and
h = 2. These values of the model parameters are equal to those originally suggested15

by Lorenz (1995), except for the value of the coupling coefficient h, which is twice as
large in our case. We made this change in h to increase the covariances between
the errors in the estimates of X and Y , which makes the model more sensitive to the
choices of the localization parameters. We use a fourth-order Runge–Kutta time in-
tegration scheme with a time step of 0.005 non-dimensional units as Lorenz (1995)20

did. We define the physical distances between Xk1
and Xk2

, between Yj1,k1
and Yj2,k2

,
and between Xk1

and Yj1,k2
by |10(k1−k2)|, |10(k1−k2)+ j1− j2|, and |10(k1−k2)− j1|,

respectively. Figure 2 shows a typical state of the model for the selected parameters.
The figure shows that X tends to drive the evolution of Y : the hypothetical process
represented by Y is more active (its variability is higher) with higher values of X .25
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3.3 Experimental design

Since the estimates of the cross-covariances play a particularly important role at loca-
tions where one of the variables is unobserved, we expect an improved treatment of
the cross-covariances to lead to analysis improvements at locations where only one of
the state variables is observed. This motivates us to consider an observation scenario5

in which X and Y are partially observed. The variable X is observed at randomly cho-
sen 20% of all locations and Y is observed at randomly chosen 90% of those locations
where X is not observed. Spatial locations of the partially observed X and Y are illus-
trated in Fig. 3. The results from this experiment are compared to those from a control
experiment, in which both X and Y are fully observed.10

We first generate a time series of “true” model states by a 2000-time-step integration
of the model. We initialize an ensemble by adding the standard Gaussian noise to
the true state; then, discarding the first 3000 time steps. We then generate simulated
observations by adding random observation noise of mean zero and variance 0.02 to
the the appropriate components of the “true” state of X at each time step. We use15

the same procedure to generate simulated observations of Y , except that the variance
of the observation noise is 0.005. Observations are assimilated at every time step
by first using a 20-member ensemble with a constant covariance inflation factor of
1.015. The error in the analysis at a given verification time is measured by the root-
mean-square distance between the analysis mean and the true state. We refer to the20

resulting measure as the root-mean-square error (RMSE). The probability distribution
of the RMSE for the last 1000 time steps of 50 different realizations of each experiment
is shown by a boxplot. The boxplot is an effective way of displaying summary of the
distribution of numbers. The lower and upper bounds of the box respectively give the
25th and 75th percentiles. The thick line going across the interior of the box gives the25

median. The whisker depends on the interquartile range (IQR) that is precisely equal
to the vertical length of the box. The whiskers extend to the extreme values which are
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no more than 1.5 IQR from the box. Any values that fall outside of the end points of
whiskers are considered outliers and they are displayed as circles.

In the boxplot figures in the next section, we compare the RMSE for four different
localization schemes. We use the following notation to distinguish between them in the
figures:5

1. S1 – the bivariate sample background covariance is used without localization;

2. S2 – same as S1 except that the cross-covariance terms are replaced by zeros;

3. S3 – a univariate localization function is used to filter the marginal-covariances,
while the cross-covariance terms are replaced by zeros;

4. S4 – one of the bivariate localization methods described in Sect. 2.2.2 is used to10

filter both the marginal- and the cross-covariances.

In the experiments identified by S4, we consider two different bivariate localization
functions: The first one is ρ(1)(·) = {βi jρ

(1)(·)}i ,j=1,2 with βi i = 1 (i = 1,2), βi j = β (i 6= j ),
and |β| < 1. We use the fifth-order piecewise-rational function of Gaspari and Cohn
(1999) to define the univariate correlation function, ρ(1), in the following form,15

ρ(1)(d ;c) =
−1

4 (|d |/c)5 + 1
2 (d/c)4 + 5

8 (|d |/c)3 − 5
3 (d/c)2 +1, 0 ≤ |d | ≤ c,

1
12 (|d |/c)5 − 1

2 (d/c)4 + 5
8 (|d |/c)3 + 5

3 (d/c)2 −5(|d |/c)+4− 2
3c/|d |, c ≤ |d | ≤ 2c,

0, 2c ≤ |d |.
(14)

This correlation function attenuates the covariances with increasing distance, setting
all the covariances to zero beyond distance 2c. So this function has the support 2c. If
|β| < 1 and c is the same for both the marginal- and the cross-covariances, the matrix-20

valued function, ρ(1), is positive-definite and of full rank. We test various values of the
localization parameters c and β.
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The second multivariate correlation function we consider, ρ(2), is the bivariate Askey
function described in Sect. 2.2. In particular, we use µ11 = 0, µ22 = 2, µ12 = 1, and ν =
3. According to Eq. (9), for these choices of parameters, the one remaining parameter,
β12, must be chosen such that |β12| < 0.79.

3.4 Results5

Figure 4 shows the distribution of RMSE for variable X for different configurations of the
localization scheme in the case where the state is only partially observed. This figure
compares the Askey function and Gaspari–Cohn function which have the same support
(localization radius), so setting all the covariances to zero beyond the same distance.
We recall that because X is much more sparsely observed than Y , we expect to see10

some sensitivity of the analyses of X to the treatment of the cross-covariance terms.
The figure confirms this expectation. A comparison of the results for configurations S1
and S2 suggests that ignoring the cross-covariances is a better strategy than to use
them without localization. This conclusion does not hold once a univariate localization is
applied to the marginal covariances, as using configuration S3 produces worse results15

than applying no localization at all (S1).
Figure 4 also shows that the distribution of the state estimation error is less sensitive

to the choice of localization strategy for the larger values of support. Of all localization
schemes, S4 with β = 0.1 performs best regardless of the localization radius: the distri-
bution of the state estimation error is narrow with a mean value that is lower than those20

for the other configurations of the localization scheme. For this choice of localization
scheme and β, the Askey function produces smaller errors than the Gaspari–Cohn
function, particularly, for smaller localization radii.

Figure 5 is the same as Fig. 4, except for variable Y rather than for variable X .
A striking feature of the results shown in this figure is that the Askey function clearly25

performs better than the Gaspari–Cohn function. Another obvious conclusion is that
using a smaller localization radius (a lower value of support) is clearly advantageous
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for the estimation of Y . This result is not surprising, considering that Y is densely
observed and its spatial variability is much higher than that of X . In contrast to the
results for variable X , configuration S3 produces much more accurate estimates of
variable Y than do configurations S1 or S2. In addition, configuration S4 performs only
slightly better, and only for the lowest value of support, than does configuration S3.5

The latter observations indicate that the marginal covariances play a more important
role than do the cross-covariances in the estimation of the densely observed Y . The
proper filtering of the marginal covariances can thus greatly increase the accuracy of
the estimates of Y . In other words, the densely observed Y is primarily estimated based
on observations of Y . Hence, the low signal-to-noise ratio for the sample estimate of10

the marginal covariances for Y greatly limits the value of the observations of Y at longer
distances.

Figure 6 is the same as Fig. 4, except for the case of a fully observed state. By com-
paring the two figures, we see that the analysis is far less sensitive to the localization
radius in the fully observed case than in the partially observed case. As can be ex-15

pected, the state estimates are also more accurate in the fully observed case. In the
fully observed case, localization strategy S3 performs much better than do strategies
S1 and S2 and similarly to S4. This result indicates that in the fully observed case,
X is primarily analyzed based on observations of X , making the analysis of X more
sensitive to the localization of the marginal covariances than to the localization of the20

cross-covariances. Similar to the partially observed case, the Askey function tends to
perform better than the Gaspari–Cohn function, but the differences between the ac-
curacy of the state estimates for the two filter functions are negligible, except for the
shortest localization radius.

Finally, Fig. 7 shows the distribution of the errors for variable Y in the fully observed25

case. The best results are obtained by using a short localization radius with the Askey
function, even though the variability of the error is relatively large in that case. The fact
that localization strategies S3 and S4 perform similarly well shows that the estimates
of the cross-covariances do not play an important role in this case; that is, X is pri-
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marily estimated based on observations of X and Y is dominantly estimated based on
observations of Y .

Figures 7–10 show the results for the 40-member ensemble. We use an inflation
factor of 1.01, because the optimal value of the inflation factor is typically smaller for
a larger ensemble. Figure 7 shows that the ensemble size has little effect on the es-5

timates of X in the case of the partially observed state. For variable Y in the partially
observed case (Fig. 8) and both variables X and Y in the fully observed case (Figs. 9
and 10), however, the best results are obtained with a larger localization radius than in
the case of the 20-member ensemble. This behavior is expected, as a larger ensem-
ble can more accurately estimate the weaker covariances associated with the longer10

distances. As for the 20-member ensemble, the localization schemes using the Askey
function perform better than those using the Gaspari–Cohn function.

4 Discussion

The central argument of this paper is that using a univariate localization function for the
localization of both the marginal and the cross-covariances in an EnKF scheme may15

lead to a rank deficient estimate of the background covariance matrix. We suggested
two different approaches for the construction of positive-definite filtered estimates of
the background covariance matrix. One of them takes advantage of the knowledge of
a proper univariate localization function, whereas the other uses a multivariate exten-
sion of the Askey function. The results of our numerical experiments show that a math-20

ematically proper localization function often leads to improved state estimates. The
results of the numerical experiments also suggest that of the two approaches we intro-
duced, the one based on the Askey function produces more accurate state estimates
than that based on the Gaspari–Cohn function.
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Figure 1: The Gaspari-Cohn covariance function with a localization constant c = 25 (support
of 50) and the Askey covariance function with a support parameter c = 50 and various shape
parameters.
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of 50) and the Askey covariance function with a support parameter c = 50 and various shape
parameters.
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Figure 2: A snapshot of the variables X and Y from a numerical integration of the system of
Eqs. (12) and (13) with K = 36, J = 10, F = 10, a = 10, b = 10, and h = 2.
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Figure 3: Spatial locations of partial observation of X and Y .
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Figure 4: The probability distribution of RMSE for variable X in the case when the system is
only partially observed. Results are shown for different localization strategies. For the definitions
of localization strategies S1, S2, S3 and S4, see the text. The title of each panel indicates the
localization radius (length of support). The numbers below S4 indicate the value of β.
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Figure 5: Same as 4, except for variable Y .
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Figure 6: Same as 4, except for the case when the system is fully observed.
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Figure 7: Same as 6, except for variable Y .
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Figure 8: Same as 4, except for 40 ensemble members.
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Figure 9: Same as 5, except for 40 ensemble members.
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Figure 10: Same as 6, except for 40 ensemble members.
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Figure 11: Same as 7, except for 40 ensemble members.
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